
Arash Saifhashemi1
Peter A. Beerel1,2

1Ming Hsieh Dept. of Electrical Engineering, University of Southern California
2Fulcrum Microsystems, Calabasas CA, 91302.

CPA 2011

University of Limerick, Ireland

SystemVerilogCSP:
Modeling Digital Asynchronous Circuits

Using SystemVerilog Interfaces

Outline

•  Introduction
•  Why asynchronous circuit design?
•  Hardware description languages

• SystemVerilog Abstract Communication– Basic Features
•  Channels - Send, Receive
•  Channel status and mixed-level simulation

• SystemVerilog Abstract Communication– Extended
Features
•  Peek and Probe
•  Split and synchronized communication
•  One-to-many and one-to-any channels

• Results and Conclusion

Why Asynchronous Circuit Design?

•  Systems on chip: chips are becoming
distributed systems
•  Communication-dominated
•  No globally synchronous clock

•  Asynchronous alternative
•  Local handshaking: CSP-like

communication

•  Benefits
•  Higher speed

•  Shorter globally critical paths

•  Lower power consumption
•  Remove power-hungry global clock

•  Modules active only when necessary

•  Robustness to variations
•  Process, voltage, and temperature Pictures: [Benini’06]

60 IP blocks
350 RAMs:

Communication
Bottleneck

Asynchronous Circuit Design - Today

• Applications
•  Ethernet Switches (Fulcrum Microsystems)

•  Ultra high-speed FPGAs (Achronix)

•  Multi-core network on Chip

•  Ultra low-power chip design

• Basic challenges
•  Lack of CAD tools to automate designs

• Proteus design flow (USC)
•  Leverage off of available synchronous CAD

tools

•  Starting at a high-level specification written in
SystemVerilogCSP

Standard
Physical Design

Standard
Synthesis

Asynchronization

and
Optimization

Proprietary CSP
inspired language

CAD Tools
Commercially

Available

SystemVerilog

Final Layout

Hardware Description Languages

•  Desirable features of an HDL
•  Concurrency e.g.: A=B || (C=D ; E=F)
•  Timing e.g.: A=B after 5ns
•  Support for various levels of abstraction
•  Support by commercial CAD tools
•  Support for both synchronous & asynchronous

•  Communication abstraction
•  Ease of design
•  Design usability: protocols evolve and change
•  Architecture evaluation before implementation
•  Ease of adoption by synchronous designers

•  CSP as a basis for a hardware description
language
•  Suitable for modeling abstract communication
•  Lacks some desirable features

Gate level
(Netlist)

High level
(Behavioral)

Transistor level
(Netlist)

Synthesis

Simulation/
Verification

Previous Work

•  New Language inspired by CSP
•  Have limited CAD tool support - LARD [Edwards et al], Tangram [Berkel et al],

CHP [Martin]

•  Software languages
•  No inherent support for timing, limited CAD tool support - JCSP [Welch et. al]

•  VHDL
•  Fine grained concurrency is cumbersome [Frankild et al, Renaudin et al, Myers

et al]

•  VerilogCSP
•  Verilog Programming Language Interface: very slow; cannot handle multi-

channel modules [Saifhashemi et al]
•  Verilog macros are cumbersome and do not support extensions

•  SystemVerilog (Superset of Verilog)
•  Initial implementations promising but do not address extensions [Tiempo]

CSP Communication Channels

• Abstract communication between processes

• No notion of hardware implementation details

• Semantics based on events on channels between

independent processes [Hoare’04]

s:SENDER r:RECEIVER

Data

Req

Ack

(a)

s:SENDER

(b)

r:RECEIVER

mid
(SystemVerilog

Interface)
s:SENDER

(c)

r:RECEIVER

mid
(CSP Channel)

SENDER = mid!v! SENDER()
RECEIVER = mid? x! RECEIVER()

Outline

•  Introduction
•  Why asynchronous circuit design?
•  Hardware description languages

• SystemVerilog Abstract Communication– Basic Features
•  Channels - Send, Receive
•  Channel status and mixed-level simulation

• SystemVerilog Abstract Communication- Advanced
Features
•  Peek and Probe
•  Split and synchronized communication
•  One-to-many and one-to-any channels

• Results and Conclusion

Abstract SystemVerilog Channels

• Our approach
• Use SystemVerilog interface to abstract channel wires as

well as Send/Receive tasks

s:SENDER r:RECEIVER

Data

Req

Ack

(a)

s:SENDER

(b)

r:RECEIVER

mid
(SystemVerilog

Interface)
s:SENDER

(c)

r:RECEIVER

mid
(CSP Channel)

module Sender (interface R);!
 parameter WIDTH = 8;!
 logic [WIDTH-1:0] v;!
 always!
 begin!
 v={$random()}%2**(WIDTH-1);!
 R.Send(v);!
 #10ns;!
 end!
endmodule!

module Receiver (interface L);!
 parameter WIDTH = 8;!
 logic [WIDTH-1:0] x;!
 always!
 begin!
 L.Receive(x);!
 #15ns;!
 end!
endmodule!

Abstract
communication

Behind The Scenes: Channel Interface

• Channel details encapsulated within an “Interface”
•  Implementation details (below) hidden from user
•  Greatly simplifies debugging and evaluation of the design

typedef enum {idle, r_pend, s_pend} !ChannelStatus;!
typedef enum {P2PhaseBD, P4PhaseBD} !ChannelProtocol;!
!
interface Channel;!
!parameter WIDTH = 8;!
!parameter ChannelProtocol hsProtocol = P2PhaseBD;!
!ChannelStatus status = idle;// Status of a channel!
!logic req=0, ack=0; !// Handshaking signals!
!logic hsPhase=1; !// Used in two-phase!
! ! ! ! !// handshaking!
!logic [WIDTH-1:0] data; !// Data being communicated !
endinterface: Channel!

Interface Send and Receive Tasks

task Send (input logic !
! ![WIDTH-1:0] d);!
!begin!
! !data = d;!
! !req = 1;!
! !status = s_pend; !
! !wait (ack == 1);!
! !req = 0;!
! !wait (ack == 0);!
! !status = idle;!
!end!
endtask!!

task Receive(output logic
![WIDTH-1:0] d);!
!begin!
! !status = r_pend;!
! !wait (req == 1);!
! !d = data;!
! !ack = 1; !
! !wait (req == 0);!
! !ack = 0;!
! !status = idle; ! ! !
!end !!
endtask!

•  Send/Receive tasks are analogous to CSP’s ! (output) and ? (input)
•  Semantics are based on synchronization of concurrent processes using

SystemVerilog’s notion of update and evaluation events

Arbitrary handshaking protocol
Support most commonly used

Viewing Channel Status

!

s:SENDER r:RECEIVER

Data

Req

Ack

(a)

s:SENDER

(b)

r:RECEIVER

mid
(SystemVerilog

Interface)
s:SENDER

(c)

r:RECEIVER

mid
(CSP Channel)

• Enumerated types make viewing channel status
inherent to all standard SystemVerilog simulators

• The designer can monitor if and what processes are
engaged in the communication over time

Status of
channels as a

waveform

Supports Mixed-Levels of Abstraction

•  Completed blocks
can be simulated
with others still at
behavioral level

module mp_fb_csp (interface L, interface R);
 logic data;
 always
 begin
 L.Receive(data);
 R.Send(data);
 end

endmodule
!

module mp_fb_gate (interface L, interface R); !!
 celement !ce(L.req, pd_bar, c);!
 not !inv !(pd_bar, pd);!
 cap_pass !cp (c, L.ack, R.ack, pd, L.data, R.data);!
endmodule!

Block1 Block2
C

CD

PD

P

CP
C

Lreq

Lack

Rack

Rreq

RdataLdata

Block3

Gate-level
description of

the buffer
(After synthesis)

High-level description
of the buffer

(Before synthesis)

Supports Design Verification

•  Co-simulation: Implemented circuit vs. original circuit
•  It is important to use the same Testbench

•  Sometimes very complicated
•  Verifies correct implementation

•  No need for Shims [Saifhashemi’05]

Testbench

High Level
Description

C

CD

PD

P

CP

C

Lreq

Lack

Rack

Rreq

RdataLdata

Copy Merge &
Compare

Outline

•  Introduction
•  Why asynchronous circuit design?
•  Hardware description languages

• SystemVerilog Abstract Communication– Basic Features
•  Channels - Send, Receive
•  Channel status and mixed-level simulation

• SystemVerilog Abstract Communication- Advanced
Features
•  Peek and Probe
•  Split and synchronized communication
•  One-to-many and one-to-any channels

• Results and Conclusion

Peek and Probe

• Peek

• Sample data

without committing

to communication

• Probe

•  Is the channel idle?

• Usually used for

arbitration

wait(ch0.status!=idle && ch1.status!= idle);!
winner = Arbitrate (ch0.status, ch1.status);!
!
if(winner == 0)!
!ch0.Receive(d);!
if(winner ==1)!
!ch1.Receive(d);!

P1

P2

P3

P1

P2

P3 Arbiter

P Q

task Peek (output logic[WIDTH-1:0] d);!
 wait (status == s_pend);!
 d = data; !
endtask!

Split Communication

• Handshaking of different channels
might be interleaved in
implementation

• Modeling interleaved behavior at
high level is important for early
system evaluation

module buf (interface L, interface R);
 logic data;
 always
 begin
 L.Receive(data);
 R.Send(data);
 end

endmodule
!

module buf_split (interface L, interface R);
 logic data;
 always
 begin
 L.SplitReceive (data, 1);
 R.Send (data);
 L.SplitReceive (data, 2);
 end

endmodule

Synchronized Communications

• Sometimes
implementation forces
correlation of
communication on
multiple channels
• Synchronized start
• Synchronized finish

• Early performance
evaluation of system
requires modeling such
behavior

Adder

P1

P2

P3

always!
!begin!
! !fork!
! ! !A.Receive(a, 1);!
! ! !B.Receive(b, 1);!
! !join!
! !fork!
! ! !A.Receive(a, 2);!
! ! !B.Receive(b, 2);!
! !join!
! !sum = a + b ;!
! !SUM.Send(sum);!
!end!

Concurrent body
starts

Acts like a
barrier

One-To-Many Channels

• One sender to multiple receivers
• Option 1: Use a copy block

•  Makes design cumbersome

• Option 2: Shared channels [JCSP, Welch et. al]
•  Sender and receiver send and receive as if the channel is a

normal one-to-one channel
•  Top level module specifies the channel is broadcast

• Shared channels are closer to hardware implementation
•  A shared data bus between sender and receivers
•  Separate req and ack signals for receiving processes.

P

Q1

Q2

Q3

Copy P

Q1

Q2

Q3
Broadcast
Channel

One-To-Any Channel

• One sender to multiple receiver - JCSP [Welch et. al]

• Only one of the receiver participates in communication

task Receive(output logic[WIDTH-1:0] d);!
 status = r_pend;!
 wait (req == hsPhase);!
 if (ONE2ANY)!
 req = 'z; // Inhibits!
 //other receivers !
 d = data; !
 ack = hsPhase; !
 status = idle;!
endtask!
!

always!
 begin : main!
 wait (L.status != idle);!
 randValue = {$random()} % 3 ;!
 if (randValue ==1)!
 L.Receive(x);!
 else!
 begin!
 #0;!
 disable main;!
 end!
 end!

P

Q1

Q2

Q3

Outline

•  Introduction
•  Why asynchronous circuit design?

•  Hardware description languages

•  CSP Communication Channels
•  SystemVerilog Abstract Communication– Basic Features
•  Channels - Send, Receive

•  Channel status and mixed-level simulation

•  SystemVerilog Abstract Communication- Advanced Features
•  Peek and Probe

•  Split and synchronized communication

•  One-to-many and one-to-any channels
•  Results and Conclusion

Results – Simulation Run-Times

• Comparison to VerilogCSP [Saifhashemi’05]

• Simulation time of a linear pipeline with depth of 10

• Platform: Sun UltraSPARC, Modelsim SE 6.6 simulator

• 12%-20% improvement

Number of data items 100K 200K 300K 400K 500K
Simulation time in
Seconds (VerilogCSP)

45.14 76.38 107.60 139.57 170.62

Simulation time in
Seconds
(SystemVerilogCSP)

40.12 65 89.70 115.52 141.99

Ratio 1.12 1.17 1.19 1.20 1.20

Conclusions

• CSP-like communication and extensions can be modeled using
SystemVerilog interfaces

• Features and advantages
•  Ease of design: abstract communication, channel status

•  Mixed asynchronous and synchronous designs can be modeled in
same language and simulation environment

•  Extensions: more accurate modeling of implemented hardware

•  Make adoption of asynchronous technology easier

• Currently being used to teach the course EE-552 Asynchronous
VLSI at the University of Southern California

• Future work
•  Automated synthesis from SystemVerilogCSP

Supports Design Verification

•  Testing DUT:
•  Initially, modeled in

SystemVerilogCSP
•  Later implemented in gates

•  It is important that Testbench
does change
•  Sometimes very complicated
•  Communicates with other blocks
•  Verifies correct implementation

•  No need for Shims
[Saifhashemi’05]

Testbench

High Level
Description

 C

CD

PD

P

CP

C

Lreq

Lack

Rack

Rreq

RdataLdata

Testbench should
stay the same as DUT

is implemented

