

SystemVerilogCSP: Modeling Digital
Asynchronous Circuits Using

SystemVerilog Interfaces
Arash SAIFHASHEMI 1, Peter A. BEEREL 2

Ming Hsieh Department of Electrical Engineering, University of Southern California

Abstract. This paper describes how to model channel-based digital asynchronous
circuits using SystemVerilog interfaces that implement CSP-like communication
events. The interfaces enable explicit handshaking of channel wires as well as
abstract CSP events. This enables abstract connections between modules that are
described at different levels of abstraction facilitating both verification and design.
We explain how to model one-to-one, one-to-many, one-to-any, any-to-one and
synchronised channels. Moreover, we describe how to split communication actions
into multiple parts to model more accurately less concurrent handshaking protocols
that are commonly found in many asynchronous pipelines.

Keywords. CSP, SystemVerilog, asynchronous circuits.

Introduction

In a digital circuit, often modelled as a network of interconnected modules, it is important
to know when each module can safely sample input data and when the data at the output of
each module is ready to be sampled by the next module. Channel-based asynchronous
circuits are a family of digital circuits in which adjacent modules communicate and
synchronise with each other via handshaking. Each module synchronises with its
predecessors for receiving input data and with its successors for sending output data.
Compared to synchronous circuits, replacing the clock network with handshaking signals
can reduce the power consumption and improve performance [1].

Asynchronous circuit designers often use a CSP-like [2] language to specify a circuit’s
intended behaviour at a high-level of abstraction. Therefore, one can consider asynchronous
circuits to be a hardware implementation of CSP programs. Data transfers between
asynchronous modules are modeled by CSP-like communication events: modules Receive
(or Input) data on input channels, and Send (or Output) data on output channels. We use
Send and Receive in this paper to model CSP-like output (!) and input (?) operators [2].

Several implementations of CSP have been suggested for modeling asynchronous
circuits, among them are [3-9]. Ideally, such a hardware description should be via a
standardised and widely used language supported by commercially available CAD tools. In
addition, this language should also support timing and delay control constructs such that
hardware performance (throughput and latency) can be analysed via simulation. Lastly,

2 Corresponding Author: Arash Saifhashemi, EEB 346, University of Southern California, 3740 McClintock
Ave, Los Angeles, CA, 90089, USA; E-mail: saifhash@usc.edu
2 Peter A. Beerel is also Chief Scientist at Fulcrum Microsystems, Calabasas, California, 91302.

allowing models at several levels of abstraction (especially, high-level and gate level) is of
great utility as it facilitates a top-down design approach. There are several popular
software-based implementations of CSP [10-12] . But these languages do not have ample
low-level hardware design constructs for delay and switch-level modeling and are rarely
supported by hardware CAD tools. CHP, Communicating Hardware Processes [13], is a
concurrent programming notation inspired by CSP and Dijkstra’s guarded commands [14].
It is capable of modeling both high-level communication actions and low level switching
activities, but it lacks delay and timing constructs. Tangram [12] is a CSP-based language
for designing asynchronous circuits but it is supported by a very limited number of CAD
tools. In contrast, Verilog and VHDL are the most commonly used hardware description
languages (HDLs) for designing hardware, as they are standardised by IEEE and supported
by most CAD tools. Using these two languages facilitates mixed mode simulation of
asynchronous designs together with legacy synchronous circuits. However, these two
languages do not have inherent constructs for modeling CSP-like communication actions.
SystemC has also been applied [7, 15]. While SystemC is standardised, Verilog and VHDL
are better suited for structural and switch-level designs [16].

There are numerous methods in literature that attempt to customise Verilog and VHDL
with high-level CSP-like communication actions. Several authors [3-5] have developed
packages for VHDL to model CSP communication actions. Verilog has also been used [8,
9] due to its other powerful feature called fined-grained concurrency (nested begin-end and
fork-join blocks), by which processes can create multiple nested threads of execution. This
is a highly desirable feature for modelling asynchronous circuits. The initial Verilog
implementation [8] is based on library C functions, call, where a set of C functions calls is
hidden behind Verilog macros. Interfacing from Verilog to C, however, makes the
simulation speed very slow. A later implementation [9] omits the need for C functions,
however, still uses Verilog macros and adds extra bits to data ports for handshaking signals,
which complicates debugging and monitoring the status of channels. Also, it does not
support highly used handshaking protocols such as two-phase and 1-of-2 dual rail
handshaking protocols.

A number of researchers [17, 18] suggested using SystemVerilog [19] (a superset of
Verilog) interfaces to implement Send and Receive actions. A SystemVerilog interface is an
entity that can include a bundle of signals. The idea is to place all data and handshaking
signals inside an interface and define Send and Receive actions as the interface member
tasks. In this paper we will focus on developing such an interface. Compared to Verilog
implementations, using SystemVerilog interfaces provides modelling flexible CSP-like
communication actions based on multiple handshaking protocols. Also, it enables designers
to use mnemonic values for the status of channels [5], which facilitates debugging of the
circuits. Moreover, mixed-mode simulation of two communicating modules each at a
different level of abstraction [1, 5, 9] is possible without the need of instantiating extra
modules.

Compared to initial attempts to use SystemVerilog [17, 18], we will implement several
handshaking protocols so that modules described at a low level of abstraction (i.e. using
explicit handshaking signals) can communicate with modules described at high level of
abstraction (i.e. modules that use Send/Receive). Also, we implement shared channels, such
as one-to-many (broadcast), one-to-any, and any-to-one channels [10, 20]. We also improve
the modelling of split communication actions [1, 13] and extend it to support multiple
protocols. A split communication action is a form of modelling where one communication
event is split into multiple events. Using split communication, we show how to model
simultaneous and synchronised Receive actions on multiple inputs of a module (i.e. when a
module simultaneously receives from multiple ports but no Receive action shall start until

all senders are ready to Send). We further show how to accurately model modules that
reshuffle handshaking events of Receive or Send on multiple ports.

Section 1 of this paper introduces SystemVerilog semantics and SystemVerilog
interfaces. Section 2 presents the basic definitions of Send and Receive tasks. Section 3
describes the details and applications of split communication. Section 4 shows
synchronised Receives on multiple input channels. Section 5 presents the implementation of
shared channels. Section 6 includes performance evaluation, and Section 7 is summary and
conclusions.

1. SystemVerilog

A SystemVerilog description, as explained in [19], consists of connected threads of
execution or processes. Processes are objects that can be evaluated, that can have state, and
that can respond to changes on their inputs to produce outputs. Processes are concurrently
scheduled elements.

Every change in state of a net or variable in the system description being simulated is
considered an update event. Processes are sensitive to update events. When an update event
is executed, all the processes that are sensitive to that event are considered for evaluation in
an arbitrary order. The evaluation of a process is also an event, known as an evaluation
event.

SystemVerilog interfaces [19] encapsulate the implementation of communication
actions and handshaking signals between modules. A circuit at the lowest level of
abstraction can be described using a schematic diagram in which numerous wires connect
adjacent modules. This diagram can equivalently be converted to a SystemVerilog netlist.
Using SystemVerilog interfaces, one can describe a circuit while all wires between blocks
are abstracted into interface connections. Moreover, one can define member tasks and
functions for a SystemVerilog interface. In this paper, we will use SystemVerilog task
construct to implement Send and Receive actions. Through a Send/Receive task pair we
model CSP-like communication.

Consider the following CSP processes:

SENDER = mid!v → SENDER()
RECEIVER = mid? x → RECEIVER()

Figure 1.a shows the graphic representation of a system consisting of an instance of
each of these processes running concurrently: (s||r). Figure 1.b shows how a typical
asynchronous circuit designer would implement such a system in hardware by using
explicit handshaking signals for synchronisation of two modules. Using a handshaking
protocol, the req signal ensures that the RECEIVER module waits for the SENDER to send
data. The ack signal ensures that the SENDER does not progress until the RECEIVER
receives the data. Figure 1.c shows a block diagram representation of these two modules
based on SystemVerilog interfaces. In this representation, explicit handshaking signals are
encapsulated in the SystemVerilog interface.

Figure 1. (a) CSP channel (b) schematic with wires (c) block diagram with interfaces.

The block diagram representation of module interconnects is similar to CSP’s channel
representation in which the details of communication implementation are not revealed.
Figure 2 shows the description of the SENDER module, RECEIVER module, and the TOP
module connecting them together via a Channel interface in SystemVerilog. The always
keyword is used to represent a general-purpose procedural and repetitive behaviour. The
SystemVerilog $random system call is used in the SENDER module to generate random
data.

module SENDER (interface R);
 parameter WIDTH = 8;
 parameter CT = 10;
 logic [WIDTH-1:0] v;
 always
 begin
 v={$random()}%2**(WIDTH-1);
 R.Send(v);
 #CT; //Delay
 end
endmodule

module RECEIVER (interface L);
 parameter WIDTH = 8;
 parameter CT = 10;
 logic [WIDTH-1:0] x;
 always
 begin
 L.Receive(x);
 #CT; //Delay
 end
endmodule

module TOP;
 Channel mid (); //Interface definition
 SENDER s (mid);
 RECEIVER r (mid);
endmodule

Figure 2. (Left) SENDER module, (Right) RECEIVER module, (Bottom) TOP module.

From the SENDER’s point of view, R.Send is a task call on interface R; similarly, from

RECEIVER’s point of view, L.RECEIVE is a task call on interface L. Both these modules
do not need to know the type L or R interfaces. Module TOP, however, has to specify the
type of the interface connecting SENDER and RECEIVER together. In this case, the
interface type is called Channel, which we will define later.

2. Implementation of Communication Actions with Channel Interface

One can use one of many handshaking protocols to implement Send and Receive actions. In
this section we present the implementation of Send and Receive using commonly used
handshaking protocols in designing asynchronous circuits. First, we define two new data
types: ChannelStatus and ChannelProtocol. ChannelStatus holds the status of the channel
for debugging purposes [5]. Initially, we define a channel to have three possible status
values. If a channel is idle, it means there is no activity on the channel, r_pend means a
receiving process has called Receive and is waiting for the sending process. s_pend means a
sending process has called Send and is waiting for the receiving process. ChannelProtocol
will be used as a parameter for the channel, which specifies what handshaking protocol
should be used for communication actions.

Figure 3 shows the definition of these two new user types together with a simplified
definition of the Channel interface. The simplified interface has only two one-bit req and
ack handshaking signals that can be used for both two and four-phase bundled data
protocols [1]. Parameters WIDTH and hsProtocol specify the width of the data in the
channel and the handshaking protocol respectively. The Channel interface is a shared
resource: both Sender and Receive modules have access to all members of the interface.

Figure 3. Initial definition of Channel interface.

Having handshaking protocols defined, we define Send and Receive tasks. Note that

these tasks are member tasks of the interface and are defined inside the interface definition
block. Figure 4 shows the basic definition for Send and Receive tasks using four-phase or
two-phase handshaking protocols.

task Send (input logic[WIDTH-1:0] d);
 if(hsProtocol == P4PhaseBD)
 begin
 data = d;
 req = 1;
 status = s_pend;
 wait (ack == 1);
 req = 0;
 wait (ack == 0);
 status = idle;
 end
 else if (hsProtocol == P2PhaseBD)
 begin
 data = d;
 req = hsPhase;
 status = s_pend;
 wait (ack == hsPhase);
 status = idle;
 hsPhase = ~hsPhase;
 end
endtask

task Receive(output logic[WIDTH-1:0] d);

if (hsProtocol==P4PhaseBD)
 begin
 status = r_pend;
 wait (req == 1);
 d = data;
 ack = 1;
 wait (req == 0);
 ack = 0;
 status = idle;
 end
 else if (hsProtocol == P2PhaseBD)
 begin
 status = r_pend;
 wait (req == hsPhase);
 d = data;
 ack = hsPhase;
 status = idle;
 end
endtask

Figure 4. Basic Send and Receive tasks for the Channel interface.

Handshaking signals are modified by one task and accessed by the other. The status
variable, however, is modified by both tasks. Initially, the value of status is idle. Notice that
there are no timing delays in these tasks. This implies the assignments in each task will be
executed in sequence and atomically. If Send (Receive) task is called in one process after a
Receive (Send) task has already been called in a corresponding process, the communication
action takes place at zero time, i.e., both tasks will finish in zero time. However, if Send
(Receive) is called in one process, but the corresponding Receive (Send) task has not been
called yet, the status of the interface will be equal to the mnemonic value of s_pend
(r_pend) and the Send (Receive) task will be blocked on the first wait statement. When both
tasks finish, status will be set back to idle. This makes debugging easier as the designer can
track the status of all channels in the design as illustrated in Figure 5.

Figure 5. Debugging the design using mnemonic values for status of channels.

typedef enum {idle, r_pend, s_pend} ChannelStatus;
typedef enum {P2PhaseBD, P4PhaseBD} ChannelProtocol;

interface Channel;
 parameter WIDTH = 8;
 parameter ChannelProtocol hsProtocol = P2PhaseBD;
 ChannelStatus status = idle; // Status of a channel
 logic req=0, ack=0; // Handshaking signals
 logic hsPhase=1; // Used in two-phase handshaking
 logic [WIDTH-1:0] data; // Data being communicated
endinterface: Channel

Next, an implementation of Probe and Peek [13, 21] is presented. A process probes its
port to see if some other process connected to that port has initiated a communication action
on that port without committing to any communication action. Therefore, it can be defined
as a Boolean function. Calling Probe is non-blocking. Peek is a blocking action when - just
like Receive - a process blocks until the corresponding process initiates a Send action. Upon
seeing the initiation of Send, the receiving process only samples the data without actually
committing to Receive.

Implementing Probe and Peek turns out to be straightforward. In fact, Probe is just
checking to see if the interface status is equal to s_pend. Figure 6 shows the Peek task
definition.

Figure 6. Implementation of Peek.

It is worthwhile showing how using the Channel interface one can use the same

testbench module for testing a buffer at different levels of abstraction. Figure 7 shows the
structural detailed design of a micropipeline buffer [22] as well as a diagram of a testbench
testing the buffer using Channel interface.

Figure 7. (Left) Micropipeline buffer structural design

(Right) The structure of a testbench for testing a micropipeline buffer.

Figure 8 presents the description of the micropipeline buffer at three different levels of
abstraction: mp_fb_csp, mp_fb_dataflow, and mp_fb_struct. Notice that except for
mp_fb_csp, the other two types of the buffer directly access the interface signals.
mp_fb_struct is the direct translation of Figure 7 (Left) into SystemVerilog. Figure 8
(Bottom) shows the testbench module. The BUFFER macro specifies which type of buffer
should be used. Regardless of which type of buffer is chosen, the description of the
testbench module remains the same. This facilitates an efficient top-down design and
verification paradigm in which units are initially behaviourally described using CSP and
then individually refined into their structural implementations. A similar approach has been
used in the Proteus asynchronous synthesis framework [23], where instead of
SystemVerilog, the circuit is designed in a proprietary CSP-like language [24]. In this
design flow, the synthesised transistor-level netlist is co-simulated against the original high-
level description. The same input stimuli are applied to both circuits and the output results
of both circuits are expected to be the same. Using SystemVerilog, we are trying to enable
the designer to use a standard hardware description language to achieve the same results.

task Peek (output logic[WIDTH-1:0] d);
 wait (status != s_pend);
 d = data;
endtask

module mp_fb_csp (interface L,
 interface R);
 logic data;
 always
 begin
 L.Receive(data);
 R.Send(data);
 end
endmodule

module mp_fb_struct (interface L,
 interface R);
 celement ce (L.req, pd_bar, c);
 not inv (pd_bar, pd);
 cap_pass cp (c, L.ack, R.ack,
 pd, L.data, R.data);
endmodule

module mp_fb_dataflow
 (interface L,
 interface R);
 CPState state =ST_PASS;
 logic phase = 1;
 always
 begin
 wait(L.req==phase
 && R.ack==!phase);
 L.ack = (phase);
 R.req = (phase);
 state = ST_CAPTURE;
 wait(R.ack==phase);
 state = ST_PASS;
 phase = ~phase;
 R.phase = ~ R.phase;
 end
 always @(state, L.data)
 if (state== ST_PASS)
 R.data = L.data;
endmodule

//`define BUFFER mp_fb_csp
//`define BUFFER mp_fb_dataflow
`define BUFFER mp_fb_struct
module testbench;
 Channel a(), b(); //Interface definition
 Sender s (a);
 `BUFFER b0 (a,b);
 Receiver r (b);
endmodule

Figure 8. Micropipeline buffer at (Left) CSP and structural levels, (Right) dataflow level,
(Bottom) testbench module.

3. Split Communication

In asynchronous circuits it is very common to interleave the handshaking actions of two or
more channels [1, 13]. For example, enclosed handshaking [1] is one form of
communication action in which the handshaking on one channel is enclosed within the
handshaking of another one. Figure 9 shows a Call module [13] that encloses the
handshaking actions of port R into the handshaking actions of port L using two-phase
handshaking protocol. This module first waits for a value change on Lreq. Then it flips the
value of Rreq, without acknowledging L (i.e., without finishing the Receive). Only after
finishing the communication action on R, does it flip the value of Lack to acknowledge the
sender on port L. Notice that in Figure 9 two complete cycles of communication actions on
ports L and R are shown.

It is not possible to accurately model the behaviour of this module in an abstract way
only with Send/Receive tasks. Some researchers [1, 17] suggest using split communication
actions in which a communication action is split into several events. A communication
action is considered complete when all of these events happen. Figure 10 shows
SplitReceive and SplitSend implemented using either two or four-phase handshaking
protocols. The second argument of these tasks specifies which part of the handshaking
action should be executed. Figure 10 also shows the high level description of the Call
module.

Figure 9. Call module using two-phase enclosed handshaking.

task SplitReceive (
 output logic[WIDTH-1:0] d,
 input integer part
);
 case(hsProtocol)
 P4PhaseBD:
 begin
 case (part)
 1: begin
 status = r_pend;
 wait (req == 1);
 end
 2: begin
 d = data;
 ack = 1;
 end
 3: begin
 wait (req == 0);
 end
 4:begin
 ack = 0;
 status = idle;
 end
 endcase
 end //P4PhaseBD
 P2PhaseBD: begin
 case (part)
 1: begin
 status = r_pend;
 wait (req == hsPhase);
 d = data;
 end
 2: begin
 ack = hsPhase;
 status = idle;
 end
 endcase
 end //P2PhaseBD
 endcase
endtask

task SplitSend (
 input logic[WIDTH-1:0] d,
 input integer part
);
 case(hsProtocol)
 P1of2:
 begin
 case (part)
 1: begin
 data = d;
 req = 1;
 status = s_pend;
 end
 2: begin
 wait (ack == 1);
 end
 3: begin
 req = 0;
 end
 4: begin
 wait (ack == 0);
 status = idle;
 end
 endcase
 end //P4PhaseBD
 P2PhaseBD:
 begin
 case (part)
 1: begin
 data = d;
 req = hsPhase;
 status = s_pend;
 end
 2: begin
 wait (ack == hsPhase);
 status = idle;
 hsPhase = ~hsPhase;
 end
 endcase
 end //P2PhaseBD
 endcase
endtask

module Call (interface left, interface right);
 parameter WIDTH = 8;
 logic [WIDTH-1:0] data;
 always
 begin
 left.SplitReceive (data, 1);
 right.Send (data);
 left.SplitReceive (data, 2);
 end
endmodule

Figure 10. (Top Left) SplitReceive, (Top Right) SplitSend, and (Bottom) Call Module.

Here we present another application of split communication. A commonly used, fast,
and stable type of pipeline stages in asynchronous fined grain pipelines is called the pre-
charged half buffer, PCHB [17]. A PCHB pipeline stage is implemented using dual-rail
four-phase handshaking [13]. This buffer is described as *[L?x;R!x] in CHP [13] using
CSP-like input and outputs: The buffer Receives x from L, and Sends it to R. A lower level
description of this buffer in CHP, where the handshaking protocol is explicitly described,
can be defined as:

*[

 [l0 ∨ l1]; [l0→r.0↑ []l1→r.1↑] ; Lack↑;
[Rack] ; r.0↓, r.1↓ ;[~l0∧~l1]; Lack↓;[~Rack]

].

In this notation, *[] means repeat the statements inside the brackets for ever. For a

binary variable v, [v] means wait (and block) until the value of v is one. The notation [~v]
means wait (and block) until the value of v is zero. The notation v↑ means set the value of v
to one. Similarly, v↓ means set the value of v to zero. In the above notation, a dual-rail
four-phase handshake protocol is used. The signals l0, l1, and Lack are handshake signals for
channel L. Similarly, r0, r1, and Rack are handshake signals for channel R. The symbol ∨
represents logical OR, and the ∧ symbol represents logical AND.

Figure 11 shows a full handshaking cycle on L and R. Notice how handshaking phases
of L are interleaved with R in the above CHP program. Figure 11 also shows how each
phase of handshaking can be considered one part of the split communication. On the input
side when data is available, either l0 or l1 is high. If l0 is high, the input has Boolean value 0,
if l1 is high, the input has Boolean value 1. After receiving a valid data, the input is
acknowledged and the process waits until both l0 and l1 become low. At this point the
acknowledge signal returns to zero.

[l0 ∨ l1] Receive1

 r.0↑ or r.1↑ Send1

Lack↑ Receive2

 [Rack] Send2

[~l.0 ∧ ~l.1] Receive3

 r.0↓, r.1↓ Send3

Lack↓ Receive4

 [~Rack] Send4

Figure 11. Split communication for the four-phase handshaking protocol used in PCHB.

The SystemVerilog description of this buffer using split communication is presented in
Figure 12. Compared to the original CHP representation, *[L?x;R!x], the description of
Figure 12 can more accurately capture the interaction and synchronisations of the buffer
with its environment, while still abstracting the implementation details. Notice that a top-
level module such as a testbench can still communicate with the PCHB buffer of Figure 12
using the non-split communication actions Send/Receive. Also, notice that the dual-rail
implementation of split communication is not shown in Figure 10 to save space.

Figure 12. SystemVerilog description of a PCHB buffer.

4. Synchronised Receives

Often a receiver module needs to Receive values from multiple input ports by calling
multiple Receive tasks in parallel. Figure 13 (left) shows an Adder module that concurrently
receives its inputs from two input ports. Using a SystemVerilog fork-join construct, both
Receives can be executed concurrently. The simulator starts both Receives at the same time.
The control then moves to the line after join when both Receives are done. However, each
Receive can be executed independently, i.e., if one of the Receives is blocked, the other can
still complete.

module Adder1 (interface A,
interface B, interface SUM);
 parameter WIDTH = 8;
 logic [WIDTH-1:0] a=0,b=0,sum=0;
 always
 begin
 fork
 A.Receive(a);
 B.Receive(b);
 join
 sum = a + b ;
 SUM.Send(sum);
 end
endmodule

module Adder2 (interface A,
interface B, interface SUM);
 parameter WIDTH = 8;
 logic [WIDTH-1:0] a=0,b=0,sum=0;
 always
 begin
 fork
 A.Receive(a, 1);
 B.Receive(b, 1);
 join
 fork
 A.Receive(a, 2);
 B.Receive(b, 2);
 join
 sum = a + b ;
 SUM.Send(sum);
 end
endmodule

Figure 13. (Left) Independent Receives (Right) Synchronised Receives with two-phase handshaking.

The hardware implementation of such concurrent Receives, however, is sometimes
slightly different. Usually, a Muller C-Element [25] is used to synchronise the handshake of
both ports. Therefore, if one Sender is late, both Receives get blocked until both senders
commit to Send. A sample micropipeline [22] join stage is shown in Figure 14 [1].

There are two possible methods to implement such behaviour accurately. The first
approach is to Probe both input channels and commit to Receive on either of the channels
only when the status of both channels is not idle. Alternatively, we can use split
communication as shown in Adder2 described in Figure 13 (Right).

module pchb buffer (interface left, interface right);
 parameter WIDTH = 8;
 logic [WIDTH-1:0] data;
 always
 begin
 left.SplitReceive (data, 1);
 right.SplitSend (data, 1);
 left.SplitReceive (data, 2);
 right.SplitSend (data, 2);
 right.SplitSend (data, 3);
 left.SplitReceive (data, 3);
 left.SplitReceive (data, 4);
 right.SplitSend (data, 4);
 end
endmodule

Figure 14. Micropipeline implementation of a join stage with synchronised receives.

5. Shared Channels

Shared channels are channels where each end of the channel is allowed to be connected to
multiple processes [2, 20, 26]. The formal CSP semantics requires those processes to
interleave their use of the shared channel-end and defines the interleaving operator [2]. In
this section, we present modelling of one-to-many (Broadcast) and one-to-any channels in
SystemVerilog that behave similar to the ones specified in [10, 20]. Any-to-one channels
can be modelled in a similar manner that one-to-any channels are modelled by modifying
the Send task. Therefore, we will not present the detailed description of this channel type to
save space.

5.1 One-To-Many (Broadcast) Channels

It is common for a module to Send a value to multiple receivers. In asynchronous circuits
this is often done using an explicit copy module which Receives a value from its input port
and Sends that value to its multiple output ports. Figure 15 shows the description of an
explicit copy module with two outputs. A fork-join construct is used to execute both Send
commands in parallel.

The use of an explicit copy module is tedious and makes debugging harder, since the
designer has to instantiate a separate copy module for each case where there is one sender
and multiple receivers. Moreover, often the implementation of the copy module behaves
differently than the high level CSP description of it. In many implementations a Muller C-
Element [25] is used to synchronise all communication actions. In the copy2 module of
Figure 15, however, each Send (and hence the corresponding Receive) can execute
independently. Using broadcast channels [10], the Send action of the sender and all Receive
actions of all receivers are synchronised using barriers. Figure 16 shows a similar
implementation of a broadcast channel in SystemVerilog. A counter shared by all receivers
is used to keep track of the number of receivers executing the Receive task.

Figure 15. Copy2 Module in SystemVerilog.

task Receive (output logic[WIDTH-1:0] d);
 status = r_pend; //Set the status to r_pend before wait
 wait (req == hsPhase);
 d = data;
 //Is this the last receiver?
 if (receiveCounter == NUMBER_OF_RECEIVERS-1)
 begin
 ack = hsPhase; //Flip the ack signal for the Sender
 status = idle;
 receiveCounter=0;
 end
 else //Wait for all other receivers to finish receiving
 begin
 status = s_pend_1toMany;
 receiveCounter++;
 wait (receiveCounter ==0);
 end
endtask

Figure 16. Receive task on shared channels.

Each receiver first checks to see if the Sender has started by waiting on req signal to
become high. Then it saves the input data and checks the counter to see if it is the last
receiver. If not, it increments the counter, set the status value to s_pend_1toMany, and then
waits until the counter is reset back to zero. Otherwise, if it is the last receiver, it finishes
the handshake with the sender and also resets the counter back to zero. The parameter
NUMBER_OF_RECEIVERS is defined in the interface. It is set to the number of receivers
upon the interface instantiation. The default value of this parameter is 1 for point-to-point
channels. Notice that we can avoid using barriers [10] since SystemVerilog is an event
driven language [19]. That is, the new value of receiveCounter (an update event) will be
seen by all other receivers before they compare it to NUMBER_OF_RECEIVERS (evaluate
event). This is because in SystemVerilog update events have higher priority than evaluate
events. If all receivers execute Receive at the same time, the simulator evaluates one of the
receivers in an arbitrary order. Upon executing the increment of the counter, an update
event will be scheduled that will update the value of the receiveCounter before all other
receivers evaluate the if statement. The last receiver unblocks all other receivers as well as
the sender. Figure 17 shows an example circuit followed by its SystemVerilog
representation using a broadcast channel. The data_generator module dg generates data
and Sends it to its output port which is connected to three input ports belonging to top,
middle, and bottom buffers. The output port of each buffer is connected to a data_bucket
module that Receives data from its input port and has no output port.

module copy2 (interface in, interface out0, interface out1);
 parameter WIDTH = 8;
 logic [WIDTH-1:0] data;
 always
 begin
 in.Receive(data);
 fork
 out0.Send(data);
 out1.Send(data);
 join
end
endmodule

Figure 17. (Top) One-To-Many channel example, (Bottom) SystemVerilog implementation.

5.2 One-to-any Channels

A different type of channel, one-to-any, is discussed and implemented in [20]. This type of
channel is between several receiving processes and only one sending process. Receiving
processes compete with each other over using the channel. Only one receiver and the sender
will be engaged in communication and actually use the channel at any one time.

Here we show how to model a similar behaviour in SystemVerilog. Figure 18 shows a
modified version of basic Receive task, such that upon detecting the request from the
sender, the value of req signal is changed to z (high-impedance value in SystemVerilog).
This inhibits other Receiving processes from receiving, as they will be blocked on the wait
statement. The wait statement compares req to hsPhase, where the latter has a binary value.
Note that this was again possible due to prioritisation of update events to evaluate events in
SystemVerilog. A new Boolean parameter called ONE2ANY is added to the interface
definition that indicates whether the channel is a ONE2ANY channel or not. Also, notice
that Figure 18 only shows the implementation using two-phase handshaking protocol.

 task Receive(output logic[WIDTH-1:0] d);
 status = r_pend;
 wait (req == hsPhase);
 if (ONE2ANY)
 req = 'z; // Inhibits other receivers from receiving
 d = data;
 ack = hsPhase;
 status = idle;
 endtask

Figure 18. Receive task for one-to-any channels.

 module OneToManyChannelExample;
 Channel #(.NUMBER_OF_RECEIVERS(3)) left();
 Channel topRight(), midRight(), botRight();

 data_generator dg (left);

 buffer top (left, topRight);
 buffer middle (left, midRight);
 full_buffer bottom (left, botRight);

 data_bucket dbt (topRight);
 data_bucket dbb (botRight);
 data_bucket dbm (midRight);
 endmodule

The simple modification shown in Figure 18 changes the behaviour of Receive in the
following way: If there is only one receiving process waiting on the wait statement for the
req signal to change, that receiver participates in handshaking with the sender and they both
engage in communication of data. If more than one receiver are waiting for the req signal to
change, however, SystemVerilog semantics require that an arbitrary receiving process to be
executed. As soon as this receiver is executed, it generates an update event for req signal
indicating its new value to be z. This turns the comparison of the req signal in other
processes with hsPhase to be false, and keeps those processes blocked on the wait
statement. Therefore, similar to [20], the fairness [2] of Receive action between two
competing receivers depends on the SystemVerilog simulator implementation and is not
guaranteed.

In Figure 19 a special receiver module that receives with 50% probability is shown.
Using SystemVerilog’s $random system call, if the channel status is not idle, the process
commits to Receive with 50% probability. For two competing receivers, this makes the
probability of one receiver starving the other for a prolonged period of time increasingly
small. Note that based on SystemVerilog semantics, an explicit #0 delay, used in Figure 19,
suspends the process and allows other suspended processes to evaluate and progress. This
way, if $random call in one process dictates not to receive, the control is passed to other
receiving processes (in an arbitrary order). Those processes each will decide whether to
receive based on the result of their own $random system call.

6. Performance Evaluation

In this section, we present the experimental results for evaluating the performance of this
method in terms of simulation time of a test circuit. We compared the simulation time of
this method with that of VerilogCSP [9]. A simple linear pipeline consisting of one sender
(Figure 2), ten buffers (Figure 8), and one receiver (Figure 2), was designed using both
methods. The output of the sender is connected to the first buffer. The output of the (i)th

buffer is connected to the input of (i+1)th buffer, and the output of the 10th buffer is
connected to the receiver. Delays have been added to all modules such that each module
has a local cycle time [1] of 10 time units. We simulated each circuit for different numbers
of data items sent through the pipeline, as shown in Table 1. We used the ModelSim SE
6.6b simulator running on a Sun UltraSPARC based mainframe with the Sun Solaris 10
(10/08) operating system. The results show that SystemVerilog implementation is 12% to
20% faster than VerilogCSP. Although this data shows a slight increase in efficiency as the
number of data items grow, experiments with larger number of data items do not show

 module RECEIVER (interface L);
 parameter WIDTH = 8;
 logic [WIDTH-1:0] x;
 integer randValue;
 always
 begin : main
 wait (L.status != idle);
 randValue = {$random()} % 3 ;
 if (randValue ==1)
 L.Receive(x);
 else
 begin
 #0;
 disable main;
 end
 end
 endmodule

Figure 19. A receiver that receives from a one-to-any channel with 50% probability

increased efficiency and instead confirmed this range. The simulation run-time gains may
be because of the somewhat unorthodox use of the Verilog force construct in [9] which may
limit internal optimisations compared to our more natural use of SystemVerilog.

Table 1. Simulation time (in seconds) for different number of data items sent into the pipeline.

Number of data items 100K 200K 300K 400K 500K
Simulation time in seconds
(VerilogCSP) 45.14 76.38 107.60 139.57 170.62

Simulation time in seconds
(SystemVerilogCSP) 40.12 65.00 89.70 115.52 141.99

Ratio 1.12 1.17 1.19 1.20 1.20

7. Summary and Conclusions

In this paper, we presented the implementation of high-level CSP-like communication
actions in SystemVerilog. Compared to previous Verilog implementations, this method is
more flexible, facilitates easier debugging, and supports a wide range of handshaking
protocols. We presented the implementation of a split Send and Receive and the
applications of split communication to more accurately describe commonly used
asynchronous modules at a higher level of abstraction. We also showed how to implement
shared channels and synchronised Receives on multiple input ports of a module.

We have compared the simulation time of this implementation to that of [9] and found
that it decreases simulation time by 12% to 20%.

The SystemVerilog code introduced in this paper is called SystemVerilogCSP. This
package can be downloaded for researches from our website: http://jungfrau.usc.edu/,
and it is currently being used to teach the course EE-552 Asynchronous VLSI at the
University of Southern California.

References

[1] P. A. Beerel, R. O. Ozdag, and M. Ferretti, A Designer's Guide to Asynchronous VLSI. ISBN: 978-0-
521-87244-7. Cambridge University Press, 2010.

[2] C. A. R. Hoare, Communicating Sequential Processes. ISBN: 0131532715. Prentice Hall, 1985.
[3] C. J. Myers, Asynchronous Circuit Design. ISBN: 0471464120. Wiley-Interscience, 2004.
[4] P. Endecott and S. B. Furber, "Modelling and Simulation of Asynchronous Systems using the LARD

Hardware Description Language", in Proceedings of the 12th European Simulation Multiconference on
Simulation, 1998, pp. 39-43.

[5] J. Sparsø and S. B. Furber, Principles of Asynchronous Circuit Design: A Systems Perspective. ISBN:
0792376137. Springer Netherlands, 2001.

[6] D. Nellans, V. K. Kadaru, and E. Brunvand",ASIM-An Asynchronous Architectural Level Simulator,"
in Proceedings of GLSVLSI, 2004.

[7] T. Bjerregaard, S. Mahadevan, and J. Sparsø, "A Channel Library for Asynchronous Circuit Design
Supporting Mixed-Mode Modeling", in Proceedings of PATMOS, 2004, pp. 301-310.

[8] A. Saifhashemi and H. Pedram, "Verilog HDL, Powered by PLI: a Suitable Framework for Describing
and Modeling Asynchronous Circuits at All Levels of Abstraction", in Proceedings of the 40th annual
Design Automation Conference, Anaheim, CA, USA, 2003, pp. 330-333.

[9] A. Saifhashemi and P. A. Beerel, "High Level Modeling of Channel-Based Asynchronous Circuits
Using Verilog", in Proceedings of Communicating Process Architectures, 2005, pp. 275-288.

[10] P. H. Welch, N. Brown, J. Moores, K. Chalmers, and B. Sputh, "Integrating and Extending JCSP", in
Proceedings of Communicating Process Architectures, 2007, pp. 349-369.

[11] G. Barrett, "occam3 Reference Manual", Draft, Inmos, 1992.
http://www.wotug.org/occam/documentation/oc3refman.pdf (accessed 1st May, 2011).

[12] K. van Berkel, J. Kessels, M. Roncken, R. Saeijs, and F. Schalij, "The VLSI-Programming Language
Tangram and its Translation into Handshake Circuits", in Proceedings of the Conference on European
Design Automation, 1991, pp. 384-389.

[13] A. J. Martin, "Synthesis of Asynchronous VLSI Circuits", California Institute of Technology -
Department of Computer Science. Caltech-CS-TR-93-28, 2000.

[14] E. W. Dijkstra, A Discipline of Programming. ISBN: 978-0132158718. Englewood Cliffs, N.J. :
Prentice Hall, 1976.

[15] C. Koch-Hofer and M. Renaudin, "Timed Asynchronous Circuits Modeling and Validation Using
SystemC", Embedded Systems Specification and Design Languages, pp. 15-29, 2008.

[16] G. Bonanome, "Hardware Description Languages Compared: Verilog and SystemC", Department of
Computer Science, Columbia University. 2001.

[17] TIEMPO, "Tiempo White Paper #2: Introduction to SystemVerilog Asynchronous Modeling", TIEMPO
SAS, 2009.

[18] C. Burisch, "SystemVerilog and Channels", P1800 SV-EC Technical Committee Email Archives, Aug
2002.

[19] 1800-2005 IEEE Standard for SystemVerilog- Unified Hardware Design, Specification, and Verification
Language. ISBN: 0-7381-4810-5. IEEE, 2005.

[20] P.D.Austin and P.H.Welch. (1997-2008, April, 2011). JCSP API Specification, Version 1.1-rc4.
Available: http://www.cs.kent.ac.uk/projects/ofa/jcsp/jcsp-1.1-rc4/jcsp-doc/ (accessed 1st. May, 2011).

[21] D. C. Fang, "Profiling Infrastructure for the Performance Evaluation of Asynchronous Systems",
Cornell University, 2008.

[22] I. E. Sutherland, "Micropipelines," Communications of the ACM, vol. 32, 1989.
[23] P. A. Beerel, G. D. Dimou, and A. M. Lines, "Proteus: Demonstrating Automated Design of GHz

Asynchronous Circuits through a High-Density Next-Generation Low-Latency Ethernet Switch Chip",
ASYNC 2010, 2010.

[24] A. J. Martin and M. Nyström, "CAST: Caltech Asynchronous Synthesis Tools", in Proceedings of
Fourth Asynchronous Circuit Design Working Group Workshop, Turku, Finland, 2004.

[25] D. E. Muller and W. Bartky, "A Theory of Asynchronous Circuits," in Proceedings of International
Symposyiom on the Theory of Switching, Part 1, 1959, pp. 204-243.

[26] P. H. Welch and F. R. M. Barnes, "Communicating mobile processes: introducing occam-pi", in A.E.
Abdallah, C.B. Jones, and J.W. Sanders, editors, 25 Years of CSP, volume 3525 of Lecture Notes in
Computer Science, pages 175-210. Springer Verlag, April 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

