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Python

● Dynamically typed
● Multiparadigm
● Indentation-structured
● Designed to support teaching
● Widely deployed and used
● Lots of good-quality libraries
● Really slow bytecode interpreter



import sys, re

space_re = re.compile(r'[ \t\r\n\f\v]+')
punctuation_re = re.compile(r'[!"#%&\'()*,-./:;?@\[\\\]_{}]+')

max_words = int(sys.argv[1])
f = open(sys.argv[2])
data = f.read()
f.close()

words = [re.sub(punctuation_re, '', word).lower()
         for word in re.split(space_re, data)]
words = [word for word in words if word != ""]

found = {}
for i in range(len(words)):
    max_phrase = min(max_words, len(words) - i)
    for phrase_len in range(1, max_phrase + 1):
        phrase = " ".join(words[i:i + phrase_len])
        uses = found.setdefault(phrase, [])
        uses.append(i)

for (phrase, uses) in found.items():
    if len(uses) > 1:
        print ('<"%s":(%d,[%s])>'
               % (phrase, len(uses), ",".join(map(str, uses))))
print



Benchmarking

● Machine:
– 2x 2.27GHz Intel E5520 – 8 cores, 16 HTs

– 12GB RAM; files in cache for benchmarks

– Debian etch x86_64 with Python 2.6.6

● Using WEB.txt, 3 words, output to /dev/null
● Concordance.hs: (still waiting)
● ConcordanceTH.hs: 22.7s
● mini-concordance.py: 13.5s



Parallel Python

● Python's had threading support for a long time
● … but the bytecode engine is single-threaded

– The “Global Interpreter Lock”

● Useful for IO-bound programs, or where you're 
mostly calling into native code

● No good for parallelising pure-Python code



Multiprocessing

● The multiprocessing module provides the 
same API as the threading module...

● … but it uses operating system processes
● Synchronisation becomes more expensive, but 

you can execute in parallel



So let's parallelise...

● This is a trivially-parallelisable problem
– You can break it down into separate jobs that 

don't need to interact with each other

● Split up input file into C chunks
● Do concordance on each in parallel
● Merge results from different chunks together
● Print them out



Split

● Pick C points in the file
● Seek to each point
● Read forward until you find a word boundary
● Read a few words more forward to handle 

overlap between chunks
● Don't have to read the whole file
● Cheap – O(C) – not worth parallelising



Concordance

● Read appropriate chunk of file and do 
concordance just as before

– IO has been parallelised

● Return dict (hashed map) of phrases to uses, 
and number of words read in total

● Parallelise using multiprocessing.Pool

pool = Pool(processes=C)  # num to run at once

jobs = []
for i in range(C):
    jobs.append(pool.apply_async(concordance, (args ...)))

results = [job.get() for job in jobs]



Merge

● Iterate through all the results, and add to a dict, 
adjusting word numbers based on the totals

merged = {}
   
first_word = 0
for (found, num_words) in results:
    for (phrase, uses) in found.items():
        all_uses = merged.setdefault(phrase, [])
        all_uses += [use + first_word for use in uses]
    first_word += num_words
   
return merged



Version 1



Hmm...

● Some scalability, but there's a massive constant 
overhead

● At this point, I forget Rule 3 of optimisation...
– 1. Don't

2. Don't yet
3. Profile first

● The merge must be the slow part, right?
● Rewrite to sort in each concordance, and use 

heapq.imerge to merge sorted lists...



Version 2



Well, that didn't work...

● Complicated Python is often slower...
– ... because the runtime system and libraries are 

well-optimised for the common cases

● Stick with the obvious approach!
● Parallelise the merge instead 



Parallel merge

● Compute hash of each phrase (Python hash), 
and group phrases by hash % C

● Each concordance returns several dicts
● Each merge takes all the dicts with the same 

hash % C, merges as before, and returns its 
merged dict

● Output iterates through merged dicts
– It's useful that the output doesn't have to be sorted 

(although sorting the strings would be cheap)



Version 3



Applying Rule 3

● That's even slower, although at least it scales...
● Break out the profiler: it's now spending most of 

its time communicating between processes
– in pickle, Python's serialiser
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Arrow removal, stage 1

● Parallelise the output
● Each merge writes its own output, serialised 

using a Lock
● No less work to do – but less communication
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Version 4



Aha!

● We're beating the original version now!
● Let's keep going along those lines...
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Arrow removal, stage 2

● Give each merge an incoming Queue
● Connect concordances directly to merges
● Each phrase only communicated once...

– … and the communication is parallelised too
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Version 5



Success

● We beat the original version at 3 cores, and it 
hasn't hit a bottleneck by 16

● Even better: it's scaling linearly!
– Using N cores requires 1/N time

● This is a concurrent solution – giving the kernel 
more freedom to schedule efficiently

– … and how I would have built it in the first place 
using a process-oriented approach



Summing up

● “Do the simplest thing that can possibly work”
● Profile first
● All the improvement has come from changing 

the structure of the program
● No shared memory – this is a message-

passing solution, amenable to distribution
● Could optimise the sequential bits – but this is 

probably fast enough now; CPUs are cheap...



Any questions?

● Thanks for listening!
● Get the code:

git clone http://offog.org/git/sicsa-mcc.git
● Contact me or get this presentation:

http://offog.org/
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