
“This is a parallel parrot!”
(CPA 2011 fringe edition)

Adam Sampson
Institute of Arts, Media and Computer Games
University of Abertay Dundee

Python

● Dynamically typed
● Multiparadigm
● Indentation-structured
● Designed to support teaching
● Widely deployed and used
● Lots of good-quality libraries
● Really slow bytecode interpreter

import sys, re

space_re = re.compile(r'[\t\r\n\f\v]+')
punctuation_re = re.compile(r'[!"#%&\'()*,-./:;?@\[\\\]_{}]+')

max_words = int(sys.argv[1])
f = open(sys.argv[2])
data = f.read()
f.close()

words = [re.sub(punctuation_re, '', word).lower()
 for word in re.split(space_re, data)]
words = [word for word in words if word != ""]

found = {}
for i in range(len(words)):
 max_phrase = min(max_words, len(words) - i)
 for phrase_len in range(1, max_phrase + 1):
 phrase = " ".join(words[i:i + phrase_len])
 uses = found.setdefault(phrase, [])
 uses.append(i)

for (phrase, uses) in found.items():
 if len(uses) > 1:
 print ('<"%s":(%d,[%s])>'
 % (phrase, len(uses), ",".join(map(str, uses))))
print

Benchmarking

● Machine:
– 2x 2.27GHz Intel E5520 – 8 cores, 16 HTs

– 12GB RAM; files in cache for benchmarks

– Debian etch x86_64 with Python 2.6.6

● Using WEB.txt, 3 words, output to /dev/null
● Concordance.hs: (still waiting)
● ConcordanceTH.hs: 22.7s
● mini-concordance.py: 13.5s

Parallel Python

● Python's had threading support for a long time
● … but the bytecode engine is single-threaded

– The “Global Interpreter Lock”

● Useful for IO-bound programs, or where you're
mostly calling into native code

● No good for parallelising pure-Python code

Multiprocessing

● The multiprocessing module provides the
same API as the threading module...

● … but it uses operating system processes
● Synchronisation becomes more expensive, but

you can execute in parallel

So let's parallelise...

● This is a trivially-parallelisable problem
– You can break it down into separate jobs that

don't need to interact with each other

● Split up input file into C chunks
● Do concordance on each in parallel
● Merge results from different chunks together
● Print them out

Split

● Pick C points in the file
● Seek to each point
● Read forward until you find a word boundary
● Read a few words more forward to handle

overlap between chunks
● Don't have to read the whole file
● Cheap – O(C) – not worth parallelising

Concordance

● Read appropriate chunk of file and do
concordance just as before

– IO has been parallelised

● Return dict (hashed map) of phrases to uses,
and number of words read in total

● Parallelise using multiprocessing.Pool

pool = Pool(processes=C) # num to run at once

jobs = []
for i in range(C):
 jobs.append(pool.apply_async(concordance, (args ...)))

results = [job.get() for job in jobs]

Merge

● Iterate through all the results, and add to a dict,
adjusting word numbers based on the totals

merged = {}

first_word = 0
for (found, num_words) in results:
 for (phrase, uses) in found.items():
 all_uses = merged.setdefault(phrase, [])
 all_uses += [use + first_word for use in uses]
 first_word += num_words

return merged

Version 1

Hmm...

● Some scalability, but there's a massive constant
overhead

● At this point, I forget Rule 3 of optimisation...
– 1. Don't

2. Don't yet
3. Profile first

● The merge must be the slow part, right?
● Rewrite to sort in each concordance, and use

heapq.imerge to merge sorted lists...

Version 2

Well, that didn't work...

● Complicated Python is often slower...
– ... because the runtime system and libraries are

well-optimised for the common cases

● Stick with the obvious approach!
● Parallelise the merge instead

Parallel merge

● Compute hash of each phrase (Python hash),
and group phrases by hash % C

● Each concordance returns several dicts
● Each merge takes all the dicts with the same

hash % C, merges as before, and returns its
merged dict

● Output iterates through merged dicts
– It's useful that the output doesn't have to be sorted

(although sorting the strings would be cheap)

Version 3

Applying Rule 3

● That's even slower, although at least it scales...
● Break out the profiler: it's now spending most of

its time communicating between processes
– in pickle, Python's serialiser

concordance

concordance

concordance

main

merge

merge

merge

mainmain

Arrow removal, stage 1

● Parallelise the output
● Each merge writes its own output, serialised

using a Lock
● No less work to do – but less communication

concordance

concordance

concordance

main

merge

merge

merge

main

Version 4

Aha!

● We're beating the original version now!
● Let's keep going along those lines...

concordance

concordance

concordance

main

merge

merge

merge

main

Arrow removal, stage 2

● Give each merge an incoming Queue
● Connect concordances directly to merges
● Each phrase only communicated once...

– … and the communication is parallelised too

concordance

concordance

concordance

merge

merge

merge

main

Version 5

Success

● We beat the original version at 3 cores, and it
hasn't hit a bottleneck by 16

● Even better: it's scaling linearly!
– Using N cores requires 1/N time

● This is a concurrent solution – giving the kernel
more freedom to schedule efficiently

– … and how I would have built it in the first place
using a process-oriented approach

Summing up

● “Do the simplest thing that can possibly work”
● Profile first
● All the improvement has come from changing

the structure of the program
● No shared memory – this is a message-

passing solution, amenable to distribution
● Could optimise the sequential bits – but this is

probably fast enough now; CPUs are cheap...

Any questions?

● Thanks for listening!
● Get the code:

git clone http://offog.org/git/sicsa-mcc.git
● Contact me or get this presentation:

http://offog.org/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

