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Abstract. The current trend in processor design seems to focus on usitigple
cores, similar to a cluster-on-a-chip model. These prazesare generally fast and
power efficient, but due to their highly parallel nature \ttaee notoriously difficult
to program for most scientists. One such processor is theLGEbadband engine
(CELL-BE) which is known for its high performance, but aleo & complex program-
ming model which makes it difficult to exploit the architeuo its full potential.
To address this difficulty, this paper proposes to changetbgramming model to
use the principles of CSP design, thus making it simpler tmg@m the CELL-BE
and avoid livelocks, deadlocks and race conditions. The @8&el described here
comprises a thread library for the synergistic processiements (SPEs) and a sim-
ple channel based communication interface. To examineddlalsility of the imple-
mentation, experiments are performed with both scientiimputational cores and
synthetic workloads. The implemented CSP model has a siARland is shown to
scale well for problems with significant computational riegments.
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Introduction

The CELL-BE processor is an innovative architecture thiznapts to tackle the problems,
that prevent processors from achieving higher perform@h@g3]. The limitations in tradi-
tional processors are primarily problems relating to heatk frequency and memory speed.
Instead of using the traditional chip design, the CELL-BEsists of multiple units, effec-
tively making it a cluster-on-a-chip processor with higkenconnect speed. The CELL-BE
processor consists of a single PowerPC (PPC) based proasssuected to eight SPEs
through a 204.8 GB/s ER[4]. The computing power of a CELL-BE chip is well investi-
gated [5,6], and a single CELL blade with two CELL-BE proagsscan yield as much as
460 GFLOPS [7] at one GFLOPS per Watt [7].

Unfortunately, the computing power comes at the price ofrg gemplex programming
model. As there is no cache coherent shared memory in the &, lthe processes must
explicitly transfer data between the units using a DMA moahklch resembles a form of
memory mapped IO [8,4]. Furthermore to fully utilize the GQEBE, the application must
use task-, memory-, data- and instruction-level (SRylparallelization [5]. A number of
papers discuss various computational problems on the GEE Li#lustrating that achieving
good performance is possible, but the process is compl8xif®). In this paper we focus on
the communication patterns and disregard instructioatland data parallelization methods
because they depend on application specific computatiahsaamot be easily generalized.

C.A.R. Hoare introduced the CSP model in 1978, along witlttmeept of explicit com-
munication through well-defined channels. Using only cletiased communication, each

1Corresponding Author: E-maikkovhede@nbi . ku. dk.
1Synergistic Processing Elements, a RISC based processor.
2Element Interconnect Bus.

3Single Instruction Multiple Data.



participating process becomes a sequential program [[L1t i&possible to prove that a CSP
based program is free from deadlocks and livelocks [11]q€I6P algebra. Furthermore,
CSP based programs are easy to understand, because trespsooensist of sequential code
and channels which handle communication between the meseghis normally means that
the individual processes have very little code, but thd tatenber of processes are very high.

This work uses the CSP design rules and not the CSP algebifaByg using a CSP like
interface, we can hide the underlying complexity from thegpammer giving the illusion
that all transfers are simply channel communications. Wevethat this abstraction greatly
simplifies the otherwise complex CELL-BE programming modg} adhering to the CSP
model, the implementation automatically obtains propsrfrom CSP, such as being free
of race-conditions and having detectable deadlocks. Sheébrary does not use the CSP
algebra, the programmer does not have to learn a new langui&gan still achieve many of
the CSP benefits.

1. Related Work

A large number of programming models for the CELL-BE are lavde [13,14,15,16] illus-
trating the need for a simpler interface to the complex maehMost general purpose li-
braries cannot be directly used on the CELL-BE, becauseRis 8se a different instruction
set than the PPC. Furthermore, the limited amount of memayadle on the SPEs makes
it difficult to load a general purpose library onto them.

1.1. Programming Librariesfor the CELL-BE

The ALF [13] system allows the programmer to build a set ofastefent tasks which are then
scheduled and distributed automatically according ta ttependencies. The OpenMP [14]
and CellSs [15] systems provide automatic parallelizatiorotherwise sequential code
through the use of code annotation.

As previously published [16], the Distributed Shared Meyrfor the CELL-BE (DSM-
CBE), is a distributed shared memory system that gives togrammer the “illusion” that
the memory in a cluster of CELL-BE machines is shared. Thamélsbased communication
system described in this paper uses the communicationnsysten DSMCBE, but does not
use any DSM functionality. It is possible to use both commation models at the same time,
however this is outside the scope of this paper.

The CellCSP [17] library shares the goals of the channeldagstem described in
this paper but by scheduling independent processes witlsuss fon processes, rather than
communication.

1.2. CSP Implementations

The Transterpreter [18] is a virtual machine that can@acam-1t programs. By modifying
the Transterpreter to run on the SPEs [19], it becomes dedsilexecuteoccam-1ton the
CELL-BE processor and also utilize the SPEs. The Transtggpmmplementation that runs
on the CELL-BE [19] has been extended to allow programs ngim the virtual machine to
access some of the SPE hardware. A similar project, trajgllallows a subset asccam-
mtto run on the SPU, by translating Extended Transputer Co8&1td binary code.
Usingoccam-Ttrequires that the programmer learns and understandstiam-Tt pro-
gramming language and model, and also requires that thegmsgare re-written inccam-
1. The Transterpreter fro CELL-BE has an extension that aloalibacks to native code [19],
which can mitigate this issue to some extent.
A number of other CSP implementations are available, su€+aSP [21], JCSP [22]
and PyCSP [23]. Although these may work on the CELL-BE prsgceshey can currently



only utilize the PPC and not the high performing SPEs. We liaee the simplified channel
interface in the newest version of PyCSP [24] as a basis fegldping the channel commu-
nication interface. Since DSMCBE [16] is written in C, we Bgwoduced a flattened and
non-object oriented interface.

2. Implementation

This section gives a short introduction to DSMCBE and déssrisome design and imple-
mentation details of the CSP library. For a more detailectiiigtson and evaluation of the
DSMCBE system see previous work [16].

2.1. Distributed Shared Memory for the CELL-BE (DSVICBE)

As mentioned in the introduction, the basis for the impletagon is the DSMCBE system.
The main purpose of DSMCBE is to provide the user with a sindgh that establishes a
distributed shared memory system on the CELL-BE architectépart from its main pur-

pose, the underlying framework can also be adjusted to ser@emore generic platform for
communication between the Power PC element (PPE) and therd@stic Processing Ele-
ments (SPESs). Figure 1 shows the DSMCBE model along withahgonents involved. The
DSMCBE system consists of four elements which we describmbe
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Figure1l. DSMCBE Internal Structure.

The DSMCBE PPE/SPE modules contains the DSMCBE functionshithe program-
mer will call from the user code. To manipulate objects inglistem, the programmer will
use the functions from the modules to create, acquire améselobjects. In addition the
two modules are responsible for communicating with the r8MCBE modules which are
located on the PPC.

The PPE handler is responsible for handling communicatetwéen the PPC user code
and the request coordinator (see below). Like the PPE hatitkeSPE handler is responsible
for handling communication between user code on the SPEghendequest coordinator
(see below). However the SPE handler also manages allocatid deallocation of Local
Store (LS) memory, which enables the SPE handler to perfaemony management without
interrupting the SPEs.



The DSMCBE library uses a single processing thread, caled¢quest coordinator,
which is responsible for servicing requests from the othedates. Components can then
communicate with the request coordinator by supplying getafor the answer. Using this
single thread approach makes it simpler to execute atoneiatipns and reduces the number
of locks to a pair per participating component. Each PPCathand SPE unit functions as
a single component, which results in the request coordirtzng unable to determine if
the participant is a PPC thread or a SPE. As most requestspasstthrough the request
coordinator, an obvious drawback to this method is thatstighecomes a bottleneck. With
this communication framework it is easier to implement cterbased communication, as
the Request Coordinator can simply be extended to handle channel requests.

2.2. Extending DSVICBE with Channel Based Communication for CELL-BE

This section will describe how we propose to extend the DSE@Gidel with channel based
communication. We have used the DSMCBE system as a framdwerksure atomicity and
enable memory transfers within the CELL-BE processor. Tinglementation does not use
any DSM methods and consists of a separate set of functits cal

We have intentionally made the programming model very sémipkconsists of only six
functions:

® dsmcbe_csp_channel_read
dsmcbe_csp_channel_write
dsmcbe_csp_item_create
dsmcbe_csp_item_free
dsmcbe_csp_channel_create
dsmcbe_csp_channel_poison

All functions return a status code which describes the outcof the call.

2.2.1. Channel Communication

The basic idea in the communication model is to use chanmemhmunicate. There are two
operations defined for thigismcbe_csp_channel_read anddsmcbe_csp_channel _wri-
te. As in other CSP implementations, the read and write omeratblock until a matching
request arrives, making the operations a synchronizedia@rant.

When writing to a channel, the calling process must supplgiater to the data area.
The result of a read operation is a pointer to a data area, hsasvéhe size of the data
area. After receiving a pointer the caller is free to read amte the contents of the area.
As the area is exclusively owned by the process there is nsilplity of a race condition.
As it is possible to write arbitrary memory locations, whesing C, it is the programmers
responsibility not to use the data area after a call to writgically, the caller can consider
the dsmcbe_csp_channel_write operation as transferring the data and ownership of the
area to the recipient. After receiving a pointer from a repération, and possibly modifying
data area, the process may forward the pointer again dsingbe _csp_channel _write.
As the reading process has exclusive ownership of the datg dris also responsible for
freeing the data area, if it is no longer needed.

The operation results in the same output regardless of wbiehL-BE processor the
call originates from. If both processes are in the same mgspace the data is not copied
ensuring maximal speed. If the data requires a transfelifitaey will attempt to do so in the
most efficient manner.

2.2.2. Transferable Iltems

The CELL-BE processor requires that data is aligned and baxtain block sizes, a con-
straint that is not normally encountered by a programmerh#e chosen to expose a sim-



ple pair of functions that mimic the well-knowmrlloc and free functions calleddsm-
cbe_csp_item_create anddsmcbe_csp_item_free, respectively. A process wishing to
communicate can allocate a block of memory by calling degcbe_csp_item_create
function and get a standard pointer to the allocated data &te process is then free to write
data into the allocated area. After a process has used a mélook, it can either forward the
block to another channel, or release the resources heldllbygcésmcbe_csp_item_free.

2.2.3. Channel Creation

When the programmer wants to use a channel it is necessargdtedt by calling thelsm-
cbe_csp_channel_create method. To distinguish channels, the create function mest b
called with a unique number, similar to a channel name or blaobject in other CSP sys-
tems. This channel number is used to uniquely identify trenokel in all subsequent com-
munication operations.

The create function allows the caller to set a buffer sizeherchannel, thus allowing the
channel writers to write data into the channel without awgita matching reader. A buffer
in the CSP model works by generating a sequence of processae wach process simply
reads and writes an element. The number of processes indihed#termines the size of the
buffer. The semantics of the implemented buffer are the ss@echain of processes, but the
implementation uses a more efficient method with a queue.

The channel type specifies the expected use of the chantielthei following options:
one-to-one, one-to-any, any-to-one, any-to-any and oraie-simple. Using the channel
type it is possible to verify that the communication patserarrespond to the intended use. In
situations where the participating processes do not chiaiggpossible to enable "low over-
head" communication by using the channel type one-to-anpis. Section 2.2.8 describes
this optimization in more detail.

A special convention borrowed from the DSMCBE model is tleatkor write operations
on non-existing channels will cause the caller to blockéfthannel is not yet created. Since a
program must call the create function exactly once for edamoel, some start-up situations
are difficult to handle without this convention. Once a psscias created the channel, it
processes all the pending operations as if they occurredtat channel creation.

2.2.4. Channel Poison

As all calls are blocking they can complicate the shutdowasghof a CSP network. The
current CSP implementations support a channel poison sthieh causes all pending and
following operations on that channel to return the poison.

To poison a channel, a process calisicbe_csp_channel_poison with the id of an
existing channel. When using poison, it is important to &tbe return value of the read and
write operations, as they may return the poison status. Aona@medCSP_SAFE_CALL can
be used to check the return value and exit the current fumetiten encountered. However
the programmer is still fully responsible for making thegmam handle and distribute poison
correctly.

2.2.5. External Choice

As a read operation is blocking, it is not possible to waitdata on more than one channel,
nor is it possible to probe a channel for its content. If a pesccould see whether or not a
channel has content, a race condition could be introdudeelreby a second process could
read the item right after the probe, resulting in a blockieggd.

To solve this issue, CSP uses the concept of external chdieeava process can request
data from multiple channels and then gets a response on@aelhis ready. To use external
choice, the process must call a variation ofds&cbe_csp_channel_read function named



dsmcbe_csp_channel_read_alt, wherealt is short for “alternation”, the term used in
C.A.R. Hoare’s original paper [25]. Using this functiongtprocess can block for a read
operation on multiple channels. When one of the channelslatas the data is returned, as
with the normal read operation, along with the channel idhef eriginating channel. This

way of dealing with reads ensures that race conditions daroouir.

With the channel selection done externally, the callingpss has no way of controlling
which channel to read, should there be multiple availabteags. To remedy this, the calling
process must also specify what strategy to use if multipknobkls are ready. The JCSP
library offers three strategies: arbitrary, priority aagrfArbitrary picks a channel at random
whereas priority chooses the first available channel, piged by the order in which the
channels are given. Fair selection keeps count of the nuafliEnes each channel has been
selected and attempts to even out the usage of channelsuillieatdmplementation of CSP
channels for CELL-BE only supports priority select, butginegrammer can emulate the two
other modes.

Similar to the read function, a function callédmcbe_csp_channel _write_alt al-
lows a process to write to the first available channel. Thigfion also supports a selection
strategy and returns the id of the channel written to. Treceiirently no mechanism to sup-
port the simultaneous selection of channel readers andrgrithough there are other ways
of engineering this.

2.2.6. Guards

To prevent a call from blocking, the calling function can glypa guard which is invoked
when no data is available. The implementation defines avegashannel number, called
CSP_SKIP_GUARD which can be given as a channel id when requesting read o froin
multiple channels. If the operation would otherwise bldble, function returns BULL pointer
andCSP_SKIP_GUARD as the channel value.

Other CSP implementations also offer a time-out guard, ipierforms a skip, but
only if the call blocks for a certain period. This functioityalis not available in the current
implementation, but could be added without much complacati

2.2.7. Processesfor CELL-BE

The hardware in the CELL-BE is limited to a relatively low niben of physical SPEs, which
prevents the generation of a large number of CSP processaeniedy this situation the
implementation also supports running multiple processesach SPE. Since the SPEs have
little support for timed interrupts, the implementatiorpigrely based on cooperative switch-
ing. To allow multiple processes on the SPE, we have used jpmoagh similar to CELL-
MT [26], basically implementing a user-mode thread libydoyt based on the standard C
functionsset jmp andlongjmp.

The CSP threading library implements tihi@in function, and allocates ABI compli-
ant stacks for each of the processes when started. Aftemgeth the multithreading envi-
ronment, the scheduler is activated which transfers cbtdrthe first processes. Since the
main function is implemented by the library, the user code musteiad implement thésm-
cbe_main function, which is activated for each process in turn. Thésans that all processes
running on a single SPE must use the sa’mcbe_main function, but each process can call
the functiondsmcbe_thread_current_id and thus obtain a unique id, which can be used
to determine what code the process will execute.

When a process is executing it can cooperatively yield obbir callingdsmcbe_thre-
ad_yield, which will save the process state and transfer controlém#xt available process.
Whenever a process is waiting for an API response, the {ibnalt automatically call a
similar function calleddsmcbe_thread_yield_ready. This function will yield if another
process is ready to execute, meaning that it is not currentliting an APl response. The



effect of this is that each API call appears to be blockinipwahg the programmer to write
a fully sequential program and transparently run multiptecpsses.

As there is no preemptive scheduling of threads, it is pts$ilv a single process to pre-
vent other processes from executing. This is a common o#deetween allowing the SPE
to execute code at full speed, and ensuring progress inadépses. This can be remedied by
inserting calls talsmcbe_thread_yield_ready inside computationally heavy code, which
allows the programmer to balance the single process execatid overall system progress
in a fine grained manner.

The scheduler is a simple round-robin scheduler using ayrgadue and a waiting
gueue. The number of threads possible is limited primayiytHe amount of available LS
memory, which is shared among program code, stack and dh&running time of the
scheduler igD(N) which we deem sufficient, given that all processes sharartiitetl LS,
making more than 8 processes per SPE unrealistic.

2.2.8. SPE-to-SPE Communication

Since the PPC is rarely a part of the actual problem solvireggmemory blocks can often be
transferred directly from SPE to SPE without transferringto main memory.

If a SPE is writing to a buffered channel, the data may not bd nemmediately after the
write. Thus, the SPE may run out of memory since the data isdeefhe SPE in anticipation
of a SPE-to-SPE transfer. To remedy this, the library wilsflata to main memory if an
allocation would fail. This is in effect a caching systemdaas such it is subject to the
regular benefits and drawbacks of a cache. One noticeabiddch is that due to the limited
available memory, the SPEs are especially prone to memagyrfentation, which happens
more often when using a cache, as the memory stays fully ptgzlifor longer periods.

If the channel is created with the type one-to-one-simple,first communication will
be used to determine the most efficient communication patéerd thus remove some of the
internal synchronization required. If two separate SPEscammunicating, this means that
the communication will be handled locally in ti8E Handler shown in Figure 1, and thus
eliminate the need to pass messages througRetyeest Coordinator.

A similar optimization is employed if two processes on thene&SPE communicate. In
this case the data is kept on the SPE, and all communicatlmamidled locally on the SPE in
the DSMCBE SPE module shown in Figure 1. Due to the limited amount of memeoagylable
on the SPE, data may be flushed out if the channel has largerbwif otherwise exhaust the
available memory.

These optimizations can only work if the communication ia€lo a one-to-one fashion
where the participating processes never change. Shoulas#recode attempt to use such a
channel in an unsupported manner, an error code will berretur

2.2.9. Examples

To illustrate the usage of the channel-based communichistimg 1 shows four simple CSP
processes. Listing 2 presents a simple example that usedt¢neation method to read two
channels and writes the sum to an output channel.

3. Experiments

When evaluating system performance, we focus mainly ondhlakility aspect. If the system
scales well, further optimizations may be made specificé@ftplication, utilizing the SIMD
capabilities of the SPEs. The source code for the expersremeat available fromattp://
code.google.com/p/dsmcbe/.



1| #include <dsmchbe_csp.h>
3| int deltal (GUID in, GUID out) ({

voidx value;
5

while (1) {
7 CSP_SAFE_CALL("read", dsmche_csp_channel_read (in LINU&value));

CSP_SAFE_CALL("write", dsmcbe_csp_channel_write (outvalue));
9 1}
}

11

int delta2 (GUID in, GUID outA, GUID outB) {
13 void« inValue, outValue;
size_t size;

15
while (1) {
17 CSP_SAFE_CALL("read", dsmche_csp_channel_read (insjz& , &inValue));
CSP_SAFE_CALL("allocate", dsmcbe_csp_item_create (Rbalue , size));
19
memcpy (outValue , inValue, size); //Copy contents as we chedao copies
21
CSP_SAFE_CALL("write A", dsmcbe_csp_channel_write (Ayt inValue));
23 CSP_SAFE_CALL("write B", dsmcbe_csp_channel_write{®, outValue));
}
25| }
27

int prefix(GUID in, GUID out, voidt data) {
29| CSP_SAFE_CALL("write", dsmche_csp_channel_write{opudata));

31 return deltal(in, out);

}

int tail (GUID in, GUID out) {
35 voidx tmp;

33

37 CSP_SAFE_CALL("read", dsmcbe_csp_channel_read (irfULLN &mp));
CSP_SAFE_CALL("free", dsmchbe_csp_item_free(tmp));

39
return deltal(in, out);
41 }
Listing 1. Four simple CSP processes.
1|/ int add(GUID inA, GUID inB, GUID out)
{

3 void xdatal, xdataZ2;

5/ GUID channellList[2];

channelList[0] = inA;
7 channellList[1] = inB;
9 GUID chan;
11 while (1)
{
13 dsmcbe_csp_channel_read_alt (CSP_ALT _MODE_PRIORIT&hannelList, 2, &chan,
NULL, &datal);
dsmcbe_csp_channel_read(chan == inA ? inB : inA, NULL, &da);
15
x(intx)datal = «((intx)datal) + x((int«)data2);
17
dsmcbe_csp_item_free(data2);
19 dsmcbe_csp_channel_write (out, datal);
}
21| }

Listing 2. Reading from two channels with alternation read and extetmaice. To better fit the layout of the
article theCSP_SAFE_CALL macro is omitted.



All experiments were performed on an IBM QS22 blade, whichtaims 2 connected
CELL-BE processors, giving access to 4 PPE cores and 16 SPEs.

3.1. CommsTime

A common benchmark for any CSP implementation is the CommesTpplication which
sets up a ring of processes that simply forwards a singleages3he conceptual setup is
shown in Figure 2. This benchmark measures the communicaterhead of the channel op-
erations since there is almost no computation requiredeiptbcesses. To better measure the
scalability of the system, we have deviated slightly from tlormal CommsTime implemen-
tation, by inserting extra successor processes as neeldisdn€ans that each extra partici-
pating process will add an extra channel, and thus and tlogkipe a longer communication
ring.

Figure 3 shows the CommsTime when communicating among S&iesses. The PPE
records the time between each received message, thus megatha time it takes for the
message to traverse the ring. The time shown is an averagé@vens of 10.000 iterations.
As can be seen, the times seems to stabilize aroung8&@onds when using one thread per
SPE. When using two or more threads the times stabilizesdr88useconds, 27.seconds,
and 20useconds respectively. When using multiple threads, themaamication is performed
internally on the SPEs, which results in a minimal commutiocaoverhead causing the
average communication overhead to decrease.

/—\SPE 1 SPE 4
Recorder Delta = S

uccessor

PPE

.
SN

Prefix Successor

Figure 2. Conceptual setup for the CommsTime experiment with 4 SPEs.

We have executed the CommsTime sample from the JCSP libradre4 on the PPE.
The JCSP sample uses four processes in a setup similar teeRAdout with all processes
placed on the PPE. Each communication took on averags&3nds which is slightly faster
than our implementation, which runs at 145econds on the PPE. Even though JCSP is
faster, it does not utilize the SPEs, and cannot utilize aiigpbtential of the CELL-BE.

3.2. Prototein Folding

Prototeins are a simplified 2D model of a protein, with only tamino acids and only 90
degree folds [27]. Folding a prototein is computationaiip@er than folding a full protein,
but exhibit the same computational characteristics. Reotdolding can be implemented
with a bag-of-tasks type solution, illustrated in Figurevhere partially folded prototeins are
placed in the bag. The partially folded prototeins have nerdependencies, but may differ
in required number of combinations and thus required coatjmurtal time.

As seen in Figure 5 the problem scales very close to lineaitly the number of SPEs,
which is to be expected for this type of problem. This indésathat the communication
latency is not a limiting factor, which also explains why thember of SPE threads have very
little effect on the scalability.
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Figure5. Speedup of prototein folding using 1-16 SPEs.

3.3. k Nearest Neighbors (kNN)

The kNN application is a port of a similar application writtéor PyCSP [28]. Where the

PyCSP model is capable of handling an extreme number of cantprocesses, the library
is limited by the number of available SPEs and the amountrefitss each SPE can accom-
modate. Due to this, the source code for the two applicattwashard to compare, but the



overall approach and communication patterns are the sageef6 shows a conceptual ring
based setup for finding the kNN.
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A
SPE 2 SPE 4
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Figure 6. Conceptual setup for the kNN experiment with 4 SPEs, eachimgr? threads.

This ring-based approach means that each process comnasicdy with its neighbor.
To support arbitrary size problems, one of the channels@fered. The underlying system
will attempt to keep data on the SPE, in anticipation of adfan but as the SPE runs out
of memory, the data will be swapped to main memory. This hapgempletely transparent
to the process, but adds an unpredictable overhead to thegoitation. This construction

allows us to run the same problem size on one to 16 SPEs.
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Figure 7. Speedup of the k Nearest Neighbors problem using 1-16 SP&esatch for 10 nearest neighbors in
a set with 50k elements with 72 dimensions.

As seen in Figure 7 this does not scale linearly, but giveninterdependencies we
consider this to be a fairly good result. Figure 7 also shdwasusing threads to run multiple
solver processes on each SPE offers a performance gainthrexegh the processes compete
for the limited LS memory. This happens because the threagkement an implicit form
of double buffering, allowing each SPE to mask communicatielays with computation.
The achieved speedup indicates that there is a good balaheedn the communication and
computation performed in the experiment.

The speedup for both graphs is calculated based on the reeasme for running the
same problem size on a single SPE with a single solver thread.



3.4. Communication to Computation Ratio

The ring based communication model used in the KNN expetimeeuite common for prob-
lems that use a? approach. However, the scalability of such a setup is higbjyendent on
the amount of work required in each subtask. To quantify dreraunication to computation
ratio required for a well-scaling system, we have develapsithple ring-based program that
allows us to adjust the number of floating point operation$gpeed between communica-
tions. The computation performed is adjustable and doedeqnd on the size of the trans-
mitted data, allowing us to freely experiment with the comapional workload. The setup for
this communication system is shown in Figure 8. The setugeistical to the one used in the
kNN experiment, but instead of having two communicatingcpsses on the same SPE, the
processes are spread out. This change cause the setupathegossibility for the very fast
internal SPE communication channels, which causes modedndahe PPE and thus gives a
more realistic measurement for the communication delays.

SPE 1 SPE 3
%\l\
Sol_\p /S(;IVG
Y
SPE 2 SPE 4

Figure 8. Conceptual setup for non-structured ring based commuaitat

As seen in Figure 9, the implementation scales well if coraorh performed in each
ring iteration is around 100MFLOPS. Comparing the two geajphFigure 9, shows that in-
creasing the number of threads on the SPEs, results in aadecire performance. This hap-
pens because the extra processes introduce more comnmmiddtis increase in commu-
nication causes a bigger strain on the PPE, which resultone tatency than the processes
hide. In other words, the threads cause more latency thgrctrehide in this setup.

The speedup for both graphs in Figure 9 are calculated baseteasurements from a
run with the same data size on a single SPE with a single thread

Comparing the Communication to Computation experimeni wie kNN experiment
reveals that the use of optimized channels reduces theclatdirequests to a level where
the threads are unable to hide the remaining latency. Iir @tbeds, the latency becomes so
low, that the thread switching overhead is larger than thentzy it attempts to hide. This is
consistent with the results from the CommsTime experimehich reveals that the commu-
nication time is very low when performing inter-SPE comnuaion. This does not mean
that the latency is as low as it can be, but it means that thia egmmunication generated by
the threads increases the amount of latency that must berhidd

4. Future Work

The main problem with any communication system is the owathetroduced by the com-
munication. As the experiments show, this overhead existsén be hidden because the
CELL-BE and library are capable of performing the commutigcaand computation simul-
taneously. But this hiding only works if the computationattpof a program has a sufficient
size. To remedy this, the communication overhead shoulédheced significantly.
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Figure 9. Communication To Computation ratio, 16 bytes of data.

The decision to use the request coordinator to handle thehsynization simplifies the
implementation, but also introduces two performance @ioisl One problem is that if the
system becomes overwhelmed with requests, the executibbevsequential, as the pro-
cesses will only progress as fast as the request coordiregponds to messages. The other
problem is that the requests pass through both the SPU mardiehe request coordinator,
which adds load to the system and latency to each commuoricagieration.

4.1. Reduce Request Latency

Since the SPEs are the main workhorse of the CELL-BE, it makase to move much of
the decision logic into the SPU handler rather than handtethe request coordinator. The
request coordinator is a legacy item from the DSM systemthare is nothing that prevents
participating PPE processes from communicating direcitig thhe SPU handler.

4.2. Increase Parallelism

Even if the request coordinator is removed completely, € Ean still be overwhelmed with
requests, which will make everything run sequentiallyeathan in parallel. It is not possible
to completely remove a single synchronization point, buhyneommunication operations
involve exactly two processes. In the common case wheree ttves processes reside on
separate SPEs, it is possible to perform direct SPE-to-®Rtnuinication through the use
of signals and DMA transfers. If this is implemented, it vgHeatly reduce the load on the
PPE for all the presented experiments.



4.3. Improve Performance of the SPU Handler

The current implementation uses a shared spinning threadanhstantly checks for SPE and
request coordinator messages. It is quite possible theat#m be improved by using a thread
for each SPE which uses the SPE events rather than spinnipgrithents performed for the
DSMCBE [16] system show that improving the SPU handler cgmrave the overall system
performance.

4.4. Improve Memory Exhaustion Handling

When the communication is handled by the SPEs internalig, likely that they will run
out of memory. If the SPU handler is involved, such situatiame detected and handled
gracefully. Since this is essentially a cache system, aecpolicy can greatly improve the
performance of the system, by selectively choosing whiemehts to remove from the LS
and when such an operation is initiated.

4.5. Process Migration

The processes are currently bound to the SPE that started the it may turn out that the
setup is ineffective and can be improved by moving commtimiggrocesses closer together,
i.e. to the same SPE. There is limited support for this in tEICBE architecture itself,
but the process state can be encapsulated to involve ontutihent thread stack and active
objects. However, it may prove to be impossible to move ags®cas data may occupy
the same LS area. Since the C language uses pointers, thieckttans cannot be changed
during a switch from one SPE to another. One solution to thidctbe to allocate processes
in slots, such as those used in CELL CSP [17].

4.6. Multiple Machines

The DSMCBE system already supports multiple machinesgustisndard TCP-IP commu-

nication. It would be desirable to also support multiple maes for CSP. The main chal-

lenge with multiple machines is to implement a well-scalegsion of the alternation opera-

tions, because the involved channels can span multipleimehT his could use the cross-bar
approach used in JCSP [29].

5. Conclusion

In this paper we have described a CSP inspired communicatamel and a thread library,
that can help programmers handle the complex programmirdghun the CELL-BE. We
have shown that even though the presented models introdumee sverhead, it is possible
to get good speedup for most problems. On the other handd-&ahows, that if the com-
putation to communication ratio is too low - meaning toddittomputation per communica-
tion, it is very hard to scale the problems to utilize all 1EESPHowever we believe that for
most programmers solving reasonable sized problems, the poovided can significantly
simplify the writing of programs for the CELL-BE architectu

We have also shown that threads can be used to mask someyjdtenat the same time
they generate some latency, which limits their usefulnesettain problems.

DSMCBE and the communication model described in this papepén source software
under the LGPL license, and are available frbttp: //code.google.com/p/dsmcbe/.
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