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Abstract. The current trend in processor design seems to focus on usingmultiple
cores, similar to a cluster-on-a-chip model. These processors are generally fast and
power efficient, but due to their highly parallel nature, they are notoriously difficult
to program for most scientists. One such processor is the CELL broadband engine
(CELL-BE) which is known for its high performance, but also for a complex program-
ming model which makes it difficult to exploit the architecture to its full potential.
To address this difficulty, this paper proposes to change theprogramming model to
use the principles of CSP design, thus making it simpler to program the CELL-BE
and avoid livelocks, deadlocks and race conditions. The CSPmodel described here
comprises a thread library for the synergistic processing elements (SPEs) and a sim-
ple channel based communication interface. To examine the scalability of the imple-
mentation, experiments are performed with both scientific computational cores and
synthetic workloads. The implemented CSP model has a simpleAPI and is shown to
scale well for problems with significant computational requirements.
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Introduction

The CELL-BE processor is an innovative architecture that attempts to tackle the problems,
that prevent processors from achieving higher performance[1,2,3]. The limitations in tradi-
tional processors are primarily problems relating to heat,clock frequency and memory speed.
Instead of using the traditional chip design, the CELL-BE consists of multiple units, effec-
tively making it a cluster-on-a-chip processor with high interconnect speed. The CELL-BE
processor consists of a single PowerPC (PPC) based processor connected to eight SPEs1

through a 204.8 GB/s EIB2 [4]. The computing power of a CELL-BE chip is well investi-
gated [5,6], and a single CELL blade with two CELL-BE processors can yield as much as
460 GFLOPS [7] at one GFLOPS per Watt [7].

Unfortunately, the computing power comes at the price of a very complex programming
model. As there is no cache coherent shared memory in the CELL-BE, the processes must
explicitly transfer data between the units using a DMA modelwhich resembles a form of
memory mapped IO [8,4]. Furthermore to fully utilize the CELL-BE, the application must
use task-, memory-, data- and instruction-level (SIMD3) parallelization [5]. A number of
papers discuss various computational problems on the CELL-BE, illustrating that achieving
good performance is possible, but the process is complex [5,9,10]. In this paper we focus on
the communication patterns and disregard instruction-level and data parallelization methods
because they depend on application specific computations and cannot be easily generalized.

C.A.R. Hoare introduced the CSP model in 1978, along with theconcept of explicit com-
munication through well-defined channels. Using only channel based communication, each

1Corresponding Author: E-mail:skovhede�nbi.ku.dk.
1Synergistic Processing Elements, a RISC based processor.
2Element Interconnect Bus.
3Single Instruction Multiple Data.



participating process becomes a sequential program [11,12]. It is possible to prove that a CSP
based program is free from deadlocks and livelocks [11] using CSP algebra. Furthermore,
CSP based programs are easy to understand, because the processes consist of sequential code
and channels which handle communication between the processes. This normally means that
the individual processes have very little code, but the total number of processes are very high.

This work uses the CSP design rules and not the CSP algebra itself. By using a CSP like
interface, we can hide the underlying complexity from the programmer giving the illusion
that all transfers are simply channel communications. We believe that this abstraction greatly
simplifies the otherwise complex CELL-BE programming model. By adhering to the CSP
model, the implementation automatically obtains properties from CSP, such as being free
of race-conditions and having detectable deadlocks. Sincethe library does not use the CSP
algebra, the programmer does not have to learn a new languagebut can still achieve many of
the CSP benefits.

1. Related Work

A large number of programming models for the CELL-BE are available [13,14,15,16] illus-
trating the need for a simpler interface to the complex machine. Most general purpose li-
braries cannot be directly used on the CELL-BE, because the SPEs use a different instruction
set than the PPC. Furthermore, the limited amount of memory available on the SPEs makes
it difficult to load a general purpose library onto them.

1.1. Programming Libraries for the CELL-BE

The ALF [13] system allows the programmer to build a set of dependent tasks which are then
scheduled and distributed automatically according to their dependencies. The OpenMP [14]
and CellSs [15] systems provide automatic parallelizationin otherwise sequential code
through the use of code annotation.

As previously published [16], the Distributed Shared Memory for the CELL-BE (DSM-
CBE), is a distributed shared memory system that gives the programmer the “illusion” that
the memory in a cluster of CELL-BE machines is shared. The channel based communication
system described in this paper uses the communication system from DSMCBE, but does not
use any DSM functionality. It is possible to use both communication models at the same time,
however this is outside the scope of this paper.

The CellCSP [17] library shares the goals of the channel based system described in
this paper but by scheduling independent processes with a focus on processes, rather than
communication.

1.2. CSP Implementations

The Transterpreter [18] is a virtual machine that can runoccam-π programs. By modifying
the Transterpreter to run on the SPEs [19], it becomes possible to executeoccam-π on the
CELL-BE processor and also utilize the SPEs. The Transterpreter implementation that runs
on the CELL-BE [19] has been extended to allow programs running in the virtual machine to
access some of the SPE hardware. A similar project, trancell[20], allows a subset ofoccam-
π to run on the SPU, by translating Extended Transputer Code toSPU binary code.

Usingoccam-π requires that the programmer learns and understands theoccam-π pro-
gramming language and model, and also requires that the programs are re-written inoccam-
π. The Transterpreter fro CELL-BE has an extension that allows callbacks to native code [19],
which can mitigate this issue to some extent.

A number of other CSP implementations are available, such asC++CSP [21], JCSP [22]
and PyCSP [23]. Although these may work on the CELL-BE processor they can currently



only utilize the PPC and not the high performing SPEs. We haveused the simplified channel
interface in the newest version of PyCSP [24] as a basis for developing the channel commu-
nication interface. Since DSMCBE [16] is written in C, we have produced a flattened and
non-object oriented interface.

2. Implementation

This section gives a short introduction to DSMCBE and describes some design and imple-
mentation details of the CSP library. For a more detailed description and evaluation of the
DSMCBE system see previous work [16].

2.1. Distributed Shared Memory for the CELL-BE (DSMCBE)

As mentioned in the introduction, the basis for the implementation is the DSMCBE system.
The main purpose of DSMCBE is to provide the user with a simpleAPI that establishes a
distributed shared memory system on the CELL-BE architecture. Apart from its main pur-
pose, the underlying framework can also be adjusted to serveas a more generic platform for
communication between the Power PC element (PPE) and the Synergistic Processing Ele-
ments (SPEs). Figure 1 shows the DSMCBE model along with the components involved. The
DSMCBE system consists of four elements which we describe below:

Figure 1. DSMCBE Internal Structure.

The DSMCBE PPE/SPE modules contains the DSMCBE functions which the program-
mer will call from the user code. To manipulate objects in thesystem, the programmer will
use the functions from the modules to create, acquire and release objects. In addition the
two modules are responsible for communicating with the mainDSMCBE modules which are
located on the PPC.

The PPE handler is responsible for handling communication between the PPC user code
and the request coordinator (see below). Like the PPE handler, the SPE handler is responsible
for handling communication between user code on the SPEs andthe request coordinator
(see below). However the SPE handler also manages allocation and deallocation of Local
Store (LS) memory, which enables the SPE handler to perform memory management without
interrupting the SPEs.



The DSMCBE library uses a single processing thread, called the request coordinator,
which is responsible for servicing requests from the other modules. Components can then
communicate with the request coordinator by supplying a target for the answer. Using this
single thread approach makes it simpler to execute atomic operations and reduces the number
of locks to a pair per participating component. Each PPC thread and SPE unit functions as
a single component, which results in the request coordinator being unable to determine if
the participant is a PPC thread or a SPE. As most requests mustpass through the request
coordinator, an obvious drawback to this method is that it easily becomes a bottleneck. With
this communication framework it is easier to implement channel based communication, as
theRequest Coordinator can simply be extended to handle channel requests.

2.2. Extending DSMCBE with Channel Based Communication for CELL-BE

This section will describe how we propose to extend the DSMCBE model with channel based
communication. We have used the DSMCBE system as a frameworkto ensure atomicity and
enable memory transfers within the CELL-BE processor. The implementation does not use
any DSM methods and consists of a separate set of function calls.

We have intentionally made the programming model very simple; it consists of only six
functions:

• dsm
be_
sp_
hannel_read
• dsm
be_
sp_
hannel_write
• dsm
be_
sp_item_
reate
• dsm
be_
sp_item_free
• dsm
be_
sp_
hannel_
reate
• dsm
be_
sp_
hannel_poison
All functions return a status code which describes the outcome of the call.

2.2.1. Channel Communication

The basic idea in the communication model is to use channels to communicate. There are two
operations defined for this:dsm
be_
sp_
hannel_read anddsm
be_
sp_
hannel_wri-te. As in other CSP implementations, the read and write operations block until a matching
request arrives, making the operations a synchronized atomic event.

When writing to a channel, the calling process must supply a pointer to the data area.
The result of a read operation is a pointer to a data area, as well as the size of the data
area. After receiving a pointer the caller is free to read andwrite the contents of the area.
As the area is exclusively owned by the process there is no possibility of a race condition.
As it is possible to write arbitrary memory locations, when using C, it is the programmers
responsibility not to use the data area after a call to write.Logically, the caller can consider
the dsm
be_
sp_
hannel_write operation as transferring the data and ownership of the
area to the recipient. After receiving a pointer from a read operation, and possibly modifying
data area, the process may forward the pointer again usingdsm
be_
sp_
hannel_write.
As the reading process has exclusive ownership of the data area, it is also responsible for
freeing the data area, if it is no longer needed.

The operation results in the same output regardless of whichCELL-BE processor the
call originates from. If both processes are in the same memory space the data is not copied
ensuring maximal speed. If the data requires a transfer, thelibrary will attempt to do so in the
most efficient manner.

2.2.2. Transferable Items

The CELL-BE processor requires that data is aligned and havecertain block sizes, a con-
straint that is not normally encountered by a programmer. Wehave chosen to expose a sim-



ple pair of functions that mimic the well-knownmallo
 andfree functions calleddsm-
be_
sp_item_
reate anddsm
be_
sp_item_free, respectively. A process wishing to
communicate can allocate a block of memory by calling thedsm
be_
sp_item_
reate
function and get a standard pointer to the allocated data area. The process is then free to write
data into the allocated area. After a process has used a memory block, it can either forward the
block to another channel, or release the resources held by calling dsm
be_
sp_item_free.

2.2.3. Channel Creation

When the programmer wants to use a channel it is necessary to create it by calling thedsm-
be_
sp_
hannel_
reate method. To distinguish channels, the create function must be
called with a unique number, similar to a channel name or channel object in other CSP sys-
tems. This channel number is used to uniquely identify the channel in all subsequent com-
munication operations.

The create function allows the caller to set a buffer size on the channel, thus allowing the
channel writers to write data into the channel without awaiting a matching reader. A buffer
in the CSP model works by generating a sequence of processes where each process simply
reads and writes an element. The number of processes in the chain determines the size of the
buffer. The semantics of the implemented buffer are the sameas a chain of processes, but the
implementation uses a more efficient method with a queue.

The channel type specifies the expected use of the channel, with the following options:
one-to-one, one-to-any, any-to-one, any-to-any and one-to-one-simple. Using the channel
type it is possible to verify that the communication patterns correspond to the intended use. In
situations where the participating processes do not changeit is possible to enable "low over-
head" communication by using the channel type one-to-one-simple. Section 2.2.8 describes
this optimization in more detail.

A special convention borrowed from the DSMCBE model is that read or write operations
on non-existing channels will cause the caller to block if the channel is not yet created. Since a
program must call the create function exactly once for each channel, some start-up situations
are difficult to handle without this convention. Once a process has created the channel, it
processes all the pending operations as if they occurred after the channel creation.

2.2.4. Channel Poison

As all calls are blocking they can complicate the shutdown phase of a CSP network. The
current CSP implementations support a channel poison state, which causes all pending and
following operations on that channel to return the poison.

To poison a channel, a process callsdsm
be_
sp_
hannel_poison with the id of an
existing channel. When using poison, it is important to check the return value of the read and
write operations, as they may return the poison status. A macro namedCSP_SAFE_CALL can
be used to check the return value and exit the current function when encountered. However
the programmer is still fully responsible for making the program handle and distribute poison
correctly.

2.2.5. External Choice

As a read operation is blocking, it is not possible to wait fordata on more than one channel,
nor is it possible to probe a channel for its content. If a process could see whether or not a
channel has content, a race condition could be introduced. Thereby a second process could
read the item right after the probe, resulting in a blocking read.

To solve this issue, CSP uses the concept of external choice where a process can request
data from multiple channels and then gets a response once a channel is ready. To use external
choice, the process must call a variation of thedsm
be_
sp_
hannel_read function named



dsm
be_
sp_
hannel_read_alt, wherealt is short for “alternation”, the term used in
C.A.R. Hoare’s original paper [25]. Using this function, the process can block for a read
operation on multiple channels. When one of the channels hasdata, the data is returned, as
with the normal read operation, along with the channel id of the originating channel. This
way of dealing with reads ensures that race conditions cannot occur.

With the channel selection done externally, the calling process has no way of controlling
which channel to read, should there be multiple available choices. To remedy this, the calling
process must also specify what strategy to use if multiple channels are ready. The JCSP
library offers three strategies: arbitrary, priority and fair. Arbitrary picks a channel at random
whereas priority chooses the first available channel, prioritized by the order in which the
channels are given. Fair selection keeps count of the numberof times each channel has been
selected and attempts to even out the usage of channels. The current implementation of CSP
channels for CELL-BE only supports priority select, but theprogrammer can emulate the two
other modes.

Similar to the read function, a function calleddsm
be_
sp_
hannel_write_alt al-
lows a process to write to the first available channel. This function also supports a selection
strategy and returns the id of the channel written to. There is currently no mechanism to sup-
port the simultaneous selection of channel readers and writers, though there are other ways
of engineering this.

2.2.6. Guards

To prevent a call from blocking, the calling function can supply a guard which is invoked
when no data is available. The implementation defines a reserved channel number, calledCSP_SKIP_GUARD which can be given as a channel id when requesting read or write from
multiple channels. If the operation would otherwise block,the function returns aNULL pointer
andCSP_SKIP_GUARD as the channel value.

Other CSP implementations also offer a time-out guard, which performs a skip, but
only if the call blocks for a certain period. This functionality is not available in the current
implementation, but could be added without much complication.

2.2.7. Processes for CELL-BE

The hardware in the CELL-BE is limited to a relatively low number of physical SPEs, which
prevents the generation of a large number of CSP processes. To remedy this situation the
implementation also supports running multiple processes on each SPE. Since the SPEs have
little support for timed interrupts, the implementation ispurely based on cooperative switch-
ing. To allow multiple processes on the SPE, we have used an approach similar to CELL-
MT [26], basically implementing a user-mode thread library, but based on the standard C
functionssetjmp andlongjmp.

The CSP threading library implements themain function, and allocates ABI compli-
ant stacks for each of the processes when started. After setting up the multithreading envi-
ronment, the scheduler is activated which transfers control to the first processes. Since themain function is implemented by the library, the user code must instead implement thedsm-
be_main function, which is activated for each process in turn. This means that all processes
running on a single SPE must use the samedsm
be_main function, but each process can call
the functiondsm
be_thread_
urrent_id and thus obtain a unique id, which can be used
to determine what code the process will execute.

When a process is executing it can cooperatively yield control by callingdsm
be_thre-ad_yield, which will save the process state and transfer control to the next available process.
Whenever a process is waiting for an API response, the library will automatically call a
similar function calleddsm
be_thread_yield_ready. This function will yield if another
process is ready to execute, meaning that it is not currentlyawaiting an API response. The



effect of this is that each API call appears to be blocking, allowing the programmer to write
a fully sequential program and transparently run multiple processes.

As there is no preemptive scheduling of threads, it is possible for a single process to pre-
vent other processes from executing. This is a common trade-off between allowing the SPE
to execute code at full speed, and ensuring progress in all processes. This can be remedied by
inserting calls todsm
be_thread_yield_ready inside computationally heavy code, which
allows the programmer to balance the single process execution and overall system progress
in a fine grained manner.

The scheduler is a simple round-robin scheduler using a ready queue and a waiting
queue. The number of threads possible is limited primarily by the amount of available LS
memory, which is shared among program code, stack and data. The running time of the
scheduler isO(N) which we deem sufficient, given that all processes share the limited LS,
making more than 8 processes per SPE unrealistic.

2.2.8. SPE-to-SPE Communication

Since the PPC is rarely a part of the actual problem solving, the memory blocks can often be
transferred directly from SPE to SPE without transferring it into main memory.

If a SPE is writing to a buffered channel, the data may not be read immediately after the
write. Thus, the SPE may run out of memory since the data is kept on the SPE in anticipation
of a SPE-to-SPE transfer. To remedy this, the library will flush data to main memory if an
allocation would fail. This is in effect a caching system, and as such it is subject to the
regular benefits and drawbacks of a cache. One noticeable drawback is that due to the limited
available memory, the SPEs are especially prone to memory fragmentation, which happens
more often when using a cache, as the memory stays fully populated for longer periods.

If the channel is created with the type one-to-one-simple, the first communication will
be used to determine the most efficient communication pattern, and thus remove some of the
internal synchronization required. If two separate SPEs are communicating, this means that
the communication will be handled locally in theSPE Handler shown in Figure 1, and thus
eliminate the need to pass messages through theRequest Coordinator.

A similar optimization is employed if two processes on the same SPE communicate. In
this case the data is kept on the SPE, and all communication ishandled locally on the SPE in
theDSMCBE SPE module shown in Figure 1. Due to the limited amount of memory available
on the SPE, data may be flushed out if the channel has large buffers or otherwise exhaust the
available memory.

These optimizations can only work if the communication is done in a one-to-one fashion
where the participating processes never change. Should theuser code attempt to use such a
channel in an unsupported manner, an error code will be returned.

2.2.9. Examples

To illustrate the usage of the channel-based communicationListing 1 shows four simple CSP
processes. Listing 2 presents a simple example that uses thealternation method to read two
channels and writes the sum to an output channel.

3. Experiments

When evaluating system performance, we focus mainly on the scalability aspect. If the system
scales well, further optimizations may be made specific to the application, utilizing the SIMD
capabilities of the SPEs. The source code for the experiments are available fromhttp://
ode.google.
om/p/dsm
be/.



1 # i n c l u d e <dsmcbe_csp . h>

3 i n t d e l t a 1 (GUID in , GUID ou t ) {
vo id∗ v a l u e ;

5
wh i l e ( 1 ) {

7 CSP_SAFE_CALL( " read " , dsmcbe_csp_channe l_ read ( in , NULL, &v a l u e ) ) ;
CSP_SAFE_CALL( " w r i t e " , dsmcbe_csp_channe l_wr i t e ( out ,v a l u e ) ) ;

9 }
}

11
i n t d e l t a 2 (GUID in , GUID outA , GUID outB ) {

13 vo id∗ i nValue , ou tVa lue ;
s i z e _ t s i z e ;

15
wh i le ( 1 ) {

17 CSP_SAFE_CALL( " read " , dsmcbe_csp_channe l_ read ( in , &s i ze , &inVa lue ) ) ;
CSP_SAFE_CALL( " a l l o c a t e " , dsmcbe_csp_ i t em_crea te (& outValue , s i z e ) ) ;

19
memcpy ( outValue , inValue , s i z e ) ; / / Copy c o n t e n t s as we need two c o p i e s

21
CSP_SAFE_CALL( " w r i t e A" , dsmcbe_csp_channe l_wr i t e ( outA , inVa lue ) ) ;

23 CSP_SAFE_CALL( " w r i t e B" , dsmcbe_csp_channe l_wr i t e ( outB , ou tVa lue ) ) ;
}

25 }

27
i n t p r e f i x (GUID in , GUID out , vo id∗ d a t a ) {

29 CSP_SAFE_CALL( " w r i t e " , dsmcbe_csp_channe l_wr i t e ( out , d a t a ) ) ;

31 r e t u r n d e l t a 1 ( in , ou t ) ;
}

33
i n t t a i l (GUID in , GUID ou t ) {

35 vo id∗ tmp ;

37 CSP_SAFE_CALL( " read " , dsmcbe_csp_channe l_ read ( in , NULL, &tmp ) ) ;
CSP_SAFE_CALL( " f r e e " , dsmcbe_csp_ i t em_ f ree ( tmp ) ) ;

39
r e t u r n d e l t a 1 ( in , ou t ) ;

41 }

Listing 1. Four simple CSP processes.

1 i n t add (GUID inA , GUID inB , GUID ou t )
{

3 vo id ∗data1 , ∗ d a t a2 ;

5 GUID c h a n n e l L i s t [ 2 ] ;
c h a n n e l L i s t [ 0 ] = inA ;

7 c h a n n e l L i s t [ 1 ] = inB ;

9 GUID chan ;

11 wh i le ( 1 )
{

13 d s mcb e_ cs p _ ch an n e l _ r ead _ a l t (CSP_ALT_MODE_PRIORITY, c h a n n e l L i s t , 2 , &chan ,
NULL, &d a t a1 ) ;

dsmcbe_csp_channe l_ read ( chan == inA ? inB : inA , NULL, &d a ta2 ) ;
15

∗ ( i n t ∗ ) d a t a1 = ∗ ( ( i n t ∗ ) d a t a1 ) + ∗ ( ( i n t ∗ ) d a t a2 ) ;
17

dsmcbe_csp_ i t em_ f ree ( d a t a2 ) ;
19 dsmcbe_csp_channe l_wr i t e ( out , d a t a1 ) ;

}
21 }

Listing 2. Reading from two channels with alternation read and external choice. To better fit the layout of the

article theCSP_SAFE_CALL macro is omitted.



All experiments were performed on an IBM QS22 blade, which contains 2 connected
CELL-BE processors, giving access to 4 PPE cores and 16 SPEs.

3.1. CommsTime

A common benchmark for any CSP implementation is the CommsTime application which
sets up a ring of processes that simply forwards a single message. The conceptual setup is
shown in Figure 2. This benchmark measures the communication overhead of the channel op-
erations since there is almost no computation required in the processes. To better measure the
scalability of the system, we have deviated slightly from the normal CommsTime implemen-
tation, by inserting extra successor processes as needed. This means that each extra partici-
pating process will add an extra channel, and thus and thus produce a longer communication
ring.

Figure 3 shows the CommsTime when communicating among SPE processes. The PPE
records the time between each received message, thus measuring the time it takes for the
message to traverse the ring. The time shown is an average over 10 runs of 10.000 iterations.
As can be seen, the times seems to stabilize around 80µseconds when using one thread per
SPE. When using two or more threads the times stabilizes around 38µseconds, 27µseconds,
and 20µseconds respectively. When using multiple threads, the communication is performed
internally on the SPEs, which results in a minimal communication overhead causing the
average communication overhead to decrease.

PPE

Recorder Delta

SPE 1

Prefix

SPE 2

Successor

SPE 3

Successor

SPE 4

Figure 2. Conceptual setup for the CommsTime experiment with 4 SPEs.

We have executed the CommsTime sample from the JCSP library v.1.1rc4 on the PPE.
The JCSP sample uses four processes in a setup similar to Figure 2 but with all processes
placed on the PPE. Each communication took on average 63µseconds which is slightly faster
than our implementation, which runs at 145µseconds on the PPE. Even though JCSP is
faster, it does not utilize the SPEs, and cannot utilize the full potential of the CELL-BE.

3.2. Prototein Folding

Prototeins are a simplified 2D model of a protein, with only two amino acids and only 90
degree folds [27]. Folding a prototein is computationally simpler than folding a full protein,
but exhibit the same computational characteristics. Prototein folding can be implemented
with a bag-of-tasks type solution, illustrated in Figure 4,where partially folded prototeins are
placed in the bag. The partially folded prototeins have no interdependencies, but may differ
in required number of combinations and thus required computational time.

As seen in Figure 5 the problem scales very close to linearly with the number of SPEs,
which is to be expected for this type of problem. This indicates that the communication
latency is not a limiting factor, which also explains why thenumber of SPE threads have very
little effect on the scalability.
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Figure 3. CommsTime using 2-16 SPEs with 1-4 threads per SPE.
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Figure 4. Conceptual setup for Prototein folding with 3 SPEs.
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Figure 5. Speedup of prototein folding using 1-16 SPEs.

3.3. k Nearest Neighbors (kNN)

The kNN application is a port of a similar application written for PyCSP [28]. Where the
PyCSP model is capable of handling an extreme number of concurrent processes, the library
is limited by the number of available SPEs and the amount of threads each SPE can accom-
modate. Due to this, the source code for the two applicationsare hard to compare, but the



overall approach and communication patterns are the same. Figure 6 shows a conceptual ring
based setup for finding the kNN.

Solve

SPE 1

Solve

Solve

SPE 3

Solve

Solve

SPE 4

Solve

Solve

SPE 2

Solve

Figure 6. Conceptual setup for the kNN experiment with 4 SPEs, each running 2 threads.

This ring-based approach means that each process communicates only with its neighbor.
To support arbitrary size problems, one of the channels are buffered. The underlying system
will attempt to keep data on the SPE, in anticipation of a transfer, but as the SPE runs out
of memory, the data will be swapped to main memory. This happens completely transparent
to the process, but adds an unpredictable overhead to the communication. This construction
allows us to run the same problem size on one to 16 SPEs.
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Figure 7. Speedup of the k Nearest Neighbors problem using 1-16 SPEs tosearch for 10 nearest neighbors in
a set with 50k elements with 72 dimensions.

As seen in Figure 7 this does not scale linearly, but given theinterdependencies we
consider this to be a fairly good result. Figure 7 also shows that using threads to run multiple
solver processes on each SPE offers a performance gain, eventhough the processes compete
for the limited LS memory. This happens because the threads implement an implicit form
of double buffering, allowing each SPE to mask communication delays with computation.
The achieved speedup indicates that there is a good balance between the communication and
computation performed in the experiment.

The speedup for both graphs is calculated based on the measured time for running the
same problem size on a single SPE with a single solver thread.



3.4. Communication to Computation Ratio

The ring based communication model used in the kNN experiment is quite common for prob-
lems that use an2 approach. However, the scalability of such a setup is highlydependent on
the amount of work required in each subtask. To quantify the communication to computation
ratio required for a well-scaling system, we have developeda simple ring-based program that
allows us to adjust the number of floating point operations performed between communica-
tions. The computation performed is adjustable and does notdepend on the size of the trans-
mitted data, allowing us to freely experiment with the computational workload. The setup for
this communication system is shown in Figure 8. The setup is identical to the one used in the
kNN experiment, but instead of having two communicating processes on the same SPE, the
processes are spread out. This change cause the setup to loose the possibility for the very fast
internal SPE communication channels, which causes more load on the PPE and thus gives a
more realistic measurement for the communication delays.

Solve

SPE 1

Solve

Solve

SPE 3

Solve

Solve

SPE 4
Solve

Solve

SPE 2
Solve

Figure 8. Conceptual setup for non-structured ring based communication.

As seen in Figure 9, the implementation scales well if computation performed in each
ring iteration is around 100MFLOPS. Comparing the two graphs in Figure 9, shows that in-
creasing the number of threads on the SPEs, results in a decrease in performance. This hap-
pens because the extra processes introduce more communication. This increase in commu-
nication causes a bigger strain on the PPE, which results in more latency than the processes
hide. In other words, the threads cause more latency than they can hide in this setup.

The speedup for both graphs in Figure 9 are calculated based on measurements from a
run with the same data size on a single SPE with a single thread.

Comparing the Communication to Computation experiment with the kNN experiment
reveals that the use of optimized channels reduces the latency of requests to a level where
the threads are unable to hide the remaining latency. In other words, the latency becomes so
low, that the thread switching overhead is larger than the latency it attempts to hide. This is
consistent with the results from the CommsTime experiment,which reveals that the commu-
nication time is very low when performing inter-SPE communication. This does not mean
that the latency is as low as it can be, but it means that the extra communication generated by
the threads increases the amount of latency that must be hidden.

4. Future Work

The main problem with any communication system is the overhead introduced by the com-
munication. As the experiments show, this overhead exists but can be hidden because the
CELL-BE and library are capable of performing the communication and computation simul-
taneously. But this hiding only works if the computational part of a program has a sufficient
size. To remedy this, the communication overhead should be reduced significantly.
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Figure 9. Communication To Computation ratio, 16 bytes of data.

The decision to use the request coordinator to handle the synchronization simplifies the
implementation, but also introduces two performance problems. One problem is that if the
system becomes overwhelmed with requests, the execution will be sequential, as the pro-
cesses will only progress as fast as the request coordinatorresponds to messages. The other
problem is that the requests pass through both the SPU handler and the request coordinator,
which adds load to the system and latency to each communication operation.

4.1. Reduce Request Latency

Since the SPEs are the main workhorse of the CELL-BE, it makessense to move much of
the decision logic into the SPU handler rather than handle itin the request coordinator. The
request coordinator is a legacy item from the DSM system, butthere is nothing that prevents
participating PPE processes from communicating directly with the SPU handler.

4.2. Increase Parallelism

Even if the request coordinator is removed completely, the PPE can still be overwhelmed with
requests, which will make everything run sequentially rather than in parallel. It is not possible
to completely remove a single synchronization point, but many communication operations
involve exactly two processes. In the common case where these two processes reside on
separate SPEs, it is possible to perform direct SPE-to-SPE communication through the use
of signals and DMA transfers. If this is implemented, it willgreatly reduce the load on the
PPE for all the presented experiments.



4.3. Improve Performance of the SPU Handler

The current implementation uses a shared spinning thread that constantly checks for SPE and
request coordinator messages. It is quite possible that this can be improved by using a thread
for each SPE which uses the SPE events rather than spinning. Experiments performed for the
DSMCBE [16] system show that improving the SPU handler can improve the overall system
performance.

4.4. Improve Memory Exhaustion Handling

When the communication is handled by the SPEs internally, itis likely that they will run
out of memory. If the SPU handler is involved, such situations are detected and handled
gracefully. Since this is essentially a cache system, a cache policy can greatly improve the
performance of the system, by selectively choosing which elements to remove from the LS
and when such an operation is initiated.

4.5. Process Migration

The processes are currently bound to the SPE that started them, but it may turn out that the
setup is ineffective and can be improved by moving communicating processes closer together,
i.e. to the same SPE. There is limited support for this in the CELL-BE architecture itself,
but the process state can be encapsulated to involve only thecurrent thread stack and active
objects. However, it may prove to be impossible to move a process, as data may occupy
the same LS area. Since the C language uses pointers, the datalocations cannot be changed
during a switch from one SPE to another. One solution to this could be to allocate processes
in slots, such as those used in CELL CSP [17].

4.6. Multiple Machines

The DSMCBE system already supports multiple machines, using standard TCP-IP commu-
nication. It would be desirable to also support multiple machines for CSP. The main chal-
lenge with multiple machines is to implement a well-scalingversion of the alternation opera-
tions, because the involved channels can span multiple machines. This could use the cross-bar
approach used in JCSP [29].

5. Conclusion

In this paper we have described a CSP inspired communicationmodel and a thread library,
that can help programmers handle the complex programming model on the CELL-BE. We
have shown that even though the presented models introduce some overhead, it is possible
to get good speedup for most problems. On the other hand Figure 9 shows, that if the com-
putation to communication ratio is too low - meaning too little computation per communica-
tion, it is very hard to scale the problems to utilize all 16 SPEs. However we believe that for
most programmers solving reasonable sized problems, the tools provided can significantly
simplify the writing of programs for the CELL-BE architecture.

We have also shown that threads can be used to mask some latency, but at the same time
they generate some latency, which limits their usefulness to certain problems.

DSMCBE and the communication model described in this paper is open source software
under the LGPL license, and are available fromhttp://
ode.google.
om/p/dsm
be/.
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