A Systems Re-engineering Case Study:
Programming Robots with occam
and Handel-C

Dan SLIPPER and Alistair A. McEWAN

Applied Formal Methods, Department of Engineering
University of Leicester, University Road, Leicester, LE] 7RH

Abstract. This paper introduces a case study exploring some of the legacy issues that
may be faced when redeveloping a system. The case study is a robotics system pro-
grammed in occam and Handel-C, allowing us to draw comparisons between software
and hardware implementations in terms of program architecture, ease of program code
verification, and differences in the behaviour of the robot. The two languages used
have been selected because of their model of concurrency and their relation to CSP.
The case study contributes evidence that re-implementing a system from an abstract
model may present implementation specific issues despite maintaining the same un-
derlying program control structure. The paper identifies these problems and suggests
a number of steps that could be taken to help mitigate some of the issues.

Keywords. LEGO Mindstorms NXT, FPGA, software architecture

Introduction

The application of systems thinking to a systems development process (as described by
Hitchins in [1]) encourages the use of abstract modelling. This allows us to ensure the be-
haviour of a system meets its specification and can be verified before implementation. Using
a mathematical model to verify software systems during design is a common process. This is
done at a high level of abstraction resulting in a Platform Independent Model (PIM). A PIM
can then be verified before implementation and is beneficial in early development stages,
putting emphasis on the functional correctness of the model. Beyond this an implementation
can be targeted to either hardware or software, avoiding dependencies on specific platforms
during the design phase.

A PIM of a system is useful if problems occur, such a component failing and the original
component being unavailable for replacement. In this situation being able to redevelop from a
PIM will be easier and resultantly cost less to rectify. In industrial applications this reduction
in cost is important. Smith et al [2] emphasise the need for correctness in the early develop-
ment stages and how this reduces risks caused by change later in life. It is common within
the automotive or military industries that a product can have a required life of decades—in
which time some components will degrade and therefore such systems will eventually re-
quire maintenance or replacement. Riffle presents an example in [3] of aircraft component
failures resulting in unavailability and how a lack of platform independence in the design can
introduce challenges in fulfilling the initial product specification.

“Through life information management” is an important part of system development
and significantly aids the re-engineering process. Utilising an existing PIM from the original
development (rather than extracting the model from an existing system, as highlighted in
[4]) can aid re-engineering and result in a more accurate basis from which to work. The

work presented in this paper studies some of the issues present when a legacy system is re-
developed from an existing PIM on to different hardware or with a different implementation
language.

The re-engineering process is of particular interest in cases where completely different
hardware platforms are used. In the case of an aircraft flight control system, if a controller
board were replaced during its life then redevelopment could be to a processor based sys-
tem or to reconfigurable hardware. A redevelopment would require verification that it meets
the original specification. In such safety critical systems the tolerances of these systems are
crucial and our paper demonstrates this by the use of a simple case study.

Our case study for re-engineering has been focused around an embedded system and
designed to utilise two implementation languages inspired by CSP: occam and Handel-C.
These languages have different implementation targets. occam was originally designed for
the Transputer but can also be executed on a more generic processor via the Transterpreter
virtual machine [5]. Handel-C is a Hardware Description Language (HDL) for development
on a Field Programmable Gate Array (FPGA) which augments the semantic style of ANSI C
with the concurrency model provided by CSP. The target platform in question is the LEGO
Mindstorms NXT kit [6], an educational robotics platform on which control code can be
programmed and interfaced with various sensors and motors. The Transterpreter has been
ported to this platform enabling execution of occam on the processor. The case study within
this paper describes a system based around the sensors and motors of the NXT, re-engineered
to use Handel-C for implementation onto a FPGA. This new implementation is then tested
against the original occam system, using control code (developed following the same code
structure). The contributions of this paper are:

1. Introduce a port of the Transterpreter for the LEGO Mindstorms NXT.

2. Demonstrate a common program structure between hardware and software architec-
tures (using Handel-C and occam).

3. Highlight the integration issues faced whilst re-engineering the system.

4. Discuss the benefit of using CSP based languages from system design and develop-
ment perspectives.

The context of these goals are introduced in section 1, with a background understanding
of the technologies used in the experiment and motivation for the work. Section 2 details
the implementation specific considerations for development of the two systems. Section 3
introduces a case study developed for both platforms and section 4 presents the final test
results. Finally section 5 draws some conclusions from the work, and introduces the future
direction of the research.

1. Background

This section presents a background to the NXT robotics kit, the languages used within the
experiment described in section 3, and the hardware on which they are implemented.

1.1. LEGO Mindstorms Hardware

The Lego Mindstorms NXT robotics kit is predominantly designed for use as an education
tool. The kit ships with the graphical programming language NXT-G, which enables users to
program robots via drag and drop boxes (which represent sensors and functionality). LEGO
now have two types of NXT kit, NXT and the more recent NXT 2.0. For this case study the
standard kit is used, this consists of a number of sensors; this includes an ultrasonic sensor
capable of measuring the distance from objects, a sound level sensor, a light sensor and a
touch sensor. It also contains 3 servo motors, each of which has a built in tachometer for

precise control. Internally the NXT brick is similar to many embedded platforms, with its
main processor being an ARM7TDMI. Alongside this it also has an Atmel AVR co-processor
handling interactions to the sensors. A novel peripheral of the NXT hardware over its pre-
decessor (the RCX) is its Bluetooth controller, able to maintain a list of known devices and
allowing communication with up to 3 slave devices or a single master device.

v USB/Bluetooth

< i Pul
Ultrasonic sensor l < = > Main,Brocessof; < s

ATMEL ARM7
Motors
Light sensor w < 4 - > (/d? =
\ 4

1 | AD Co-Processor PWV i >
Touch sensor < » ATMEL AVR » (fé‘ w |
Sound sensor w < > (f@? =

Figure 1. The NXT Hardware Architecture.

The hardware within the NXT is shown in Figure 1. This also details the protocols used for
communication with each of its peripherals. A number of languages have been developed for
use on this platform including C [7] and Java [8]. Other languages have been developed to
support concurrent programs, such as [9].

1.2. Modelling and Concurrency

Some software systems are developed to have a number of different processes of control
executing in parallel. In such systems, the communication between these components can
become difficult to manage. This complication can lead to a series of problems within the
code such as deadlock, livelock, and race conditions.

A number of methods of overcoming these issues and modelling such systems have been
proposed. Petri nets [10] are of particular use for describing distributed applications, and
modelling how the control flows within a program. Other models of concurrency can also
be used, such as Calculus for Communicating Systems [11] and Algebra of Communicating
Processes [12]. The language of particular interest in this paper is Hoare’s Communicating
Sequential Processes (CSP) [13]. The notion of refinement in CSP permits abstract specifica-
tions to be designed and reasoned about (using model checking tools such as FDR2 [14] and
Probe[15]), before being translated to an implementation language.

1.3. CSP-Inspired Programming Languages

CSP has inspired the development of a number of programming languages, permitting the
development of abstract specifications, and then following a set of transitions to translate
the specification into an executable program. The first of these languages, occam [16] was
developed for use with the INMOS Transputer, an early microprocessor designed specifically

for parallel execution, as introduced in [17]. The Transterpreter virtual machine allows for
occam code to be interpreted on any processor that can execute ANSI-C.

Other software implementation languages have been developed specifically from the
model of concurrency introduced by CSP, such as the recent development of Google’s Go [18]
and Erlang [19]. A number of others have spun off as libraries providing CSP functionality,
for instance PyCSP [20] and JCSP [21]. Further work has been undertaken beyond JCSP to
produce JCSPre [9], a reduced version of the environment specifically for the LEGO NXT.

CSP has also inspired HDLs such as the library expansion upon the Verilog language,
VerilogCSP. This library provides CSP style communication on top of the standard language.
However there are languages which are written specifically to follow the CSP model. Handel-
C is one such language [22], and has been described as “literally occam with a C like syn-
tax” [23]. Unlike Verilog and VHDL, the style of programming is for more representative of
writing standard software than using a HDL. The occam and Handel-C languages have been
selected for this case study, due to their close relation to each other, CSP, and ease of pro-
gramming for a software engineer. This also allows us to build on previous work in deriving
programs from a CSP specification [24].

1.4. occam and the Transterpreter

The Transterpreter is a virtual machine for interpreting occam-pi bytecode on different ar-
chitectures. Developed as part of the Kent Retargetable occam Compiler (KRoC) project, the
Transterpreter is a small C library ported to operate on a number of embedded platforms,
including the predecessor of the Lego NXT (the RCX platform) as described in [25].

The Transterpreter also offers the capability to develop functionality (in our project,
device drivers) using the underlying C language and call it from occam. Issues may occur if
a C function does not return correctly and can cause unexpected side effects to the behaviour
of the occam code, reducing the reliability and predictability of the system.

1.5. Handel-C and FPGAs

FPGAs are made up of a number of configurable logic blocks, each of these can be connected
together via I/O blocks and routing channels. Synthesis of an FPGA configures the routing
between each of these blocks, combining the blocks together to provide functionality. Devel-
opment boards (such as the one used in this experiment) also have a number of external pe-
ripherals that can be utilised. In comparison to developing an Application-Specific Integrated
Circuit (ASIC), FPGA technology has various benefits. The reconfigurable nature of FPGAs
removes the need for a full re-manufacturing of a circuit at any point in the development
cycle unlike an ASIC—where changes to a design may require a completely new manufac-
turing process. Evidence of this difference in design times has been shown in a white paper
by Xilinx [26], presenting a comparison between ASIC and FPGA development cycles. The
results demonstrated that an FPGA development can be up to 55% shorter due to the instant
nature of redesign and testing.

Other benefits include the ability to configure an FPGA to emulate the behaviour of
a processor as described in [27]. This can allow for co-design of processors and bespoke
hardware within the FPGA itself. This is a powerful tool for combining the advantages of the
two different methods into a single system. In the case study presented in this paper, a Spartan
3A development board was used. The particular FPGA chip onboard is the XC3S700A [28],
with 700k gates and over 400K RAM bits (either block or distributed).

2. Testbed Design

In this section we present the software design on the NXT platform and how this has been
re-engineered to execute in hardware on the FPGA. The software model has been created
around a PIM, providing the same processes and communications on both systems.

2.1. Software Process Structure

Developing a control algorithm for a robotics based system can follow a variety of paradigms.
[29] reviews a number of different methods and how they can be utilised while programming
control with occam-pi. This paper highlighted that for a case study such as ours the control
algorithm should be as simple as possible, allowing the use of basic robotic control theories
as introduced by Brooks in [30]. This paper presented a methodology for layering processes
for the input, output and control separately. This structure and the flow of processes and
communications between them is depicted in Figure 2. Each of the processes contains an
infinite loop which continues execution, (or blocking) until a command has been received or
until the program receives a STOP condition—at which point the system will cease execution.

LightSensor Motor1 Motor1Tach
. il y
S\ 3 \\/ -
4 6’9 (?)' &’D Q’b
8 %, 2 $
% G s} & &
3~ £ ! v Motor2
NN\ y &
i o
o ~X ‘SQe
((\o’\0
w Control Code e /
——reqTouch—» J——reqTach——»
TouchSensor ¢ touchVaI—\‘\w B _¢———tachval Motor2Tach
b ¥ 1 ”
NS s £ %,
go N = = [y
SO 5 3 %
/&0 (0 QL % QO'\
|
SoundSensor Motor3Tach Motor3

Figure 2. The NXT process structure.

2.2. NXT Architecture

The system re-engineered for this paper is the Transterpreter port to the NXT. This virtual
machine allows occam to be executed on the platform, whilst utilising an existing third party
operating system layer to communicate with drivers for the hardware and sensors. The NXOS
operating system is an open source development, required to boot the ARM and AVR co-
processor. This base OS provided C driver libraries to interface with the sensors, motors, and
other peripherals. Utilising this functionality from the operating system layer removes the
need for development of device drivers purely in occam. Figure 3 shows how the different
layers of the NXT software system tie together.

— occam

HARDWARE

Figure 3. Layers of the NXT software base.

This architecture allowed for occam wrapper processes to be created around the libraries,
in the process structure previously described, using channel communications to request and
send data between processes. The developments of JCSPre and the initial development of
the Transterpreter for the LEGO RCX [25] both demonstrated a similar structure to the one
undertaken for the NXT.

2.3. FPGA Implementation

Re-engineering of the NXT system onto an FPGA requires drivers for the sensor and motors.
As previously shown in Figure 1, the system uses a number of protocols—in an industrial
project, data like this should be documented and available for reference throughout the sys-
tems life. The NXT hardware guide details the pin outs from the brick to each of the sensors,
allowing a similar wiring setup for the FPGA. Figure 4 shows the FPGA with connection
points for the motors and sensors highlighted.

Digital I/O Pins

Analogue
to digital
converter

o ARRARARRARRARRLN

Figure 4. Spartan 3A development board.

3. Case Study

After the structure and interfaces for the system were redesigned for the FPGA implementa-
tion, the two systems were programmed with a common control process designed to utilise

the sensors and motors in a number of ways. This case study was to simply follow a pre-
programmed path around a desk, making turns with a number of different speeds, directions,
angles and delays. The light sensor was also utilised by recording the light level along the
desk and recognising when it reached the edges. Using a case study like this allowed for mul-
tiple sensors and motors to be used in parallel, whilst avoiding the introduction of additional
control code complexity. This way the experiment would provide clear visual results of the
differences in control.

3.1. Design of Experiment

To remove all possible variables which could introduce inaccuracies during the case study
the following actions were devised to remove or reduce any possible impact on the results:

e Battery Life - to ensure different levels of charge between experiments did not intro-
duce differences in speeds and angles of turning, batteries were fully charged before
each test.

e Size of the robot - the NXT and FPGA have a very significant size difference, to coun-
teract the effects of this, the two controllers were combined into the same robot frame.
Since the two carried around both the NXT and FPGA, the weights were identical for
each experiment.

e Method of turning (by time/angle) - the tachometer incorporated into the motors was
used allowing the robots to turn a given angle.

e Test area lighting - to recognise when the robot has reached the end of the desk it used
a light sensor. The experiment was conducted in dark conditions, removing possible
interference from sunlight. Both systems were calibrated to recognise the same level
as light or dark before the experiment was carried out.

3.2. Control Code

The main process structure from both implementations is presented in this section, and dis-
cussed further as to how they can affect the behaviour of the two systems. Full source code
has been included in an online repository'.

1 void main (void){

2 chan int 1 fromTouch, fromLight, reqTouch, reqLight, reqTachA,
reqTachB ;

3 chan int 32 toMotorA, toMotorB, motorATach, motorBTach;

4 par{

5 ADC_Read (fromTouch, fromLight);

6 LightSensor(fromLight, reqLight);

7 TouchSensor (fromTouch, reqTouch);

8 Motorl (toMotorA) ;

9 Motor2 (toMotorB) ;

10 ControlCode (fromTouch, fromLight, toMotorA, toMotorB,

11 reqTouch, reqLight, reqTachA, reqTachB, motorATach,

motorBTach) ;

12 Motor1Tach (motorATach, reqTachA);

13 Motor2Tach (motorBTach, reqTachB);

14 }

15)

Listing 1. Handel-C main process

!Code can be found at https://github.com/ds151/Re-engineering-paper

1 PROC main ()
CHAN INT motorASpeed, motorBSpeed, fromTouch, fromLight, reqLight,

reqTouch, fromTachA, reqTachA, fromTachB, reqTachB:

PAR

sensorLightA (fromLight, reqLight)

sensorTouchB (fromTouch, reqTouch)

motorA (motorASpeed)

motorB (motorBSpeed)

controlCode (motorASpeed, motorBSpeed, fromLight, fromTouch,

reqLight , reqTouch, fromTachA, reqTachA, fromTachB, reqTachB)

9 tachCountA (fromTachA, reqTachA)
10 tachCountB (fromTachB, reqTachB)
11

\S}

0 NN Lt AW

Listing 2. occam main process

Listings 1 and 2 show the main process for both systems. Note that despite the language
and the platform they are implemented on being different, the underlying process and chan-
nel communication structure is consistent throughout. The main difference that can be high-
lighted in these code samples are how the Handel-C version of the code assigns widths for
channels (see lines 2 and 3 of Listing 1). This is due to the nature of redeveloping to hard-
ware. The data from the touch sensor for example is known to be a single bit, and so unnec-
essary data lines are not built into the circuit design. Another difference in the main code is
that the FPGA version utilises an extra function to read the ADC and update the appropriate
variables (as shown on line 5 of Listing 1). Within the occam system, these calls are hidden
inside the driver code.

Contained within the online repository is the control code that was used for the ex-
periment, showing how the two systems were tested with the same control algorithm. An
overview of this code is that initially the variables utilised are set up, followed by the first
stages of the experimental path that the robot will follow. The first stage is the two motors
being activated in parallel to drive to the end of the desk, at this point the motors will stay on
until an appropriate light level is seen. In the occam version this is a value straight from the
ADC, however in the case of the FPGA this value is hard coded into the driver as a request
for a light or dark level. Beyond this the motors are activated based on timings and angles,
producing a number of turns around the programmed path.

4. Results

The previous section introduced our case study and some samples of the code from the sys-
tems. The overall program control code is the same and the drivers beneath were developed to
follow the same structure, despite differences in the ADC resolution and sample rates of the
tachometers. The only significant differences were in the syntax and variables used (for ex-
ample, integer width as previously discussed). During testing the Handel-C implementation
did not display the correct behaviour at one point around the fixed path it was following and
needed to be stopped as it would be unable to stay on the desk for the rest of the experiment
(representative of tolerances in a system making its operation unsafe). This result was found
to be the same for every execution of the Handel-C system.

Further tests were carried out to examine the cause of these problems since they should
not be related to the control code. A simple test was devised to determine the behaviour of a
small part of the code. This was to drive a single motor until the tachometer count reached
1000 pulses and then stop the motor. The way in which the motors are controlled within this
test is significant. Both the occam and Handel-C systems used “float” method of stopping
the motors. This entails cutting power to the motor, at which point it rotates until it loses

momentum. The alternative method would have been to engage the motors briefly in a reverse
motion locking them in the current position. Results were gathered of the tachometer counts
from the occam and Handel-C implementations once the robot had come to a stop, based on
tests at 2 different speeds. Each test was repeated 5 times.

Table 1. Results of test to stop the motor at 1000 pulses, travelling at full speed.

Robot Runl Run2 Run3 Run4 Run5 Mean Range Standard Deviation
Handel-C 1247 1240 1239 1233 1232 1238 15 6.058052
occam 1773 1783 1793 1814 1787 1790 41 15.26434

Table 1 shows the results of 5 runs with the motors on full speed until the pulse count reached
1000, and some analysis of these values. The values from these executions show that the
overrun in pulses was much higher in the occam system and with a much higher range. To
clarify these results, the same was run again with a lower motor speed. This test was executed
with the motors at 80% speed. This involved a PWM mark-space ratio of 80:20 giving the
motors a lower voltage and hence a lower speed.

Table 2. Results of test to stop the motor at 1000 pulses, travelling at 80% speed.

Robot Runl Run2 Run3 Run4 Run5 Mean Range Standard Deviation
Handel-C 1213 1208 1209 1203 1206 1208 10 3.701351
occam 1397 1417 1431 1415 1413 1415 34 12.1161

The results in Table 2 show a lower number of pulses once the robot had stopped. This is
to be expected as the motor did not have as much momentum. The previous two tests were
carried out with the motor off the table and with no load. To confirm how much difference
the physical pressure from the robots weight made on this control, the robots were also pro-
grammed to travel the same number of pulses at the same speed. This gave some interesting
results of terms of accuracy.

Table 3. Distance travelled after 1000 tachs, with motors at 100% speed.

Robot Runl Run2 Run3 Run4 Run5 Mean Range Standard Deviation
Handel-C ~ 73.8 71.3 68.6 69.6 68.6 70.38 52 2.207261
occam 70.4 704 710 706 712 7072 0.80 0.363318

The occam implementation appears more consistent from the results in Table 3. This is as
expected as it was the original system. The range and standard deviation in these runs show
that occam is very accurate when it comes to stopping the motors whilst under physical
pressure from the robot. The interesting statistic within this table is that the mean distance
travelled from both the platforms were very close, the range of values from the Handel-C
implementation however showed a fair amount of inconsistency in the re-engineered system.
In this experiment we expected the system to repeat the same behaviour every time, although
some margin of error should be accounted to the fact that robots cannot have precise control
unless they have a level of feedback. Martin presents this in [31], even describing how the
motors of the NXT are an example of how a robot can have feedback from their actions
throughout execution. This said, the test results shown in Table 3 show a much higher margin
of error in the Handel-C implementation than expected. This raises issues of reliability in
the new system in comparison to the original, and proposes questions as to what could be
changed within the development process to avoid such issues in future projects.

Further experiments identified a difference in motor voltage from the two systems. The
power to the motors was lower on the Handel-C implementation than the occam system.
This is expected to be due to the components used (as the NXT uses a small IC, whereas

the FPGA used an external driver board with larger components). This also explains some of
the differences shown in Tables 1 and 2, and why the overrun in pulses is much lower in the
Handel-C system.

5. Conclusions and Further Work

This paper presents a case study exemplifying issues present in re-engineering an embedded
control system, utilising the Transterpreter as a basis to execute occam code. To do this, a
port of the Transterpreter has been introduced for the Lego Mindstorms NXT platform.

This platform was used as the basis for re-engineering to FPGA, using the Handel-C
language, structuring the code in this development identically to the occam implementation.
Despite using languages that have the same model of concurrency, the results have shown that
it is not easy to recreate a system with the exact behaviour of the original. Although there has
been significant research within the area to demonstrate that CSP can be used to specify and
verify behaviour of software that has been written in occam and Handel-C. The behavioural
differences are expected to be due to the base implementations, and the major contributing
factor has been identified as a hardware component on which the system was developed.

The results from a re-engineering perspective show that the process followed within this
experiment has not provided a fully sufficient system to replace the original in a safe manner.
Future redevelopments would benefit from following a number of steps during the analysis
and design of new systems:

1. The extraction or retrieval of a platform independent model.

2. Components with verifiable behaviour, i.e. it is clear when the components are func-
tioning as expected. This way it is possible to have 100% certainty that drivers are
working and implemented in the correct manner.

3. Physical margin of error — It is possible that a re-engineered system will have slightly
different tolerances between components, timing or behaviour. In this situation, the
original specification for the application should be consulted to verify that these are
within reasonable bounds.

Further work from this study could involve producing a CSP model of the control and driver
code for both system and using model checking tools to verify their behaviour formally. This
way the correctness of the Handel-C component of the re-engineered system can be proven,
and demonstrate problems that are occurring at a hardware level.

Acknowledgements

This research was sponsored by EPSRC and AWE. We would also like to thank Carl Ritson
and Jon Simpson of the University of Kent for their work on the Transterpreter NXT port.

References

[1] D. K. Hitchins. Advanced Systems Thinking, Engineering, and Management. Wiley, 2003.

[2] M. R. Emes, A. Smith, and A. James. Left-shift vs the time value of money: Unravelling the business case
for systems engineering. In INCOSE Spring Conference, 2007.

[3] T.Riffle. Reverse engineering & re-engineering of avionics legacy components. The 21st Digital Avionics
Systems Conference Proceedings, 2:12C3-1-12C3-9, 2002.

[4] F. C.D. Young and J. A. Houston. Formal verification and legacy redesign. Proceedings of the IEEE 1998
National Aerospace and Electronic Conference, pages 627-638, July 1998.

[5] C.L.Jacobsen and M. C. Jadud. The Transterpreter: A Transputer Interpreter. In Ian R. East, David Duce,
Mark Green, Jeremy M.R. Martin, and Peter H. Welch, editors, Communicating Process Architectures

2004, volume 62 of Concurrent Systems Engineering, pages 99—-106, Amsterdam, The Netherlands, 2004.
WoTUG, IOS Press.

[6] LEGO. The LEGO Mindstorms NXT. http://mindstorms.lego.com/en-us/whatisnxt/default.
aspx/, March 2011.

[7]1 T. Chikamasa. nxtOSEK Project. http://lejos-osek.sourceforge.net/, 2011.

[8] 1eJOS. 1eJOS Project. http://lejos.sourceforge.net/, 2011.

[9] A. Panayotopoulos J. M. Kerridge and P. Lismore. JCSPre: the robot edition to control LEGO NXT
robots. In Peter H. Welch, Susan Stepney, Fiona A.C. Polack, Frederick R.M. Barnes, Alistair A. McEwan,
Gardner S. Stiles, Jan F. Broenink, and Adam T. Sampson, editors, Communicating Process Architectures
2008, volume 66 of Concurrent Systems Engineering, pages 255-270, Amsterdam, The Netherlands, 2008.
WoTUG, IOS Press.

[10] J. L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice Hall PTR, 1981.

[11] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in Computer Science.
Springer, 1980.

[12] J. A. Bergstra and J. W. Klop. Algebra of communicating processes. Mathematics in Computer Science,
1986.

[13] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[14] Formal Systems Inc. FDR2 user manual, 2005.

[15] M. Leuschel and M. Fontaine. Probing the depths of CSP-M: A new FDR-compliant validation tool. In
Proceedings of the 10th International Conference on Formal Methods and Software Engineering, ICFEM
"08, pages 278-297, Berlin, Heidelberg, 2008. Springer-Verlag.

[16] INMOS Corp. Occam Programming Manual. Prentice Hall Trade, 1984.

[17] A. Kent and J. G. Williams. The Transputer family of products and their applications in building a high-
performance computer. Encyclopedia of Computer Science and Technology, August 1998.

[18] Google. The Go programming language. http://golang.org/, 2009.

[19] J. Armstrong. Making reliable distributed systems in the presence of software errors. PhD thesis, Royal
Institute of Technology, Stockholm, 2003.

[20] J. M. Bjgrndalen, B. Vinter, and O. Anshus. PyCSP — communicating sequential processes for Python. In
Communicating Process Architectures, pages 229-248, July 2007.

[21] Peter H. Welch. Process Oriented Design for Java: Concurrency for All. In PM.A. Sloot, C.J.K. Tan, J.J.
Dongarra, and A.G. Hoekstra, editors, Computational Science - ICCS 2002, volume 2330 of Lecture Notes
in Computer Science, pages 687-687. Springer-Verlag, April 2002.

[22] I. Page. Closing the gap between hardware and software: hardware-software cosynthesis at Oxford. In
Hardware-Software Cosynthesis for Reconfigurable Systems, 1996.

[23] R. Sharp. Higher-Level Hardware Synthesis. SpringerVerlag, 2004.

[24] A. A McEwan. Concurrent program development. PhD thesis, University of Oxford, 2006.

[25] J. Simpson, C. Jacobsen, and M. C. Jadud. A native Transterpreter for the LEGO Mindstorms RCX. In
Communicating Process Architectures 2007, Concurrent Systems Engineering. IOS Press, 2007.

[26] Karen Parnell and Roger Bryner. Comparing and contrasting FPGA and microprocessor system design
and development. Technical report, Xilinx, July 2004.

[27] R. Cayssials and E. Ferro. An uRT51 real-time processor evaluation. In Proceedings of the 14th IEEE
International Conference on Emerging Technologies & Factory Automation. IEEE Press, 2009.

[28] Spartan-3A Starter Kit. http://www.xilinx.com/products/devkits/HW-SPAR3A-SK-UNI-G.
htm/, 2011.

[29] J. Simpson and C. G. Ritson. Toward Process Architectures for Behavioural Robotics. In Peter H. Welch,
Herman W. Roebbers, Jan F. Broenink, Frederick R.M. Barnes, Carl G. Ritson, Adam T. Sampson, Gar-
diner S. Stiles, and Brian Vinter, editors, Communicating Process Architectures 2009, volume 67 of Con-
current Systems Engineering, pages 375-386, Amsterdam, The Netherlands, 2009. WoTUG, IOS Press.

[30] Rodney A. Brooks. A Robust Layered Control System for a Mobile Robot. IEEE Journal of Robotics and
Automation, 2(1):14-23, March 1986.

[31] F. Martin. Real robots don’t drive straight. Proceedings of the AAAI Spring Symposium on Robots and
Robot Venues: Resources for Al Education, March 2007.

