
1/51

PCOMS

PCOMS
Prioritised Choice Over Multiway-Synchronisation

Douglas N. Warren
Computing Laboratory, University of Kent

2/51

PCOMS – the plan

● 5 minutes – What?, why?, how? black box

● 20 minutes – Detail

● Pretty(ish) Demo

3/51

PCOMS - template

4/51

PCOMS – 5 minute explanation

● What is it?

● COMS – Choice Over Multiway Synchronisation
● Prioritised – Ability to select one event over another

● JCSP compatible – written in Java, can be used
with the JCSP Alternative class
● Prototype Algorithm – unoptimised, not formally
verified, lacking (a few) features.

5/51

PCOMS – 5 minute explanation

● What does it do?

● Reliable, generic, atomic message propagation:
- Pausing, graceful termination

● Anything existing COMS implementations can do:
- facilitate output guards, broadcast channels

6/51

PCOMS – 5 minute explanation

● How do I use it?

● Basically similar to any other communication
primitive or Guard.

● Some of the features will be explained in further
detail but for now ...

7/51

PCOMS - 5 minute explanation

Construction
JCSP code occam-pi equivalent

AltableBarrierBase barrier = new AltableBarrierBase();

AltableBarrier bar1 = new AltableBarrier(barrier);

AltableBarrier bar2 =
new AltableBarrier(barrier, ABConstants.UNPREPARED);

MOBILE BARRIER bar:
SEQ
 bar := MOBILE BARRIER

There is no real equivalence
between the construction of
JCSP AltableBarriers and
their nearest occam-pi
equivalents

8/51

PCOMS - 5 minute explanation

GuardGroup
Collection of AltableBarriers considered to be of
equal priority but which can belong to a wider priority
structure.
JCSP code occam-pi equivalent

AltableBarrier left, right;

assignLeftAndRight(); // some method for initialising left & right

GuardGroup group = new GuardGroup(
new AltableBarrier[] {left, right}

);

ALT
 SYNC left
 SKIP
 SYNC right
 SKIP

9/51

PCOMS - 5 minute explanation

GuardGroup
Collection of AltableBarriers considered to be of
equal priority but which can belong to a wider priority
structure.
JCSP code occam-pi equivalent

AltableBarrier left, right;

assignLeftAndRight(); // some method for initialising left & right

GuardGroup group = new GuardGroup(
new AltableBarrier[] {left, right}

);

ALT
 SYNC left
 SKIP
 SYNC right
 SKIP

10/51

PCOMS - 5 minute explanation

Alternative
This is how several GuardGroup objects can be
made to fit in a wider priority structure.
JCSP code occam-pi equivalent
AltableBarrier left, right, middle, high;
assignBarriers(); // some method for initialising barriers

GuardGroup low =
new GuardGroup(new AltableBarrier[] {left, right});

GuardGroup mid =
new GuardGroup(new AltableBarrier[]{middle});

GuardGroup hi =
new GuardGroup(new AltableBarrier[]{high});

Guard[] guards = new Guard[]{hi, mid, low};
Alternative alt = new Alternative(guards);

PRI ALT
 SYNC high
 SKIP
 SYNC middle
 SKIP
 ALT
 SYNC left
 SKIP
 SYNC right
 SKIP

11/51

PCOMS - 5 minute explanation

Resolution
Evaluating the Alternative is easy, discovering which
Barrier was selected is slightly more difficult:
JCSP code occam-pi equivalent

int index = alt.priSelect();

GuardGroup group = (GuardGroup) guards[index];
AltableBarrier selected = group.lastSynchronised();

if (selected == left) {
doSomething();

} else {
doSomethingElse();

}

PRI ALT
 SYNC left
 do.something()
 SYNC right
 do.something.else()

12/51

PCOMS – other COMS algorithms

● 2 and 3 phase commit protocols.
● Alistair McEwan's thesis.
● (just now) Gavin Lowe's algorithm
● The 'oracle' method as implemented in the JCSP

AltingBarrier class

13/51

PICOMS - Oracle Method

● Grab a global lock when reading/writing any barrier
data

● Offer to synchronise on barrier when encountered

 - Offer remains until withdrawn

14/51

PICOMS – Oracle Method

● First barrier to receive offers from all enrolled
processes wins

● If barrier picked, suppress any other ready guards
and report that the barrier was picked.

● Very simple and efficient

15/51

PICOMS – Problems with Oracle

● Oracle is incompatible with meaningful priority

● Certain event / process combinations render some events
unselectable.

PAR
 ALT ALT
 SYNC a SYNC b
 SKIP SKIP
 SYNC c SYNC c
 SKIP SKIP

16/51

PICOMS – Problems with Oracle

17/51

PCOMS – Problems with Oracle

● If the left-hand process runs first, A is picked.

● If the right-hand process runs first B is picked.

● When barrier C's set of enrolled processes is a super-set
of barriers A and B (where A ∩ B is { }) it is impossible to
select C in preference to A or B.

● Impossible to pick large global barriers in preference to
small local ones.

18/51

PCOMS - Priority

● First-come-first-served is not compatible with
priority.

● Conjecture: This can be overcome by giving
events the benefit of the doubt. Pre-emptively
waiting for events to complete.

● This allows for false positives and negative.
● This is less a redefinition of what 'priority' means

and is more a redefinition of 'ready'.

19/51

PICOMS - Need for Nesting

● Sometimes the absence of priority between barriers is a
good thing.

● When adding a high priority barrier to an existing choice, it
may be useful to NOT change the relative priorities of the
existing barriers.

20/51

PICOMS – Need for Nesting

ALT
 SYNC anti.clockwise
 SKIP
 SYNC clockwise
 SKIP

21/51

PICOMS – Need for Nesting

PRI ALT
 SYNC pause
 SKIP
 SYNC anti.clock
 SKIP
 SYNC clock
 SKIP

22/51

PICOMS – Need for Nesting

● Example: where the choice of barriers in one process
partially overlap those of another process, introducing
priority may cause priority conflict.

● Therefore there needs to be a means of having a number
of barriers have no priority among themselves but still fit in a
wider priority structure.

23/51

PICOMS – Need for Nesting

PRI ALT
 SYNC pause
 SKIP
 ALT
 SYNC anti.clock
 SKIP
 SYNC clock
 SKIP

24/51

PICOMS - Glossary

● AltableBarrier: The object that processes use to interact
with a barrier. One object per process for each barrier the
process is enrolled on

● AltableBarrierBase: The object to representing the barrier
itself and which all AltableBarriers talk to.

● GuardGroup: acts as a collection of AltableBarriers at the
same priority and which does extend Guard.

25/51

PICOMS - Glossary

●UNPREPARED/PREPARED: A (possibly false) assertion that
the process will offer to synchronise on this barrier in the near
future. Processes which regularly ALT on inputs (such as server
processes) should default to PREPARED.

● PROBABLY_READY: an AltableBarrierBase is considered
PROBABLY_READY if all enrolled processes are PREPARED to
synchronise.

26/51

PICOMS - Specifics

● When evaluating an ALT and a GuardGroup is
encountered

● Phase 1: select a barrier

● Claim global lock

● Tell barriers you are PREPARED to synchronise
- This should be done for all barriers in the current
GuardGroup as well as all previously encountered
barriers

27/51

PICOMS - Specifics

● Select a barrier – Do this for all of the barriers in the
current GuardGroup AS WELL AS those previously
evaluated in this ALT.

● To be done in priority order.

● Are any barriers PROBABLY_READY?

● If none have been selected by other processes, select
arbitrarily.

 ● Otherwise pick a barrier which has already been
selected.

28/51

PICOMS - Specifics

● Phase 2: attempt synchronisation
 ● 'Steal' other processes enrolled on the barrier

 ● If other process is waiting on another barrier transfer it
to this one (as long as it is of an equal or lower priority).

 ● If not ignore it. Those processes will eventually turn up.

29/51

PICOMS - Specifics

● If this is the first process to select the barrier, start a time-
out.

● If the time-out elapses before the barrier completes wake
everyone up and let them know the synchronisation attempt
failed.

● For all processes which failed to turn up before the time-
out, set their status flag to UNPREPARED.

30/51

PICOMS - Specifics

● Claim a local lock and release the global lock.

● Next wait on the local lock for one of the following to
happen:

 ● The synchronisation attempt succeeds

 ● One of the enrolled processes to set its status flag to
 UNPREPARED, thus aborting the sync attempt

 ● The time-out , thus aborting the sync attempt

31/51

PICOMS - Specifics

● when woken release local lock and reclaim global one

● check to see if synchronisation was successful and if it
was which barrier completed (the process may have been
'stolen' by another barrier while it waited).

32/51

PCOMS – Skipped over

● Some detail missing, see the paper

● Phase 3: Involves making sure that once a synchronisation
is successful that it is accurately reported.

● No guards were initially ready … waiting on the 'altmonitor'

33/51

PCOMS – diagram key

● Grey box = ALT
● Pink box = barrier A
● Blue box = barrier B

● Clear circle = process PREPARED to synchronise on A
● Black circle = process UNPREPARED to synchronise on A
● All processes are PREPARED to synchronise on B

● Black line = barrier is currently not PROBABLY_READY

34/51

PCOMS - example

35/51

PCOMS - example

36/51

PCOMS - example

37/51

PCOMS - example

38/51

PCOMS - example

39/51

PCOMS - example

40/51

PCOMS - template

41/51

PCOMS - example

42/51

PCOMS - template

43/51

PCOMS - example

44/51

PCOMS – performance testing

● Comparison with the existing AltingBarrier class.
● More in the paper
● Ring of 50 processes connected to their 2

neighbours.
● Time to complete 100 synchronisations
WHILE TRUE
 ALT
 SYNC left
 SKIP
 SYNC right
 SKIP

45/51

PCOMS – performance testing

● Using AltingBarrier class finishes in 111ms.
● AltableBarrier class (where all processes are

PREPARED) takes 11066 ms.
● AltableBarrier class (where all processes are

UNPREPARED) takes 28545 ms.
● in general the AltableBarrier class is 2 orders of

magnitude slower than the Alting barrier class.

46/51

PCOMS - testing

● Program demonstrates priority

● Compatibility with existing channel
guards

● Nested priority

WHILE TRUE
 PRI ALT
 SYNC pause
 SYNC pause
 mid ? any
 SKIP
 ALT
 SYNC right
 SKIP
 SYNC left
 SKIP

47/51

PCOMS - testing

48/51

PCOMS – testing

Show demo

49/51

PCOMS – future work

● Tidying up, new features, optimisations.
● Distribution over networks.
● Trying out some untested ideas such as fair-alting

and 'partial priority'.

50/51

PCOMS – sum up

● Prototype algorithm allowing PCOMS.
● (fairly) straightforward to use in JCSP.
● Allows pausing, graceful termination and can be

used to underpin output guards and broadcast
channels.

51/51

PCOMS – any questions

any questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

