
Prioritised Choice
over Multiway Synchronisation

Douglas N. WARREN a,1,
a School of Computing, University of Kent, Canterbury, UK

Abstract. Previous algorithms for resolving choice over multiway synchronisations
have been incompatible with the notion of priority. This paper discusses some of the
problems resulting from this limitation and offers a subtle expansion of the definition
of priority to make choice meaningful when multiway events are involved. Presented
in this paper is a prototype extension to the JCSP library that enables prioritised choice
over multiway synchronisations and which is compatible with existing JCSP Guards.
Also discussed are some of the practical applications for this algorithm as well as its
comparative performance.

Keywords. CSP, JCSP, priority, choice, multiway synchronisation, altable barriers.

Introduction

CSP [1,2] has always been capable of expressing external choice over multiway synchroni-
sation: the notion of more than one process being able to exercise choice over a set of shared
events, such that all processes making that choice select the same events. For some time, al-
gorithms for resolving such choices at run-time were unavailable and, when such algorithms
were proposed, they were non-trivial [3,4].

Conversely priority, a notion not expressed in standard CSP, has been a part of CSP based
languages from a very early stage. Priority, loosely, is the notion that a process may reliably
select one event over another when both are available. Whilst being compatible with simple
events such as channel inputs, algorithms for resolving choice over multiway synchronisation
have been incompatible with priority.

This paper introduces an algorithm for implementing Prioritised Choice over Multiway
Synchronisation (PCOMS) in JCSP [5,6] through the use of the AltableBarrier class. This
addition to the JCSP library, allows entire process networks to be atomically paused or termi-
nated by alting over such barriers. They also enable the suspension of sub-networks of pro-
cesses, for the purposes of process mobility, with manageable performance overheads. This
paper assumes some knowledge of both JCSP and occam-π [7,8] – the latter being the basis
of most pseudo-code throughout the paper.

This paper intends to establish that using the AltableBarrier class simplifies certain prob-
lems of multiway synchronisation. However, there are no immediately obvious problems
which require PCOMS per se. For example, graceful termination of process networks can be
achieved using conventional channel communication. However, if such networks have a com-
plicated layout or if consistency is required at the time of termination then graceful termi-
nation using channel communication becomes more complicated. This same problem using
PCOMS requires only that all affected processes are enrolled on (and regularly ALT over) an
AltableBarrier which they prioritise over other events.

1Corresponding Author: Douglas N. Warren. E-mail: dnw3@kent.ac.uk.

Introduced in this paper are the background and limitations of existing multiway syn-
chronisation algorithms. In Section 3 the limitations of existing notions of priority and readi-
ness are discussed and proposals for processes to pre-assert their readiness to synchronise
on barriers are made. This section also proposes the notion of nested priority, the idea that
several events may be considered to be of the same priority but to exist in a wider priority
ordering.

Section 5 details the interface that JCSP programmers need to use in order to include
AltableBarriers in their programs. Section 6 details the inner workings of the algorithm itself.
Section 7 details stress tests performed on the algorithm as well as comparative performance
tests with the previous (unprioritisable) AltingBarrier algorithm. The results are discussed in
Section 8 as well as some proposed patterns for implementing fair alting and for influencing
the probability of certain events being selected through partial priority. Section 9 concludes
the paper.

1. Background

This section considers some of the existing algorithms for resolving choice over multiway
synchronisation both where the set of events are limited and where the set of events may be
arbitrarily large. Also considered are some of the attempts to model priority in CSP.

Some of the earliest algorithms resolving choice over multiway synchronisation are
database transaction protocols such as the two phase commit protocol [9]. Here the choice is
between selecting a ‘commit’ event or one or more processes choosing to ‘abort’ an attempt
to commit changes to the database. Initially such protocols were blocking. After the commit
attempt was initiated, a coordinator would ask the enrolled nodes to commit to the transac-
tion. If all nodes commit in this way then the transaction is confirmed by an acknowledge-
ment otherwise the nodes are informed that they should abort the transaction. In either case
the network and the nodes themselves were considered to be reliable and responsive to such
requests.

Later incarnations were non-blocking and tolerated faults by introducing the possibility
that transactions could timeout [10], these are sometimes referred to as a 3 phase commit
protocol. The first phase asks nodes if they are in a position to synchronise (which the co-
ordinator acknowledges), the second involves the processes actually committing to the syn-
chronisation, this being subject to timeouts, the third ensures that the ‘commit’ or ‘abort’ is
consistent for all nodes.

The protocols above are limited in that they can be considered to be choosing over two
events ‘commit’ and ‘abort’. A more general solution was proposed by McEwan [3] which
reduced the choice to state machines connected to a central controller. This was followed by
an algorithm which coordinates all multiway synchronisations through a single central Ora-
cle [11] and implemented as a library extension for JCSP [5,4] in the form of the AltingBar-
rier class.

All of the above algorithms are incompatible with user defined priority. The database
commit protocols are only compatible with priority to the extent that committing to a transac-
tion is favoured over aborting it. The more general algorithms have no mechanism by which
priority can be imposed and in the case of JCSP AltingBarriers this incompatibility is made
explicit.

There have been many attempts to formalise event priority in CSP. Fidge [12] considers
previous approaches which (either statically or dynamically) assign global absolute priority
values to specific events, these approaches are considered to be less modular and compo-
sitional. Fidge instead proposes an asymmetric choice operator (

−→
[]) which favours the left

operand. Such an operator is distinguished from the regular external choice operator in that

it excludes the traces of the right hand (low priority) operand where both are allowed by the
system, i.e. the high priority event is always chosen where possible. While this might be con-
sidered ideal, in practice the arbitrary nature of scheduling may allow high priority events to
not be ready, even when the system allows it. Therefore low priority events are not excluded
in practice in CSP based languages.

However the introduction of readiness tests to CSP by Lowe [13] allow for priority to
be modelled as implemented in CSP based languages. Using this model priority conflicts (an
inevitable possibility with locally defined relative priority structure) are resolved by arbitrary
selection, this is the same result as occurs with JCSP AltableBarriers (albeit with higher per-
formance costs). However, Lowe treats readiness as a binary property of events, in Section 3.1
a case is presented for treating readiness as a (possibly false) assertion that all enrolled pro-
cesses will be in a position to synchronise on an event in the near future. This distinction
allows for processes to pre-emptively wait for multiway synchronisations to occur. Section
2.2 establishes this as being necessary to implement meaningful priority.

2. Limitations of Existing External Choice Algorithms

Existing algorithms offering choice over multiway synchronisation do not offer any mech-
anism for expressing priority; they offer only arbitrary selection (which is all that standard
CSP describes). Listed in this section are two (not intuitively obvious) ways in which repeated
use of these selection algorithms can be profoundly unfair – although it is worth bearing in
mind that CSP choice has no requirement for priority and repeated CSP choice has no re-
quirement for fairness. As such, while these aspects of existing choice resolution algorithms
are arguably undesirable, they all constitute valid implementations of external choice.

2.1. Arbitration by Barrier Size

Pre-existing algorithms for resolving choice over multiway synchronisation have in common
an incompatibility with priority [4], this means that event selection is considered to be ar-
bitrary - in other words no guarantees are made about priority, fairness or avoiding starva-
tion. It is therefore the responsibility of programmers to ensure that this limitation has no
adverse effects on their code. While the problems of arbitrary selection may be relatively
tractable for code involving channel communications, code containing barrier guards pose
extra complications. Consider the following occam-π pseudo-code:

PROC P1 (BARRIER a, b)
ALT

SYNC a
SKIP

SYNC b
SKIP

:

PROC P2 (BARRIER a)
SYNC a

:

PROC P3 (BARRIER b)
SYNC b

:

Three different types of processes, one enrolled on ‘a’ and ‘b’, the other two enrolled on
either one or the other but not both. Consider a process network containing only P1 and P3
processes:

PROC main(VAL INT n, m)
BARRIER a, b, c:
PAR

PAR i = 0 FOR n
P1 (a, b)

PAR i = 0 FOR m
P3 (b)

:

In such a network event ‘a’ is favoured. In order for either event to happen all of the processes
enrolled on that event must be offering it. Since the set of processes enrolled on ‘a’ is a subset
of those enrolled on ‘b’, for ‘b’ to be ready implies that ‘a’ is also ready (although the reverse
is not true). It is therefore necessary for all of the P3 processes to offer ‘b’ before all of the
P1 processes offer ‘a’ and ‘b’ in order for synchronisation on ‘b’ to be possible (even then
the final selection is arbitrary). However as the ratio of P1 to P3 processes increases this
necessary (but not sufficient) condition becomes less and less likely.

This state of affairs may however be desirable to a programmer. For example another
process in the system may be enrolled on ‘a’ but also waiting for user input. Provided that
processes P1 and P3 are looped ad infinitum, ‘a’ may represent a high priority, infrequently
triggered event while ‘b’ is less important and is only serviced when ‘a’ is unavailable. A
naive programmer may consider that this property will always hold true. However consider
what happens if P2 processes are dynamically added to the process network. Initially ‘a’
continues to be prioritised over ‘b’ but once the P2 processes outnumber the P3 processes it
becomes more and more likely that ‘b’ will be picked over ‘a’, even if ‘a’ would otherwise
be ready.

For this reason a programmer needs to not only be aware of the overall structure of
their program in order to reason about which events are selected but also the numbers of
processes enrolled on those events. This becomes even more difficult if these numbers of
enrolled processes change dynamically.

2.2. Unselectable Barriers

As well as making the selection of events depend (to an extent) on the relative numbers of
processes enrolled on competing barriers, existing algorithms for resolving external choice
over multiway synchronisation can allow for the selection of certain events to be not only
unlikely but (for practical purposes) impossible. Consider the pseudo-code for the following
two processes:

PROC P1 (BARRIER a, b)
WHILE TRUE

ALT
SYNC a

SKIP
SYNC b

SKIP
:

PROC P2 (BARRIER a, c)
WHILE TRUE

ALT
SYNC a

SKIP
SYNC c

SKIP
:

If a process network is constructed exclusively out of P1 and P2 processes then the sets of
processes enrolled on ‘a’, ‘b’ and ‘c’ have some interesting properties. The set of processes
enrolled on ‘b’ and those enrolled on ‘c’ are both strict sub-sets of those enrolled on ‘a’.
Further the intersection of the sets for ‘b’ and ‘c’ is the empty set.

Since choice resolution algorithms (like the Oracle algorithm used in JCSP AltingBar-
riers) always select events as soon as they are ready (i.e. all enrolled processes are in a po-
sition to synchronise on the event), this means that for an event to be selected it must be-
come ready either at the same time or before any competing events. However, because ‘a’
is a superset of ‘b’ and ‘c’ it would be necessary for ‘a’, ‘b’ and ‘c’ to become ready at the
same time for ‘a’ to be selectable. This is impossible because only one process may make or
retract offers at a time and no process offers ‘a’, ‘b’ and ‘c’ simultaneously. It is therefore
impossible for ‘a’ to be selected as either ‘b’ or ‘c’ must become ready first.

The impossibility of event ‘a’ being selected in the above scenario holds true for Alting-
Barrier events: each process offers its set of events atomically and the Oracle deals with each
offer atomically (i.e. without interruption by other offers). However, this need not happen.
If it is possible for processes to have offered event ‘a’ but to have not yet offered event ‘b’
or ‘c’, then ‘a’ may be selected if a sufficient number of processes have offered ‘a’ and are
being slow about offering ‘b’ or ‘c’. This gives a clue as to how priority can be introduced
into a multiway synchronisation resolution algorithm.

3. Limitations of Existing Priority Models

3.1. Case for Redefining Readiness and Priority

As discussed in Section 2.2, selecting events as soon as all enrolled processes have offered
to synchronise can cause serious problems for applying priority to choice over multiway
synchronisation. As such meaningful priority may be introduced by allowing processes to
pre-emptively wait for synchronisations to occur or by suppressing the readiness of other
events in favour of higher priority ones.

Here to pre-emptively wait on a given event means to offer only that event and to exclude
the possibility of synchronising on any others that would otherwise be available in an external
choice. Events which are not part of that external choice may be used to stop a process pre-
emptively waiting, for example a timeout elapsing may trigger this. Once a process stops
pre-emptively waiting it is once again free to offer any of the events in an external choice. In
other words a process waits for the completion of one event over any other in the hope that it
will be completed soon, if it is not then the process may consider offering other events.

Waiting in this way requires the resolution of two problems. The first is that if processes
wait indefinitely for synchronisations to occur, the network to which the process belongs may
deadlock. The corollary to this is that where it is known in advance that an event cannot be
selected, it should be possible for processes to bypass waiting for that event altogether (so as
to avoid unnecessary delays). The second is that, as a consequence of the first problem, when
a process does stop waiting for a high priority event and begins waiting for a lower priority
one, it is possible that the higher priority event may become ready again. Here, ready again
means that the event now merits its set of processes enrolled on it pre-emptively waiting for
its completion. Thus it must be possible for a process to switch from pre-emptively waiting
for a low priority synchronisation to a higher priority one.

While there are almost an infinite number of ways of pre-emptively determining the
readiness of any event, it is proposed that PCOMS barriers use flags to pre-emptively assert
the readiness of enrolled processes. Each process uses its flags (one each per barrier that it is
enrolled on) to assert whether or not it is in a position to synchronise on that event in the near
future. It is a necessary condition that all enrolled processes assert their readiness for those

processes to begin waiting for that synchronisation to take place. If this condition becomes
false during such a synchronisation attempt then that attempt is aborted. Conversely if this
condition becomes true then this triggers enrolled processes waiting for lower priority events
to switch to the newly available event.

For the purposes of causing synchronisation attempts to be aborted because of a time-
out, such timeouts falsify the assertion of the absent processes that they are in a position to
synchronise in the near future. Their flags are changed to reflect this, this in turn causes the
synchronisation attempt as a whole to be aborted.

In this way high priority events are given every opportunity to be selected over their
lower priority counterparts, while the programmer is given every opportunity to avoid waste-
ful synchronisation attempts where it is known that such a synchronisation is unlikely,

3.2. Case for Nested Priority

While there are positive uses for prioritising some multiway synchronisations over others
(graceful termination, pausing, etc.) there may be some circumstances where imposing a pri-
ority structure on existing arbitrary external choices can be undesireable. Consider the pro-
cess network for the TUNA project’s one-dimensional blood clotting model [11]. Each SITE
process communicates with others through a ‘tock’ event and an array of ‘pass’ events, each
process being enrolled on a pass event corresponding to itself as well as the two processes in
front of it in a linear pipeline. Although the events offered at any given time depend on the
SITE process’ current state, it is a convenient abstraction to consider that the SITE process
offers all events at all times, as in the following pseudo-code:

PROC site (VAL INT i)
WHILE TRUE

ALT
ALT n = 0 FOR 3

SYNC pass[i+n]
SKIP

SYNC tock
SKIP

:

Here the SITE process makes an arbitrary selection over the events that it is enrolled on.
Now suppose that the SITE processes also offer to synchronise on a ‘pause’ barrier. This
barrier would need to be of higher priority than the other barriers and would presumably only
be triggered occasionally by another process waiting for user interaction. A naive way of
implementing this could be the following:

PROC site (VAL INT i)
WHILE TRUE

PRI ALT
SYNC pause

SKIP
PRI ALT n = 0 FOR 3

SYNC pass[i+n]
SKIP

SYNC tock
SKIP

:

Here the SITE process prioritises the ‘pause’ barrier most highly, followed by the ‘pass’ bar-
riers in numerical order, followed by the ‘tock’ barrier. This might not be initially considered
a problem as any priority ordering is simply a refinement of an arbitrary selection scheme.

However when more than one process like this is composed in parallel problems begin to
emerge, each individual SITE process identified by the ‘i’ parameter passed to it prefers the
‘pass[i]’ event over other pass events further down the pipeline. In other words SITE2 prefers
‘pass[2]’ over ‘pass[3]’, while SITE3 prefers ‘pass[3]’ over all others and so on. This con-
stitues a priority conflict as there is no event consistently favoured by all processes enrolled
on it.

To paraphrase, each process wishes to select its own ‘pass’ event and will only consider
lower priority events when it is satisfied that its own ‘pass’ event is not going to complete.
Since no processes can agree on which event is to be prioritised there is no event which can
be selected which is consistent with every process’ priority structure. There are two ways in
which this can be resolved. The first is that the system deadlocks. The second is that each
process wastes time waiting for its favoured event to complete, comes to the conclusion that
the event will not complete and begins offering other events. This second option is effectively
an (inefficient) arbitrary selection.

The proposed solution to this problem for PCOMS barriers is to allow groups of events in
an external choice to have no internal priority but for that group to exist in a wider prioritised
context. For the purposes of expressing this as occam-π pseudo-code, a group of guards in an
ALT block are considered to have no internal priority structure but if that block is embedded
in PRI ALT block then those events all fit into the wider priority context of the PRI ALT block.
For example in this code:

PROC site (VAL INT i)
WHILE TRUE

PRI ALT
SYNC pause

SKIP
ALT

ALT n = 0 FOR 3
SYNC pass[i+n]

SKIP
SYNC tock

SKIP
:

The ‘pause’ event is considered to be have higher priority than all other events but the ‘pass’
and ‘tock’ events are all considered to have the same priority, thereby eliminating any priority
conflict. All processes instead are willing to offer any of the ‘pass’ or ‘tock’ events without
wasting time waiting for the completion of any one event over any other.

4. Implementation Nomenclature

For the purposes of discussing both the interface and implementation of JCSP PCOMS bar-
riers, it is necessary to describe a number of new and extant JCSP classes as well as some of
their internal fields or states. A UML class diagram is shown in Figure 1.

PCOMS barrier The generic name for any barrier which is capable of expressing nested
priority and which can (when involved in an external choice) optimistically wait for
synchronisation to occur (as opposed to requiring absolute readiness).

AltableBarrierBase The name of a specific JCSP class representing a PCOMS barrier. An
AltableBarrierBase contains references to all enrolled processes through their Altable-
Barrier front-ends.

AltableBarrier A JCSP class representing a process’s front-end for interacting with an Al-
tableBarrierBase. There is exactly one AltableBarrier per process per AltableBarrier-

Base that it is enrolled on. Henceforth, unless otherwise noted, the term barrier is used
as a short hand for an AltableBarrier. Further an AltableBarrier, may in context, refer
to the AltableBarrierBase to which it belongs. For example a process which selects an
AltableBarrier also selects the AltableBarrierBase to which it belongs.

GuardGroup a collection of one or more AltableBarriers which are considered to be of
equal priority.

BarrierFace A class used to store important information about a process’ current state re-
garding synchronisation attempts on AltableBarriers. Includes the AltableBarrier (if
any) that a process is trying to synchronise on, the local lock which must be claimed
in order to wake a waiting process, etc. There is a maximum of one BarrierFace per
process.

‘Status’, PREPARED, UNPREPARED and PROBABLY READY Each AltableBarrier
has a ‘status’ flag which records whether a process is PREPARED or UNPREPARED
to synchronise on that barrier in the near future. An AltableBarrierBase is consid-
ered PROBABLY READY iff all enrolled processes are PREPARED. Being PROBABLY
READY is a prerequisite for a process to attempt a synchronisation on an AltableBar-
rier.

Alternative An existing JCSP class which is the equivalent of an occam-π ALT. Calling its
priSelect() method causes it to make a prioritised external choice over its collection of
Guards.

altmonitor A unique object stored in an Alternative. If an Alternative (when resolving exter-
nal choice) checks all of its Guards and finds none of them are ready then the invoking
process calls the wait() method on the altmonitor. The process then waits for any of the
Guards to become ready before being woken up by a corresponding notify() call on the
altmonitor.

CSProcess

AltableBarrierBase

AltableBarrier

Alternative

Guard GuardGroup

BarrierFace

0..*

1

1 0..*

1

0..1

0..1 1

1

1..*

1..*

1

selected

1

0..1

1

1..*

Figure 1. UML diagram showing how the relationship between new and existing JCSP classes.

5. Description of PCOMS Interface

This section illustrates the interface programmers use to interact with AltableBarriers. The
source code for all of the classes described in this section can be downloaded from a branch
in the main JCSP Subversion repository [14]. All of these classes are contained in the
org.jcsp.lang package.

5.1. Compatibility with Existing JCSP Implementation

The AltableBarrier class, although not directly extending the Guard class, is nevertheless de-
signed to be used in conjunction with the Alternative class in JCSP. A single object shared
between all enrolled processes of the class AltableBarrierBase is used to represent the actual
PCOMS barrier. Each process then constructs its own AltableBarrier object, passing the Al-
tableBarrierBase object to the constructor. This creates an individual front-end to the barrier
for that process and enrols that process on the barrier.

The AltableBarrier is included as a Guard in an Alternative by passing an array of Al-
tableBarriers to the constructor of a GuardGroup object. This class extends the Guard class
and functions as a collection of one or more AltableBarriers.

\\ construct a new barrier
AltableBarrierBase base = new AltableBarrierBase ();
\\ enrol a process on a barrier
AltableBarrier bar = new AltableBarrier(base);
\\ create a GuardGroup containing only one barrier
GuardGroup group = new GuardGroup(new AltableBarrier []{bar});

5.2. Mechanism for Expressing Nested Priority

Guards are passed to an Alternative constructor as an array, the order in which the elements
are arranged determines the priority ordering. Since the GuardGroup class extends Guard,
the relative priority of AltableBarriers is determined by the position of the GuardGroup to
which they belong.

However a single GuardGroup can contain more than one AltableBarrier, such barriers
have no priority ordering within the GuardGroup (the selection process is detailed later but
may be considered arbitrary). In this way a group of barrier guards with no internal priority
between themselves can be nested within a larger priority structure

\\ various AltableBarriers intended to have different priorities.
\\ assume these variables have real AltableBarrier
\\ objects assigned
AltableBarrier highBar , midBar1 , midBar2 , lowBar;
\\ create 3 different GuardGroups , one for each priority level.
\\ note that mid has two AltableBarriers which are of
\\ equal priority
GuardGroup high = new GuardGroup(

new AltableBarrier []{ highBar}
);
GuardGroup mid = new GuardGroup(

new AltableBarrier []{ midBar1 , midBar2}
);
GuardGroup low = new GuardGroup(

new AltableBarrier []{ lowBar}
);
Guard [] guards = new Guard []{high , mid , low};
Alternative alt = new Alternative(guards);

5.3. Mechanisms for Manipulating Readiness

As explained earlier (Section 3.1), the ability to express meaningful priority over multiway
synchronisation requires the ability to express a future ability to engage on an event as well
as the ability to correct for false positive and negative readiness tests.

With regard to the former, a PCOMS barrier is considered ready if all of the enrolled
processes have advertised the fact that they are able to synchronise on that barrier in the near
future. To this end the all AltableBarrier objects have a flag indicating whether a process is
PREPARED or UNPREPARED to synchronise on that barrier. For a synchronisation to be
attempted all enrolled process must be PREPARED. These flags do not reflect whether or not
a process is actually offering an event at any given moment. Instead it indicates whether or
not (in the programmer’s opinion) that process will be in a position to offer that event within
a reasonable time frame and that the process network as a whole will not deadlock if other
processes act on this information.

While a process is evaluating an Alternative’s priSelect() method, the state of this flag is
managed automatically. A process becomes PREPARED to synchronise on a given barrier as
soon as it is encountered in that Alternative, likewise it is automatically made UNPREPARED
if a synchronisation attempt is made but that process fails to engage on that event before a
timeout elapses (this state persisting until that process actually is in a position to engage on
that event again). At all other times a user defined default state holds for each individual Al-
tableBarrier object. It is however possible for the programmer to override this state temporar-
ily (i.e. until the state is changed automatically) by calling the AltableBarrier’s setStatus()
method or more permanently by overriding its default state by calling its setDefaultStatus()
method.

In general any process which regularly evaluates an Alternative containing a given Al-
tableBarrier such as server processes should set this default to PREPARED. Conversely pro-
cesses which act as clients or which wait for user or network input (and thus may be signif-
icantly delayed before attempting a synchronisation with a barrier) should set this default to
UNPREPARED. While changes to the default after construction are left at the programmer’s
discretion, such changes should be unnecessary unless a significant change in the behaviour
of a process occurs.

AltableBarrier bar1 =
new AltableBarrier(base , AltableBarrier.UNPREPARED);

AltableBarrier bar2 =
new AltableBarrier(base , AltableBarrier.PREPARED);

bar1.setStatus(AltableBarrier.PREPARED);
bar2.setDefaultStatus(AltableBarrier.UNPREPARED);

5.4. Discovery and Acknowledgement of Events After Selection

Once an AltableBarrier has been selected by a call to the priSelect() method, the index re-
turned by that method will indicate the GuardGroup object to which that barrier belongs.
Calling the lastSynchronised() method on that GuardGroup will reveal the specific Altable-
Barrier selected. By this point the actual synchronisation on the barrier will have taken place.
Therefore, unlike with JCSP channel synchronisations, it is unnecessary for the programmer
to do anything else to complete or acknowledge the synchronisation having occurred.

To paraphrase, an AltableBarrier is used in the same way as an AltingBarrier with two
exceptions. The first being that AltableBarriers need to be enclosed in a GuardGroup to which
it belongs. This GuardGroup must be interrogated if the selected barrier is ambiguous. The
second is that priority cannot be expressed using AltingBarriers.

int index = alt.priSelect ();

Guard selectedGuard = guards[index];
AltableBarrier selected = null;
if (selectedGuard instanceof GuardGroup) {

GuardGroup group = (GuardGroup) selectedGuard;
selected = group.lastSynchronised ();

}

\\ The synchronisation has already taken place at this point ,
\\ no further action is required to acknowledge the event.

5.5. Current Limitations

JCSP AltableBarriers (via an enclosing GuardGroup object) can be used with any number of
existing JCSP Guards in any combination with two restrictions. The first is that no Alternative
object may enclose both a GuardGroup and a AltingBarrier (the latter being the name of a
class which implements the old Oracle algorithm). Code required to ensure consistency of
selection for AltingBarriers can cause inconsistency for the new AltableBarriers. The second
restriction is that only the priSelect() method of the Alternative class is considered safe for
use with AltableBarriers, behaviour when using the select() or fairSelect() methods is not
considered here.

It should also be noted that the existing AltableBarrier implementation lacks any mech-
anism for allowing processes to resign from a barrier. This restriction is not intended to be
permanent. In the interim processes wishing to resign from an AltableBarrier should spawn
a new process and pass it the unwanted AltableBarrier object, this process should loop in-
finitely, offering to synchronise on that barrier with each iteration.

Finally, AltableBarriers are incompatible with the use of any boolean preconditions.

6. Description of PCOMS Algorithm

This section details the inner workings of the PCOMS algorithm as applied to JCSP. The
algorithm is inspired in part by the 3 phase commit protocol [10]. Specifically the algorithm
can be broken down into 3 distinct phases. The first concerns establishing whether or not an
AltableBarrier (or group of AltableBarriers) is in a position for enrolled processes to begin
pre-emptively waiting for a synchronisation to occur and selecting such a barrier in a manner
consistent with priority ordering. The second phase involves waiting for the synchronisation
itself and includes details of mechanisms for ensuring consistency of selection between pro-
cesses as well as of the mechanisms for aborting synchronisation attempts. The third phase
involves ensuring that any synchronisations are consistently reported by all processes. Details
are also given for processes which have begun waiting on the ‘altmonitor’, an object unique
to each instance of the Alternative class used to wake processes waiting for any (even non
barrier) guards to become ready.

While the possibility that this algorithm could be simplified should not be ruled out, the
relative complexity of this algorithm serves to prevent deadlock. Much of the complexity is
required for compatibility with existing Alternative Guards. For example, special provisions
must be made for processes waiting on the altmonitor object. This is because such processes
may be woken up by either a successful barrier synchronisation or by a conventional JCSP
Guard.

6.1. Phase 1: Readiness Testing

Figure 2 outlines the logic. All Guards in a JCSP Alternative have their readiness tested by
a call to their enable() method: calling enable() on a GuardGroup initiates readiness tests
on all of the AltableBarriers that that GuardGroup contains. A call to the enable() method
of a GuardGroup returns true iff an attempt to synchronise on an AltableBarrier has been
successful.

When enable is called on a GuardGroup, it claims a global lock: this lock is required for
all reading and writing operations to all data related to AltableBarrier synchronisations. This
lock is not released until either a process begins waiting for a synchronisation to occur or the
invoking enable() method has been completed and is ready to return.

Once the global lock has been claimed, the process sets the status flag of all of the
AltableBarriers contained in the GuardGroup (and all of those contained in higher priority
GuardGroups1) to PREPARED.

The next step is to select a barrier on which to attempt synchronisation. For each Guard-
Group encountered in the Alternative so far, in priority order, all of the AltableBarriers in
each GuardGroup are examined to see if they are PROBABLY READY. If no AltableBarriers
are PROBABLY READY then the next GuardGroup is examined. If no AltableBarriers are
ready in all of the GuardGroups under consideration, then the enable() method releases the
global lock and returns false.

If one or more AltableBarriers are found to be PROBABLY READY, then they are each
tested to see if any have been selected by other processes. If some of them have, then those
that have not are eliminated from consideration for now. In either case, an AltableBarrier is
arbitrarily selected from the list of PROBABLY READY barriers which remain. In this way, an
AltableBarrier is selected which is PROBABLY READY, of equal or greater priority to other
possible barriers and is, if possible, the same choice of barrier as selected by the process’
peers.

6.2. Phase 2: Awaiting Completion

The process holding the global lock now has an AltableBarrier on which it intends to attempt
a synchronisation. It is already the case that this barrier is one of (or the) highest priority
barriers currently available and that (where applicable) it is also a barrier which has been
selected by other processes. However, there may be other processes enrolled on this barrier
currently attempting to synchronise on other lower priority barriers. In order for the barrier
synchronisation to complete, it is necessary for those processes waiting on other barriers to
be stolen (see Section 6.2.1). These processes, where they could be stolen, continue to wait
but are now waiting for the ‘stealing’ barrier to complete. See Figure 3.

Having ensured maximum consistency between all processes attempting barrier synchro-
nisations, the process holding the global lock checks to see if it is the last process required to
complete the barrier synchronisation. If it is, then the waiting processes are informed of the
successful synchronisation and woken up (see Section 6.3). If not, then the process will need
to begin waiting – either for a successful synchronisation attempt or for the synchronisation
to be aborted.

If this is the only process currently attempting to synchronise on the barrier, then a
timeout process is started (see Section 6.2.2) to ensure that any synchronisation attempt is
not continued indefinitely. The BarrierFace is then updated to reflect the currently selected

1During the time between the evaluation of one GuardGroup and another it is possible for a synchronisation
attempt on an AltableBarrier to have timed-out. In such a case the currently running process may have had its
status flag (associated with that barrier) set to UNPREPARED. Given that this process is now once again in a
position to offer that event, it is necessary for such flags to be reset to PREPARED.

Figure 2. Flow Chart showing Phase 1.

barrier and an object representing a local lock used to wake the process once it has begun
waiting. The object used for this local lock is the enclosing Alternative object itself: this
has the virtue of being unique to each process and of being distinct from the Alternative’s
altmonitor (this is to avoid the process being woken up by non-barrier guards becoming
ready).

Then, the process claims its local lock and, afterwards, releases the global lock. It then
calls the local lock object’s wait() method, meaning that the process will sleep either un-
til a barrier synchronisation is successful or its synchronisation attempt is aborted. During

this waiting time a process may be stolen (see Section 6.2.1) any number of times. For the
purposes of ensuring deadlock freedom, it is important to note that all processes which wait
for synchronisations to complete – as well as processes which wake them up – have always
claimed the global lock first, then claim the local lock before releasing the global lock. When
waiting processes are woken up, they initially own their local lock and then claim the global
lock; this inversion in the order in which locks are claimed can potentially cause deadlock.
To counter this, there are two strict conditions imposed on waking processes:

1. A process must first be waiting before another process can attempt to wake it.
2. The BarrierFace of each process has a ‘waking’ flag which is set to true once a pro-

cess has woken it up. No process will attempt to wake a process with a true ‘waking’
flag.

This means that locks are always claimed in the order global-then-local until a process is
woken up, after which locks are claimed in the order local-then-global.

In summary a process attempting a synchronisation will do one of two things. If it is
the last process required to complete a synchronisation, it will do so. Otherwise it will begin
waiting for the synchronisation to complete or for the attempt to be aborted. In any case, after
this phase has been completed, the process in question will know whether or not it success-
fully synchronised on a barrier and, if so, which one. If synchronisation was successful, then
phase 3 (Section 6.3) ensures that this is consistently reported by all processes involved.

Figure 3. Flow Chart showing Phase 2.

6.2.1. Stealing

Stealing is the way in which processes enrolled on a given barrier but currently waiting for
the completion of different barriers are switched from waiting on the latter to the former. For
each of the processes enrolled on the stealing barrier the following tests are run, failing any
means that the process isn’t stolen:

1. Is the process currently evaluating an Alternative?
2. Is it currently waiting for the completion of another barrier?
3. Does the stealing barrier have and equal or higher priority than the old barrier from

the point of view of the process being stolen? 2

4. Is the process’ ‘waking’ flag still false?

If these conditions are met then the process is stolen by simply changing the AltableBarrier
object recorded in the process’ BarrierFace.

6.2.2. Timeouts

A timeout process is created when the first process enrolled on a barrier begins waiting for its
completion, its purpose is to abort synchronisation attempts on a barrier which take too long.

When created and started in its own Thread a timeout process waits for a time period
dependant on the number of processes enrolled on its corresponding barrier. Currently this
time period is 500 milliseconds multiplied by the number of enrolled processes. This formula
is entirely arbitrary but has proved to be a generous estimation of the time required to com-
plete barrier synchronisations of any size. A more detailed analysis of PCOMS barrier per-
formance would be required to minimise the time spent waiting for false-positive synchroni-
sation attempts.

When the timeout period has elapsed the timeout process claims the global lock and ex-
amines an internal flag, the state of which depends on whether or not the barrier synchronisa-
tion was successful while the timeout process was asleep, if it was then it releases the global
lock and terminates. If the synchronisation attempt has yet to complete then the timeout pro-
cess aborts the synchronisation attempt in the following way.

Each process enrolled on that barrier but which is not currently attempting to synchronise
on it has its status flag (associated with the timed-out barrier) set to UNPREPARED. In other
words, that process’ assertion that it will synchronise on that barrier in the near future has
been proven false therefore it is amended to UNPREPARED until such time as that process
is in a position to synchronise on the barrier.

Changing the status of some processes to UNPREPARED means that the barrier as a
whole is no longer PROBABLY READY, such a change is the only way in which synchroni-
sation attempts are aborted. All processes currently waiting on the aborted barrier have their
BarrierFace objects amended to reflect that they are no longer waiting for any barrier. Nor-
mally, these processes also have their ‘waking’ flags set to true and are then awoken. If any
of these processes are waiting on the altmonitor (see Section 6.4), they are not awoken.

Currently there is no mechanism for the programmer to set or terminate these timeouts
manually nor to change the amount of time that an event takes to timeout.

6.3. Phase 3: Ensuring Consistency

Having progressed past phases 1 and 2, a process will have selected a barrier to attempt a syn-
chronisation on and will have either succeeded or failed to synchronise (in the interim it may

2A process waiting for the completion of a barrier may be stolen by a barrier which the process considers to
be of equal priority. This is allowed because the process which initiated the stealing may have a specific priority
ordering (where the process being stolen does not) or the stealing process may not be enrolled on the same set
of events.

have been stolen by another barrier). In either case, the result must be acted on such that the
process either continues to searching for another guard to select or acknowledges a successful
synchronisation and ensures that the acknowledgement is consistent for all processes.

At this stage, a process will have access to its BarrierFace which will either contain the
AltableBarrier on which the process has synchronised or will contain a null value in its place.
If the latter is the case, then the synchronisation attempt was aborted, the process moves back
to phase 1 and either attempts a new synchronisation or (if no AltableBarriers are PROBABLY
READY) the enable() method terminates returning false.

If the process did synchronise, a number of things need to be done to ensure that this is
reported correctly. The most important complication is that the enable() method invoked be-
longs to a specific GuardGroup, which in turn represents one or more AltableBarrier objects
contained within. However, because a process may be stolen by a barrier in another Guard-
Group, the Guard that the Alternative selects may be different from the GuardGroup whose
enable() method has been called.

The selected AltableBarrier has a reference to the GuardGroup which contains it: this
GuardGroup has a field called ‘lastSynchronised’ and the selected AltableBarrier is assigned
to this field. Whether or not the currently executing GuardGroup contains the selected Al-
tableBarrier, the global lock is released and the enable method returns true. Returning true
here causes the previously enabled Guards to be disabled in reverse order.

The disable() method of a GuardGroup (which also begins by claiming the global lock)
changes the status of all the AltableBarriers it contains from PREPARED back to its default
value. If the GuardGroup’s ‘lastSynchronised’ field has been set to a non-null value (i.e. the
selected AltableBarrier belongs to this GuardGroup), then the executing process releases the
global lock and synchronises on a ‘gatekeeper’ barrier (this being a Barrier object with the
same set of enrolled processes as its corresponding AltableBarrier). This prevents synchro-
nised processes from proceeding until they have all been woken up and have executed the
important parts of their disable() methods. The disable() method returns true iff its ‘lastSyn-
chronised’ field is set to a non null value.

The Alternative class has also been subtly altered such that if a GuardGroup’s disable()
method ever returns true, then that GuardGroup’s index is returned by the priSelect() method
in preference to any non-barrier Guards which may have become ready in the interim.

In this way, all processes that have successfully synchronised on a barrier will have
stopped their Alternative’s enable sequence and begun disabling all previously enabled
Guards. Only the GuardGroup that contains the successful AltableBarrier will return true
when its disable() method is called; no process will be able to proceed until all other pro-
cesses enrolled on that barrier have also woken up (this prevents processes from waking up,
acknowledging the successful synchronisation and then immediately selecting the same event
again in the same Alternative). The Alternative class itself has been subtly altered to prevent
the readiness of non-barrier Guards from taking precedence over a GuardGroup.

6.4. Behaviour when Waiting on the Altmonitor

When a process begins waiting for a barrier synchronisation during a call to enable() in a
GuardGroup, that process can only be woken by the success or failure of barrier synchroni-
sations. However, when an Alternative has enabled all of its Guards, it begins waiting on its
altmonitor; when any of the enabled Guards become ready, the process is woken up (this in-
cludes non-barrier Guards). As such, the way in which processes waiting on their altmonitor
are dealt with is subtly different. The following is a list of those differences:

1. After the last GuardGroup in the Alternative has its enable() method called, the global
lock is not released. It remains claimed until just before the process begins waiting
on the altmonitor. This eliminates the possibility that another process may attempt to

steal it in the interim, since this process is no longer in a position to initiate synchro-
nisation attempts it must always be in a position where it can be stolen.

2. Prior to waiting on the altmonitor, the process’ BarrierFace indicates that the altmon-
itor is its local lock (for the purposes of waking the process) and that it is currently
not attempting to synchronise on any event.

3. While the process is waiting, it is not possible for aborted synchronisation attempts to
wake it. Only a successful synchronisation attempt or a non-barrier Guard becoming
ready will wake the process.

4. When waking up, the process must immediately claim the global lock in order to
check whether or not a barrier synchronisation has occurred. If it has, then the pro-
cess’s BarrierFace sets its ‘waking’ flag to true. If it has not, then the possibility re-
mains open for any given barrier to be selected until such time as its GuardGroup’s
disable() method is called.

These changes modify the behaviour associated with waiting for barrier synchronisation to
allow for possibility of non-barrier guards being selected, while eliminating risks of incon-
sistency and / or deadlock.

7. Testing

This section outlines some of the tests run to build confidence in the deadlock freedom of Al-
tableBarriers, as well as to compare AltableBarriers with the previous AltingBarrier’s algo-
rithm. The source code for all of these tests is available in a branch of the main JCSP subver-
sion repository [15]. All of these tests are part of the org.jcsp.demos.altableBarriers

package. For brevity the pertinent sections of all of the test programs are rendered as occam-π
pseudo-code.

For the purposes of assessing performance, it should be noted that at the time of writing,
the source code for several AltableBarrier related classes contain a significant quantity of
debugging statements sent to the standard output. Also no attempts have yet been made to
optimise any of the source code.

7.1. Stress Testing

Since a formal proof of deadlock has not been attempted, the VisualDemo class exists as a
means of stress testing as much of the AltableBarrier’s functionality as possible. It is de-
signed to test the responsiveness of processes to infrequently triggered high priority events,
compatibility with existing channel input guards as well as the ability to permit the arbitrary
selection of nested low priority events. The process network (Figure 4) centres around pro-
cesses of following type, connected in a ring via AltableBarriers labelled ‘left’ and ‘right’:

PROC node (BARRIER pause , left , right , CHAN SIGNAL mid)
WHILE TRUE

PRI ALT
SYNC pause

SYNC pause
mid ? SIGNAL

SKIP
ALT

SYNC left
SKIP

SYNC right
SKIP

:

node

Timer

mid

pause

rightleft

node node.

5 sec.
Timer

Figure 4. Process diagram showing the way in which node processes are connected in the VisualDemo class

As well as all ‘node’ processes, the ‘pause’ barrier is enrolled on by another process
which defaults as UNPREPARED. In an infinite loop it waits for 5 seconds before offering
only the ‘pause’ barrier. As such, every 5 seconds all node processes synchronise on the
‘pause’ barrier and then wait a further 5 seconds before being unpaused.

Each process is also connected via its ‘mid’ channel to another process (one each per
node). This process, in an infinite loop, waits for a random timeout between 0 and 10 seconds
then sends a signal to its corresponding node process via its ‘mid’ channel. Thus, when not
synchronising on the ‘pause’ barrier, a node process may synchronise on an ordinary channel
communication at random but relatively regular intervals.

When not synchronising on the ‘pause’ or ‘mid’ events, node processes synchronise with
either of their neighbouring node processes. The selection is arbitrary however where one of
the node’s neighbours has synchronised on its mid channel, the node process selects the other
neighbour (no excessive waiting for the other process to synchronise on its event).

As the name suggests, the VisualDemo class offers a GUI interface which shows these
events happening graphically in real time. Although no timing analysis of this system has
been attempted, at high numbers of processes (˜100) the ‘pause’ barrier can take a palpably
long time to complete a synchronisation (>1 second after the event first becomes available).

This test can be left to run over several days and has yet to deadlock. While this does
not eliminate the possibility of deadlock it is the most complete test of the capabilities of
AltableBarriers devised at the time of writing. As such the algorithm is considered to be
provisionally deadlock free.

7.2. Comparison with Oracle

To compare the relative performance of AltingBarriers with AltableBarriers, a process net-
work consisting of node processes connected in a ring is constructed. The number of node
processes in the network is determined by a ‘PROCESSES’ field. Each node process is con-
nected to a number of processes ahead of it by barriers, the number of nodes it is connected
to is determined by the ‘OVERLAP’ field. Therefore each node is enrolled on ‘OVERLAP’

number of barriers, this connects itself with (‘OVERLAP’-1) processes ahead of it in the
process ring. The pseudo-code for each node is as follows:

PROC node (VAL INT id, [] BARRIER bars)
INITIAL INT count IS 0:
INT start.time , end.time:
TIMER tim:
SEQ

tim ? start.time
WHILE TRUE

SEQ
ALT i = 0 FOR OVERLAP

SYNC bars[i]
count := count + 1

IF
((count > ITERATIONS) AND (id = 0))

SEQ
tim ? end.time
out.write ((end.time - start.time), out!)
KILL -- terminate all procs , test proc has finished

TRUE
SKIP

:

When the process network is started each node makes an arbitrary selection over the barriers
that it is enrolled on. It then increments a counter for every iteration of this choice. Once the
first node in the network (the node with an ID of 0) has reached a fixed number of iterations
the entire network is terminated. The amount of time elapsed between the process network
starting and it terminating can be used to compare the performance when the barriers are
implemented as AltingBarriers versus when they are implemented as AltableBarriers.

The first set of results has a fixed ring of 50 processes, completing 100 iterations. The
number of processes to which each node was connected was varied to highlight its effect on
speed at which these external choices are resolved. A network using AltingBarriers is tested
as is one using AltableBarriers where all processes default to PREPARED, finally a network
using AltableBarriers where all processes default to UNPREPARED is also used.

Table 1. Time (ms) for 50 processes to complete 100 iterations

Overlap AltingBarrier PREPARED UNPREPARED
2 250 12867 19939
3 294 13622 33652
4 303 14093 57939

It is immediately apparent that the existing JCSP AltingBarrier algorithm is approxi-
mately two orders of magnitude faster than both versions of the AltableBarrier algorithm.
The degree to which this difference is due to inherent algorithm complexity versus debug-
ging statements, spawning of extra processes and a lack of optimisation is unclear. A detailed
analysis of the effects of these factors is beyond the scope of this paper. Both the AltingBar-
rier and ‘PREPARED’ networks show modest increases in their completion times as the set
of barriers evaluated increases whereas the ‘UNPREPARED’ network shows a more dramatic
increase. This discrepancy may be due to the need of the ‘UNPREPARED’ nodes to exam-
ine (and initially reject as unready) all barriers that it encounters until all enrolled processes
are in a position to synchronise. Conversely the ‘PREPARED’ nodes will select a barrier to
attempt a synchronisation with immediately.

The next experiment uses the same AltingBarrier, ‘PREPARED’ and ‘UNPREPARED’
set up as the previous one. However the number of barriers each node is enrolled on is lim-
ited to two, the number of processes in the ring is instead varied to examine its effect on
performance. As before, 100 iterations are required to terminate the process network. Here,

Table 2. Time (ms) to complete 100 iteration for processes overlapped by two

Num processes AltingBarrier PREPARED UNPREPARED
25 70 5818 13218
50 111 11066 28545
75 330 17957 34516
100 638 24432 44308

the AltingBarrier network shows a steeper (possibly n*n) relationship between the number
of processes and completion time. The two AltableBarrier implementations show a steadier
(possibly linear) relation to the number of processes. As before the ‘PREPARED’ network
outperforms the ‘UNPREPARED’ one.

In both experiments the older AltingBarrier algorithm is significantly faster than net-
works using AltableBarriers. In both experiments nodes which defaulted to being ‘PRE-
PARED’ to synchronise on their barriers outperformed those which were ‘UNPREPARED’.

7.3. Priority Conflict Resolution

The pre-existing JCSP AltingBarrier class lacked any mechanism for expressing priority over
events. By adding such mechanisms the AltableBarrier class makes it possible for the unwary
programmer to introduce priority conflicts. Since the priority of events in an external choice
are determined locally, it is possible that these priorities can be defined in such a way as to
conflict with eachother. To test the behaviour of AltableBarriers under these conditions and
to ensure that such code results in an arbitrary choice, the ConflictTest class creates a network
of processes like the following:

PROC P1 (BARRIER a, b)
WHILE TRUE

PRI ALT
SYNC a

SKIP
SYNC b

SKIP
:

PROC P2 (BARRIER a, b)
WHILE TRUE

PRI ALT
SYNC b

SKIP
SYNC a

SKIP
:

Both P1 and P2 are enrolled on barriers ‘a’ and ‘b’. P1 processes prefer to synchronise on
‘a’ over ‘b’, while the opposite is true of P2. In both cases all processes are considered to
be PREPARED to synchronise on both barriers. So long as the process network as a whole
contains at least one P1 and P2 processes the behaviour of the program is the same.

All P1 processes immediately begin to wait pre-emptively for event ‘a’ to complete
while all P2 processes wait for ‘b’. Both sets of processes deadlock until one of the barrier

synchronisation attempts times out, as an example we will presume that ‘a’ times out first.
As such all processes not waiting for it to complete (all P2 processes) have their status with
regard to ‘a’ set to UNPREPARED, all P1 processes then abort their synchronisation attempt
on ‘a’. Since all P1 processes have abandoned waiting for ‘a’, they are now in a position
to consider ‘b’. Either all P1 processes will synchronise on ‘b’ before its synchronisation
attempt times out or ‘b’ will timeout and there will be a brief interval during which both ‘a’
and ‘b’ will be considered to be not PROBABLY READY. During this period a number of
processes will reassert their readiness to synchronise on both barriers and begin waiting on
the ‘altmontior’ until either event is ready. Since it will always be the case that there will be
at least one process not waiting on the altmonitor, there will always be at least one process
capable of arbitrating the conflict.

Any further iterations of this choice are likely to be resolved in the same way without
the initial delay. Again assuming that ‘b’ was selected over ‘a’, all P2 processes are still
considered UNPREPARED to synchronise on ‘a’, since they have have not encountered a
guard containing ‘a’ they have no opportunity to reset their status flag to their default of
PREPARED. This means that all P2 processes begin waiting on ‘b’ as usual. All P1 processes,
seeing that ‘a’ is not PROBABLY READY, skip ‘a’ and immediately synchronise on ‘b’.

This means that although priority conflicts can be (and are) resolved as arbitrary selec-
tions, there can be significant performance delays associated with making that choice. It is
therefore recommended that nested priority be used to avoid delays caused by priority con-
flicts. If both P1 and P2 consider ‘a’ and ‘b’ to be of the same priority then there are no delays
in making a selection.

8. Discussion

Given the testing (Section 7) performed so far it is possible to provisionally conclude that
process networks using AltableBarriers are robust and that they are not vulnerable to prior-
ity conflicts. The comparison tests with the existing AltingBarrier algorithm reveals that Al-
tableBarriers should be avoided for performance reasons where the ability to prioritise barrier
events is not required.

If priority is required and if performance is not an issue, AltableBarriers are useful and
offer trivial or manageable delays for modest process networks.

8.1. Future Work

Existing tests have already established that AltableBarriers can be used to atomically pause
or terminate process networks and that (using nested priority) this need not affect the existing
priority framework or introduce priority conflict. This section details as yet untested patterns
for ensuring fairness, avoiding starvation and (possibly) affecting the probability of events
being selected.

8.1.1. Fair Alting

Where nested priority is used, selection of the barriers within that block is considered to be
arbitrary, therefore no guarantees are made about the fairness of that selection in general.
Similarly fair alting cannot be achieved in the same way that is achieved using channel guards
(imposing a priority ordering on all events with the last selected guard last). This is because
imposing a priority ordering on all barriers where those barriers have overlapping sets of
enrolled processes leads to priority conflicts.

To get around this problem, code of the following type could be used to ensure a degree
of fairness:

PROC fair.alter ([] BARRIER bars)
BARRIER last.selected:
WHILE TRUE

PRI ALT
ALT i = 0 FOR SIZE bars

(NOT (bars[i] = last.selected)) && SYNC bars[i]
last.selected := bars[i]

SYNC last.selected
SKIP

:

Care must be taken to chose an initially consistent ‘last.selected’ for all processes, it is also
important to note that preconditions are not currently compatible with AltableBarriers and
that the ‘last.selected’ barrier would need to be fully removed from the nested priority block.

However this system ensures that all processes consider the last selected barrier event
to be of a lower priority than its peers without imposing a conflict prone priority structure
on the rest of the barriers. Further because the selection of the low priority barrier is done
on the basis of the last selected barrier, this change in the priority ordering is guaranteed to
be consistent for all processes enrolled on that barrier, therefore there this does not cause a
priority conflict.

While this may prevent any one event dominating all others, it may not however guar-
antee complete fairness. The possibility exists that in sets of overlapping events larger than
two, two events may consistently alternate as the last selected barrier.

8.1.2. Partial Priority

As well allowing for a general priority structure while avoiding priority conflicts, nested pri-
ority may be useful in affecting the probability of one or more events being selected. This
proposed scheme will be known as partial priority from this point onwards. Consider the sim-
plified model of the SITE processes in the TUNA blood clotting model [11] in Section 3.2,
no priority ordering is imposed on any of the events. In the case of the old JCSP Alting-
Barriers this meant that the ‘pass’ events were always selected over the ‘tock’ event. Using
AltableBarriers also allows for arbitrary selection of events, in practice (and in the absence
of preferences by other processes) the event initially selected by any process is the first one
listed in a GuardGroup.

As such if the ‘pass’ events are occur before the ‘tock’ event in a GuardGroup, the
‘pass’ events are naturally favoured over the ‘tock’ event. Now consider what happens if one
process, selected at random, prioritises ‘tock’ over the ‘pass’ barriers:

PROC site ([] BARRIER pass , BARRIER tock)
WHILE TRUE

PRI ALT
SYNC tock

SKIP
ALT i = 0 FOR SIZE pass

SYNC pass[i]
SKIP

:

Since the behaviour of processes with regards to priority is determined locally and since pro-
cess scheduling is unpredictable in JCSP, it is reasonable to assume that a number of unpri-
oritised SITE processes will be scheduled before the prioritised one. These processes will
initially select ‘pass’ events to synchronise on. Eventually some of these ‘pass’ events will
complete. However once the prioritised SITE process is scheduled it immediately selects the
‘tock’ event and steals any other processes waiting for other events. Thus, an unpredictable

(possibly random) number of processes will complete ‘pass’ events before all processes are
made to synchronise on the ‘tock’ event.

Using partial priority in this way may be another way in which starvation can be avoided
in otherwise priority free external choices. It may or may not be the case that using this
approach will have a predictable effect on the probability of certain events being selected.

8.1.3. Modelling in CSP

While it is possible to provisionally assert that the AltableBarrier algorithm is deadlock free
given the stress tests run on it, it is not possible to guarantee this until the algorithm has been
modelled in CSP. At the time of writing no such CSP models have been attempted.

Despite this (and the relative complexity of the algorithm) modelling the AltableBarrier
algorithm in CSP should not be considered intractable. Two different approaches to modelling
the algorithm may be attempted. The first is to model the algorithm in detail, this would
almost certainly require modelling individual fields as separate processes. The second is to
strip the algorithm down to its barest essentials (more or less a model of the 3 phase commit
protocol [10]) and identify the circumstances where such a simple system could deadlock.
The rest of the verification process would then consist of proving that such circumstances are
impossible (this may or may not be done using CSP).

9. Conclusion

The AltableBarriers algorithm presented in this paper, although noticeably slower than us-
ing the existing JCSP AltingBarrier class, can be practically applied to the prioritisation of
multiway synchronisation. This allows large, infrequently triggered barrier events with large
sets of enrolled processes to be consistently selected over smaller barrier events as well as
channel communications without any major changes to existing JCSP classes. As such Al-
tableBarriers are applicable in such problems as graceful termination as well as atomically
pausing entire process networks.

By allowing multiway synchronisations to be prioritised, it is no longer the case that
events with small sets of enrolled processes are automatically favoured over events with large
sets. Further the ability to create groups of events with no internal priority within larger
priority structures allows the programmer to avoid priority conflicts.

While as yet untested, there also appears to be no reason not to avoid possible problems
of starvation. Partial priority as well as fair alting provide mechanisms for ensuring a degree
of fairness in otherwise priority free arbitrary selections.

Acknowledgements

The comments of the anonymous reviewers on this paper are gratefully appreciated. Credit
is also due to Peter Welch and Fred Barnes (and to CPA’s contributors in general) whose
collective musings on the subject have helped to shape this research. This work is part of the
CoSMoS project, funded by EPSRC grant EP/E053505/1.

References

[1] C.A.R. Hoare. Communicating Sequential Processes. Communications of the ACM, 21(8):666–677, Au-
gust 1978.

[2] A.W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall, 1997. ISBN: 0-13-674409-5.
[3] A.A. McEwan. Concurrent program development, d.phil thesis. The University of Oxford, 2006.

[4] P.H. Welch, N.C.C. Brown, J. Moores, K. Chalmers, and B. Sputh. Alting barriers: synchronisation with
choice in Java using CSP. Concurrency and Computation: Practice and Experience, 22:1049–1062, 2010.

[5] P.H. Welch, N.C.C. Brown, J. Moores, K. Chalmers, and B. Sputh. Integrating and Extending JCSP.
In Alistair A. McEwan, Steve Schneider, Wilson Ifill, and Peter Welch, editors, Communicating Process
Architectures 2007, volume 65 of Concurrent Systems Engineering Series, pages 349–370, Amsterdam,
The Netherlands, July 2007. IOS Press. ISBN: 978-1-58603-767-3.

[6] P.H. Welch and P.D. Austin. The JCSP (CSP for Java) Home Page, 1999. Accessed 1st. May, 2011:
http://www.cs.kent.ac.uk/projects/ofa/jcsp/.

[7] P.H. Welch and F.R.M. Barnes. Communicating mobile processes: introducing occam-pi. In A.E. Abdal-
lah, C.B. Jones, and J.W. Sanders, editors, 25 Years of CSP, volume 3525 of Lecture Notes in Computer
Science, pages 175–210. Springer Verlag, April 2005.

[8] P.H. Welch and F.R.M. Barnes. Mobile Barriers for occam-pi: Semantics, Implementation and Applica-
tion. In J.F. Broenink, H.W. Roebbers, J.P.E. Sunter, P.H. Welch, and D.C. Wood, editors, Communicat-
ing Process Architectures 2005, volume 63 of Concurrent Systems Engineering Series, pages 289–316,
Amsterdam, The Netherlands, September 2005. IOS Press. ISBN: 1-58603-561-4.

[9] C. Mohan and B. Lindsay. Efficient commit protocols for the tree of processes model of distributed
transactions. ACM SIGOPS Operating Systems Review, 19(2):40–52, 1985.

[10] D. Skeen and M. Stonebraker. A formal model of crash recovery in a distributed system. IEEE Transac-
tions On Software Engineering, SE-9:219–228, 1983.

[11] P.H. Welch, F.R.M. Barnes, and F.A.C. Polack. Communicating complex systems. In M.G. Hinchey,
editor, Proceedings of the 11th IEEE International Conference on Engineering of Complex Computer
Systems (ICECCS-2006), pages 107–117, Stanford, California, August 2006. IEEE. ISBN: 0-7695-2530-
X.

[12] C.J. Fidge. A formal definition of priority in csp. ACM Transactions on Programming Languages, Vol 15.
No 4:681–705, 1993.

[13] G. Lowe. Extending csp with tests for availability. Communicating Process Architectures, pages 325–347,
2009.

[14] D.N. Warren. PCOMS source code. Accessed 1st. May, 2011: http://projects.cs.kent.ac.uk/
projects/jcsp/svn/jcsp/branches/dnw3_altbar/src/org/jcsp/lang/.

[15] D.N. Warren. PCOMS test code. Accessed 1st. May, 2011: http://projects.cs.kent.ac.uk/
projects/jcsp/svn/jcsp/branches/dnw3_altbar/src/org/jcsp/demos/altableBarriers/.

