
Adding Formal Verification to occam-π

Peter H. WELCHa, Jan B. PEDERSENb, Fred R.M. BARNESa,
Carl G. RITSONa and Neil C.C. BROWNa

aSchool of Computing, University of Kent, UK
bSchool of Computer Science, UNLV, USA

phw@kent.ac.uk, matt@cs.unlv.edu, frmb@kent.ac.uk, cgr@kent.ac.uk, nccb@kent.ac.uk

Abstract. This is a proposal for the formal verification of occam-π programs to be
managed entirely within occam-π. The language is extended with qualifiers on types
and processes (to indicate relevance for verification and/or execution) and assertions
about refinement (including deadlock, livelock and determinism). The compiler ab-
stracts a set of CSPm equations and assertions, delegates their analysis to the FDR2
model checker and reports back in terms related to the occam-π source. The rules
for mapping the extended occam-π to CSPm are given. The full range of CSPm as-
sertions is accessible, with no knowledge of CSP formalism required by the occam-π
programmer. Programs are proved just by writing and compiling programs. A case-
study analysing a new (and elegant) solution to the Dining Philosophers problem is
presented. Deadlock-freedom for colleges with any number of philosphers is estab-
lished by verifying an induction argument (the base and induction steps). Finally,
following guidelines laid down by Roscoe, the careful use of model compression is
demonstrated to verify directly the deadlock-freedom of an occam-π college with
102000 philosphers (in around 30 seconds). All we need is a universe large enough to
contain the computer on which to run it.

Keywords. concurrency, formal verification, model checking, occam-pi, CSP, FDR.


