
Serving Web Content with
Dynamic Process Networks in Go

James WHITEHEAD II

Oxford University Computing Laboratory, Wolfson Building, Parks Road
Oxford, OX1 3QD, United Kingdom;

jim.whitehead@comlab.ox.ac.uk

Abstract. This paper introduces webpipes, a compositional web server toolkit written
using the Go programming language as part of an investigation of concurrent software
architectures. This toolkit utilizes an architecture where multiple functional compo-
nents respond to requests, rather than the traditional monolithic web server model. We
provide a classification of web server components and a set of type definitions based
on these insights that make it easier for programmers to create new purpose-built com-
ponents for their systems. The abstractions provided by our toolkit allow servers to
be deployed using several concurrency strategies. We examine the overhead of such a
framework, and discuss possible enhancements that may help to reduce this overhead.

Keywords. concurrency, web-server, software architecture, golang, Go programming
language

Introduction

The construction of a web server is an interesting case study for concurrent software design.
Clients connect to the server and request resources using the text-based HTTP [1] protocol.
These resources may include various types of content, such as static documents, images,
or dynamic content provided by some web application. In ideal conditions, the web server
would handle these requests sequentially, ensuring that each is served as quickly as possible.
Unfortunately, the server is often capable of producing content much faster than the client
is capable of receiving it. When confronted with actual workloads in real-world conditions,
web servers must be capable of responding to many clients concurrently.

There are several approaches to providing this concurrent behaviour. The ubiquitous
Apache ‘httpd’ web server uses a combination of process and/or thread pools in order to
respond to requests [2]. Lighttpd [3] and Nginx [4] both utilize an event-driven asynchronous
architecture [5] to ensure scalability. Yaws [6], written in Erlang, and occwserv [7], written
in occam-π, both make use of lightweight threads. In addition to the different approaches for
concurrency, each web server approaches the problem of serving web requests differently.

This paper introduces webpipes [8], a compositional web server toolkit, written as part
of an investigation of concurrent software architecture. This toolkit enables the programmer
to construct multi-purpose web servers where the configuration and program code directly
reflect the actual behaviour of the server. Built upon the premise that any web request can be
fulfilled by a series of single-purpose components, webpipes allows even complicated web
configurations can be expressed in a way that is clear and understandable.

The webpipes toolkit is an example of a more general component-based architecture,
where networks of components communicate with each other via message passing over ex-
plicit channels to process and fulfill requests. Although this particular implementation makes



use of specific Go language features, the architecture and techniques used should translate
well to any language that supports process-oriented programming and message passing.

The main contributions of this paper are a compositional architecture for constructing
processing pipelines, and an implementation of this architecture for serving web requests.
Combined, these are an example of using concurrency as a software design principle, rather
than a feature addition to an otherwise sequential program. Additionally, we present our
impressions of the Go programming language for concurrent programming.

The rest of the paper is organised as follows: Section 1 provides a short introduction to
the Go programming language and the features that are relevant to the implementation of the
webpipes toolkit. The design and implementation of the toolkit is presented in Section 2,
including both an architectural overview and details of individual server components. Section
4 addresses the performance of the toolkit, while we examine the initial conclusions and
discuss future work in Section 5.

1. Go Programming Language

Go is a statically-typed, systems programming language with a syntax reminiscent of C. Pro-
grams are compiled to native code and are linked with a small runtime environment that
performs automatic memory management and scheduling for lightweight processes called
‘goroutines’. It also features a concurrency model heavily inspired by CSP [9] where go-
routines communicate with each other via message passing over explicit channels. Pointers
are a feature of the language, however the type system does not allow for pointer arithmetic.

In this paper we focus on the features of the Go programming language that are used
in the webpipes toolkit and may be unfamiliar to the reader. In particular we will not cover
the syntax or basic semantics of the language, which can be found in the official language
specification [10]. More comprehensive information on the language can be found on the
language website [11].

1.1. Concurrency

The feature of Go that is most relevant to this work is the built-in support for concurrency.
This includes a control structure called a goroutine, a cross between a lightweight thread and
a coroutine. Spawning a new goroutine is a matter of prefixing a function call with the go

keyword. The evaluation of the call will execute in a separate goroutine, while the calling
goroutine continues execution with the next statement. The cost of creating a goroutine is
mainly the allocation of the initial stack, plus the cost of the function call itself. The stack of
a goroutine is segmented, starts small, and grows on demand. This allows larger number of
goroutines to be spawned without the massive resource consumption associated with using
operating system threads.

Once a goroutine has been created, its subsequent activity is completely independent of
its creator, except that they can share memory and may communicate with each other through
channels. Shared memory among goroutines allows for efficient implementation of certain
algorithms, but its use is generally discouraged. The documentation for the Go language
states: “Don’t communicate by sharing memory; share memory by communicating.” and this
pattern can be seen throughout the existing code base.

A channel in Go is an explicitly typed, first-class value that provides synchronous many-
to-many communication between goroutines. Channels may carry any first-class value, in-
cluding functions or even other channels.

Channels are dynamically allocated using the make function, which takes the type of the
channel to be created and optionally the size of the channel’s buffer. By setting the buffer
of a channel to a value greater than 0, sends are asynchronous as long as the buffer is not



full, and similarly with receives when the buffer is non-empty. Here are two example channel
declarations:

primes := make(chan uint, 10) // buffered uint channel with 10 slots
writers := make(chan string) // unbuffered channel of string values

Sending a value v on a channel ch is ch <- v. Receiving from a channel ch is the
expression <-ch, which can be used anywhere an expression can be used, including control
structures and assignments. Channels are bidirectional when created but can be constrained
to allow only sending or receiving using type conversion, as shown in the following:

var primes_recv <-chan uint = primes
primes_send := chan<- uint(primes)

The first assignment is an example of an implicit type conversion to the reading end of
a channel of unsigned integers (<-chan uint). This conversion may also happen implicitly
during assignment and the resolution of function arguments and results. The second assign-
ment shows an explicit cast from a bidirectional channel to the sending end (chan<- uint).
These examples also illustrate the difference between explicit variable declaration and a short
form of declaration using the := operator. The type of a value declared this way is automati-
cally inferred at compilation.

Following the execution of this code there are three versions of the channel: primes
which is still bidirectional, and two references to the send and receive ends of the same
channel. Although the directionality of a channel can be reduced in this way, you cannot
obtain a bidirectional channel reference from a unidirectional one.

1.1.1. Idiomatic goroutines

Since the execution of a goroutine is independent of the calling code, it is a common Go
idiom to pass a channel into the goroutine so it can communicate its status to the caller. This
might look something like this:

func doSomething(done chan bool) {
// do some work here
done <- true

}

done := make(chan bool)
go doSomething(done) // spawn a new goroutine
isDone := <-done // wait for it to finish

The type of the channel could be anything, in this case we chose the bool type, but it
could just as well be a channel of numbers or strings. It is not necessary to assign the value
that is received over the channel, it could be discarded by not assigning it.

In the event that a process needs to wait for more than one channel event, but cannot be
sure which event will occur next, the select statement can be used. Similar to the ALT pro-
vided by occam, if multiple cases can proceed, the runtime system makes a pseudo-random
fair choice to decide which communication event proceeds. If no case can proceed, the default
case (if supplied) is taken. This allows for the implementation of non-blocking tests of send
and receive events, where the communication only proceeds if it would be non-blocking.

1.2. Objects and Methods

Go does not have classes and does not support the kind of class-based object oriented style
with inheritance popularised by C++ and Java. However, Go does allow the developer to
declare new named types, and then allows for the definition of methods that act on these



types. This style of programming is very general in that methods can be defined for any sort
of data.

Take the following type definitions for binary and unary functions on integers:

type UnaryIntFunc func(int) int
type BinaryIntFunc func(int, int) int

Although it may seem a bit odd to readers who are more familiar with traditional object-
oriented programming, we can define methods on these new types. For example, consider the
Curry method for binary integer functions:

func (fn BinaryIntFunc) Curry(x int) UnaryIntFunc {
return func(y int) int {
return fn(x, y)

}
}

This method takes a BinaryIntFunc as its receiver, the terminology used in Go to
indicate the value on which the method is invoked, and takes a single int argument. It then
returns a unary function in the form of an anonymous closure. This function represents the
partially evaluated form of the binary function with the first argument already fixed. These
definitions can be used to manually curry any binary function on integers, as in the following:

var Add BinaryIntFunc = func(x, y int) int {
return x + y

}

AddTwo := Add.Curry(2)
five := AddTwo(3)
seven := AddTwo(5)

We should point out a few subtleties in this example. Firstly, the declaration of the Add

function uses the full form of variable declaration where the type is explicitly specified. This
is because any implicit form of declaration will assume the simplest type, in this case the
underlying func(int, int) int type. Since there is no Curry method defined for that type,
the program will fail to compile. By specifying the type explicitly, we give the compiler the
information it needs in order to locate the Curry method and compile the program. Secondly,
in our definition of the Add function, we have omitted the type specifier for the first argument.
When a function has multiple consecutive arguments with the same type, only the last type
specifier is required.

The most important thing to take away from this example is that the notion of an “object”
in Go is quite different to other object-oriented programming languages. Although the same
sort of construct in possible in Java through the use of class wrappers and anonymous classes,
the Go program is succinct and clear. This technique ends up being a very powerful feature
in the design and implementation of the webpipes toolkit.

1.3. Interfaces Types

Rather than providing an explicit type hierarchy for objects, Go provides a way to specify
the behaviour of types using interfaces. An interface type specifies a set of methods that a
type must provide in order to implement the interface. For example, the Writer interface is
defined by the io package in the standard libraries:

type Writer interface {
Write(p []byte) (n int, err os.Error)

}



A type satisfies this interface if it implements a method called Write that takes a slice1

of bytes and returns both an integer and an os.Error object (Go allows a function to return
multiple results). The documentation for this interface notes that the return values should
indicate the number of bytes that were actually written as a result of the call, and any error
that occurred. Once the interface has been defined, it can be used as a type throughout a
program: in function argument and result types, and even in further type definitions. Here are
two further examples from the Go standard libraries.

func WriteString(w Writer, s string) (n int, err os.Error)

type WriteCloser interface {
Writer
Closer

}

The WriteString function is a utility function that takes in a string and converts it to a
slice of bytes before writing it to the writer. By using the Writer interface, the WriteString
function can be applied to any object that provides the Write method. This means that writing
a string to a file, a network socket or to a gzipped network socket are all the same as far as
the WriteString function is concerned.

In the specification of an interface type we can list another interface, as shown in the
above definition of WriterCloser. This declares WriterCloser to be a sub-type of both
the Writer and Closer interfaces; any type that implements the first can be used wherever
the second or third is required.

2. Design and Implementation

The webpipes toolkit is a compositional web server framework that is centered around the
observation that different classes of HTTP requests can be served by different single-purpose
components. These components can be chained together for more complicated behaviour.
This is in contrast to more conventional web server design, where requests of all classes
are served by a single handler. Although there is clearly a potential advantage to the single
handler design from a performance standpoint, web servers that are written in this way can
be incredibly difficult to understand and configure.

Our toolkit is a layer that runs on top of the basic web server functionality provided by
the http standard library. It provides components that enable various response behaviours,
such as interacting with external applications via the CGI [12] protocol or compressing server
output. These components can be composed together into processing pipelines that will han-
dle different classes of HTTP requests. As an example, consider a web server that serves
static files but compresses any of those files served from the js/ or css/ subdirectories. Fig-
ure 1 shows the process network for this server, which directly reflects the desired behaviour
of this server.

In this figure the leftmost and rightmost entities represent the portions of the web server
that are responsible for handling the details of the HTTP protocol. The front-end of the server
accepts an incoming network connection, reads a request from the client, and then dispatches
it to the appropriate handler. The back-end of the web server either closes the connection or
attempts to re-use it to handle another request from the same client. Handlers are represented
by the paths leading from the server, and represents distinct processing pipelines that are
distinguished by URL. Each of these paths ends in an Output component, a toolkit-provided
core component that performs the actual writes to the client.

1Although slices are a higher-level contiguous view of an array, they are distinct types. In this paper, as in
Go, we refer to these simply as slices.



FileSource/

FileSource/js

FileSource/css

Output

CompressFilter

CompressFilter

Output

Output

Figure 1. Process network for static file server with path-based compression.

The basic function of web servers is to implement the HTTP protocol, and we have used
the http package from the standard Go libraries to do this. The focus of the webpipes toolkit
is on providing the content. This involves both the header and the body of the HTTP response.

2.1. Allowing for Collaborative Response Generation

In the simple web server model, where each request is fulfilled by a single handler, the logic
is very simple: the handler first sets and outputs the headers, and then writes the body of the
response directly to the client. This matches the output required by the protocol. Unfortu-
nately, this does not work as soon as we allow multiple components to be involved in the
generation of a response— if the first component started writing the content, then it would
already be too late for any of the later components to set headers or examine the content
being generated.

The webpipes package addresses this problem by introducing a set of new types that
are used to de-couple the setup of a response from content generation, by removing direct
access to the underlying network connection and providing an alternate means of transmitting
a response. This is accomplished through the Conn type, which is a struct that represents
an HTTP client connection. This type encapsulates the request itself and provides a way of
generating a response by defining the following methods:

// Response headers and status code methods
func (c *Conn) SetHeader(string, string)
func (c *Conn) GetHeader(string) string
func (c *Conn) SetStatus(int)

// General utility
func (c *Conn) HTTPStatusResponse(int)

// Content methods
func (c *Conn) NewContentWriter() io.WriteCloser
func (c *Conn) NewContentReader() io.ReadCloser

The first three methods allow a component to set and get the headers and the numeric
status code for the response. The HTTPStatusResponse method is a utility that provides
a canned HTTP status response, such as 404 (Not Found) and 500 (Internal Server Error).
These responses normally include content that indicates what sort of error has occurred to the
user, and is used frequently in writing web components, so it is included as a utility method.

The final two methods are the ones that enable the package to break response generation
into two steps, by allowing for the allocation of pipelines of content readers and writers. A
content writer is an object that can write to the output steam of the response, while a content
reader provides a way to read content has been written by components earlier in the pipeline.



A component that produces content is called a source and uses a content writer, while filter
components use both a content reader and writer to examine or transform the content.

These readers and writers are created in pairs, starting with a content source, and thus
a call to NewContentWriter. The Conn object creates both a writer and a corresponding
reader, storing the reader so it can be returned from the next call to NewContentReader.
Subsequent invocations create new pairs of writers/readers as needed. This means that an
individual component will only have one half of a pair, and all pipeline ends will be connected
into a content pipeline. Operations on these readers and writers are synchronous.

Figure 2 shows a version of the same server from Figure 1 augmented to display the
content pipeline that is created for each of the different paths. Each “W” represents a content
writer, and each “R” indicates a content reader.

FileSource/

FileSource/js

FileSource/css

Output

W R

CompressFilter

W R+W

CompressFilter

W R+W

Output

R

Output

R

Figure 2. Static file server process network with dynamic content pipeline.

2.2. Understanding Components

Up to this point, we have used the term component to mean a portion of the web server that
is partially responsible for responding to a request. The webpipes package explicitly defines
the Component interface type with a single method that takes a Conn object along with the
request and returns a boolean value:

type Component interface {
HandleHTTPRequest(*webpipes.Conn, *http.Request) bool

}

This boolean value indicates whether or not the connection should be passed to the next
component. If a component ever returns false it should be prepared to manually perform
output and close the connection, however this operation is rate. Consider a component that
responds to every request with the contents of a static string, in a plain text response2:

type StrComp struct {
content string

}

func (s StrComp) HandleHTTPRequest(c *Conn, r *Request) bool {
writer := c.NewContentWriter()
if writer == nil {

2Package names in this example have been omitted for formatting reasons. As indicated in the interface
declaration, the Conn type is defined by the webpipes package and the Request type is defined by the http
package. In a typical program, all type references are normally fully qualified.



c.HTTPStatusResponse(http.StatusInternalServerError)
return true

}
c.SetHeader("Content-Type", "text/plain; charset=utf-8")
c.SetStatus(http.StatusOK)

generate := func() {
io.WriteString(writer, s.content)
writer.Close()

}

go generate()
return true

}

Since this component is a source, the first thing we do is request a content writer from
the connection. If the connection is unable to return one for some reason, this means there has
been an internal server error, so we indicate this to the client using the HTTPStatusResponse
method. This should never happen, as it indicates a semantic error in the component pipeline,
such as a source component appearing somewhere other than the start of the pipeline.

Once we’ve obtained the content writer, we set the header and the status on the response.
Next we create a function that will actually perform the output of the content and then invoke
it in a new goroutine. We then return true to indicate that the connection should be passed
onto the next component.

The operations that are taken in the main goroutine, such as allocating the content writer,
setting the status code and header, are all part of the setup phase of responding to a request.
The work performed in the generate function, and thus in the “content goroutine”, is part
of the content generation phase of request fulfillment. When the HandleHTTPConnection

method call returns, it indicates that the setup phase is complete and that the connection can
be sent to the next component in the network.

In order to use this component, we would need to create a new instance of the StrComp
struct type, set to contain the string of our content. For example:

hello := StrComp{content: "Hello World!"}

2.3. Classifying Components

Although the Component interface type allows very general components, we have already
identified two kinds of components that might exist in a processing pipeline: sources and
filters. Each of these is a specialisation of a more general type, called a pipe. These compo-
nents do not normally concern themselves with the content stream, although they can always
request content readers and writers from the connection object. Pipes are often used to ex-
amine the request or response headers and take some action, such as re-routing the request to
another portion of the network or logging a message to the console.

The webpipes packages takes these classifications and provides a set of corresponding
type declarations that assist in the creation of new components by automatically handling the
boilerplate allocation of content readers and writers:

type Pipe func(*Conn, *Request) bool
type Source func(*Conn, *Request, io.WriteCloser) bool
type Filter func(*Conn, *Request, io.ReadCloser, io.WriteCloser) bool

These type declarations allows the programmer to write components that are simply
functions. This avoids the need to create a type wrapper and define an HandleHTTPConnection



method. Here’s a TextStringSource that works quite similar to the StrComp component
we’ve just defined in a more compact and readable form:

func TextStringSource(content string) Source {
return func(conn *Conn, req *Request, writer io.WriteCloser) bool {

conn.status = http.StatusOK
conn.SetHeader("Content-type", "text/plain; charset=utf-8")

generate := func() {
io.WriteString(writer, content)
writer.Close()

}

go generate()
return true

}
}

This code defines a function that produces a text string component based on the content
argument. Because this component is declared as a Source, it will automatically inherit the
HandleHTTPConnection defined by the webpipes package.

2.4. Writing a Filter Component

Filter components allow the programmer to examine and transform the contents of a response
before it is output to the client. This may be as simple as performing compression on the
output stream or something as complicated as performing semantic analysis of the output
and altering it in some way. The body of a filter component looks quite similar to that of
a source component, with the exception of the content goroutine. Rather than being able
to unconditionally write the content to the response, the filter first use the content reader
to obtain the data. Here is an example of a filter that performs rot13 encryption, a simple
substitution cipher, on any alphabetic characters in a content stream:

var Rot13Filter Filter =
func(conn *Conn, req *http.Request, reader io.ReadCloser,

writer io.WriteCloser) bool {

filter := func() {
// Wrap the reader so all reads come out rot13’d
rot13 := NewRot13Reader(reader)
io.Copy(writer, rot13)
writer.Close()
reader.Close()

}
go filter()
return true

}

This filter makes use of two functions that we haven’t seen before. The NewRot13Reader
is a function provided by the toolkit. This function takes in an io.Reader and returns another
that performs on-demand reads from the inner io.Reader, encrypts the data using the rot13
cipher, and returns the result. The io.Copy() function is a utility provided by the standard
libraries to copy all of the data from a writer to a reader. If the programmer chooses, they
could manually read in the blocks of data from the content reader and output them to the
content writer; the io.Copy is just a utility that helps to automate this mechanical process
when the transformation can be expressed using readers and writers.



FileSource/

SimpleAuth/sec

Output

FileSource

Output

Output

Figure 3. File server with private area requiring authentication.

Other than spawning the content goroutine to perform the filtering, this component does
not perform any other work: it does not need to change the status of the response or set any
additional headers. In a more realistic example, such as changing the encoding or compress-
ing the stream, the client would need to be notified via headers so they would know how to
decode the data.

Although the filter components that are presented in this work focus on textual transfor-
mations, it is also possible to alter binary content such as images. This could be used to add
watermarks to images on-the-fly, replace images with lower-quality versions on older clients
or any number of other complicated behaviours.

2.5. Pipe Components and Branching Networks

The most general component type, Pipe is only a thin wrapper around the base Component

type, providing a HandleHTTPConnection method that just invokes the pipe function itself.
By default, a pipe component does not need any content readers or writers, so there’s no
additional work for the method to perform.

A good example of a simple pipe component is one that logs incoming requests to a file
for later review. Such an access logging component does not need to know anything about
the content being written. It just takes information about the client, request, and response and
logs an entry.

A more complicated pipe example is one that makes routing decisions based on details
provided in the request, such as an authentication component. The HTTP simple authenti-
cation protocol requires clients to specify credentials using headers and allows the server to
examine and validate these credentials before proceeding with the request. If the credentials
are not valid, the client may be prompted by their web browser or may simply be denied ac-
cess to the resource, depending on configuration. This sort of construct requires a branching
network, an example of which is shown in Figure 3.

Rather than a non-branching path from start to finish, there are two edges leading from
the authentication component that correspond to these different behaviours. Although branch-
ing networks are slightly more difficult to construct, the components have the same type and
semantics as any other component.

2.5.1. Conditional Components

It is possible that a source or filter component may not apply to every single request it encoun-
ters. This is a problem since the HandleHTTPConnection method provided by the toolkit
automatically allocates the content readers and writers and the toolkit doesn’t provide a way
to de-allocate them. In this case, the programmer can either construct their own type that
implements the Component interface or they can utilize a pipe component that then invokes
another component when the conditions are correct.



For example, not all clients are able to support compression of content. This information
is only available from the headers that are sent by the client along with the request. General
compression components should ensure that the content is only compressed by a supported
method, if any. This could be accomplished by taking the following steps:

1. Check the HTTP protocol version to see which headers need to be examined.
2. Check the headers to see if any of the compression methods that are supported by the

server are also supported by the client.
3. If no supported compression methods are supported, return true and make no alter-

ations.
4. Otherwise, invoke the HandleHTTPConnection method of the appropriate compres-

sion filter, passing in the connection and request in order to insert the compression
filter into the content stream.

Accordingly, the webpipes toolkit provides unconditional components that perform gzip
and flate compression, called GzipFilter and FlateFilter, and a conditional component
that performs the appropriate header checks, called CompressionFilter. The programmer
is free to include whatever component is most appropriate for the desired configuration.

3. Creating Component-based Web Servers

We have introduced the compositional web server architecture provided by the webpipes

toolkit and introduced the different classifications of server components. This section ex-
plains how we can use the very basic server provided by the http package along with our
toolkit to construct function web servers using these components.

3.1. Default Multiplexing Server

The http package provides a very simple multiplexing server. That is, the server utilises a
single network connection, but allows multiple handlers to respond to incoming requests. In
order to accomplish this, handlers must be explicitly registered with the server along with a
URL prefix string that is used to match requests to the appropriate handler. The webpipes

toolkit allows you to take advantage of this server by ensuring that the created component
chains conform to the http.Handler interface that is required by this server.

The following is an example server with two handlers:

func main() {
http.Handle("/", webpipes.Chain(

webpipes.FileServer("http-data", "/"),
webpipes.OutputPipe,

))
http.Handle("/hello", webpipes.Chain(

webpipes.TextStringSource("Hello, world!\n"),
webpipes.OutputPipe,

))
server := http.Server{

Addr: ":12345",
}
log.Printf("Starting test server on %s", server.Addr)
err := server.ListenAndServe()
if err != nil {

log.Fatalf("Error: %s", err.String())
}

}



The first handler is a chain of components that serves files from the http-data sub-
directory using a component created using the FileServer function. This function takes a
base directory and a prefix and serves files from that directory, stripping the prefix from the
start of the URL. If this were the only handler registered with the server, any well-formed
request would be routed to it, since any such request would begin with /.

The second handler is for any request that begins with the URL /hello. The server
automatically finds the longest prefix match between the request and the registered handlers,
so this handler is able to provide a more specific pattern than the file server without any
issues. Each client that is routed through this handler is sent the text string "Hello, world!"

as text/plain content using the previously introduced TextStringSource. Both component
chains include the OutputPipe component, which handles the transmission of the response
to the client’s network socket.

The last few lines of this program are boilerplate that create a new http.Server ob-
ject with the Addr member set to the host and port on which the server should bind. We
then invoke the ListenAndServe method on this server to begin listening for client con-
nections. The server will continue until an error occurs in the accepting of new connections
and will report this error before exiting. There are a few additional attributes you can set on
the http.Server object including socket read and write timeouts, but for many servers the
above code is sufficient.

3.2. Constructing Component Chains

In the preceding example, the webpipes.Chain function was used without explaining its
purpose. This function takes any number of components as arguments and returns an object
that implements the http.Handler interface, allowing it to be used directly as an argument to
http.Handle. These components are stored in an array and when a connection arrives, each
component is applied to the connection in turn; a simple form of functional composition. For
many web server configurations, this sequential execution of components is likely the most
efficient. Each connection is served as quickly as it can be, subject to the number connections
currently being processed by the server.

The Component interface defined by the webpipes package, however, only defines the
behaviour of components and how they interact with each other; it doesn’t specify anything
about how the components are connected together or how they are actually executed when
handling a client connection. The Chain function is just one example of how component
networks might be connected and executed.

In the case where a processing pipeline is not necessarily sequential, such as the pre-
viously mentioned SimpleAuth component that requires branching, the webpipes toolkit
provides additional methods of constructing handlers from components. The ProcNetwork

function and its variants can be used to turn a list of components into a static process network,
while the NetworkHandler function can take the input and output channel for a network of
processes and allow it to be used as a handler in the default web server.

When a list of components is passed to the ProcNetwork function, a small goroutine is
started for each of them that sits and accepts incoming connections from the channels that
connect each component to its neighbors. When a connection is received, the component
function itself is invoked and when this function concludes, the connection is passed along
the network.

The ProcNetworkInOut function is the same, but allows you to specify the input and
output channels for the overall network. This function is really only used when the program-
mer is constructing their own process networks and channels, but helps connect portions of a
process network together. Either of the channel arguments may be nil and the function will



create a new channel for you. Both versions of the ProcNetwork function always return the
input and output channels for the constructed network.

For example, the following code allocates four channels (two for overall network input
and output and two to connect the components together) and spawns three goroutines that
will act as server farms for each of the components.

in, out := webpipes.ProcNetwork(
webpipes.FileServer("http-data", "/"),
webpipes.CompressPipe,
webpipes.OutputPipe,

)

Once created, these channels can then be passed to NetworkHandler, enabling the pro-
cess network to be used as a handler in the web server:

http.Handle("/compressed", webpipes.NetworkHandler(in, out)

When a request is received, the web server invokes the ServeHTTP method that is defined
by the webpipes package for network handlers. This injects the connection into the process
network via the input channel and then waits for the connection to emerge on the output
channel. Once received, the function returns, allowing the http server to close or re-use the
client connection as appropriate.

3.2.1. Manual Process Networks

It is conceivable that a programmer would like to create their own network of processes and
then use it as a handler in the default web server. The NetworkHandler function can also
be used for this purpose, as long as the network has an input and an output channel that are
exclusively open-ended; that is no other process should attempt to write to the input channel
or read from the output channel.

In reality, anyone who is creating their own process network and server farms should
probably implement the http.Handler interface directly, since it will give them better con-
trol over how requests are handled.

4. Performance and Comparison

Web server performance is typically measured using some combination of throughput and
latency. Throughput indicates the number of requests that can be served per second, while
latency indicates the amount of time taken to serve a request. These micro-benchmarks are
performed under varying loads, used to simulate a multiple clients attempting to access the
web resources simultaneously.

We have measured the performance of both webpipes and the stock Go http package
against the Apache ‘http’ web server, representing the ideal case in these benchmarks. It is
not entirely fair to compare a fledgling programming language with an unoptimised http

library against a well-tested production web server. However, this enables us to show that
there are no artificial bottlenecks in the testing environment by measuring a server that with
ideal performance within our testing ranges.

The benchmark we performed involved requesting a static 4KB file multiple times across
a multitude of concurrent connections, to illustrate the throughput of the server in terms of
requests per second. These tests were performed in the following test environment:

• Server: 3.00Ghz Intel Core 2 Duo with 4GB of RAM, running Ubuntu 10.4.1 and
Linux kernel 2.6.32-24.



• Clients: 1.66Ghz Intel Centrino Duo with 1GB of RAM, running Ubuntu 10.10 and
Linux kernel 2.6.35-22.

• Switch: HP Procurve 2724 Gigabit switch.

The ‘httperf’ [13] program was used to perform the benchmarks by generating a sus-
tained load against the server. In addition, we created a tool called ‘autohttperf’ [14] that
distributes the load generation across multiple client machines and can perform automated
stress testing of web servers.

●

0 5000 10000 15000

0
50

00
10

00
0

15
00

0

attempted requests/second

re
qu

es
ts

/s
ec

on
d

Apache
Go
Chain
ProcChain

Figure 4. Web server throughput.

●

0 5000 10000 15000

0
20

40
60

80
10

0

requests/second

pe
rc

en
ta

ge
 o

f e
rr

or
s

Apache
Go
Chain
ProcChain

Figure 5. Percentage of connection errors.

Figure 4 shows the number of successful requests per second against the number of
attempted requests per second and Figure 5 shows the percentage of connection/request errors
against the number of attempted requests per second. You can see that Apache maintains the
ideal result, being able to serve all incoming requests within the client timeout window. On
the other hand, the Go http web server with no framework overhead is able to sustain just
under a third of this amount before it reaches its saturation point. This saturation point is
artificial 3– it is a hardcoded number of connections that are allowed to be active at any point
in time. In my test environment, without this limit, the web server would reliably crash due
to memory allocation errors. These measurements do, however, represent a lower bound on
what the server is capable of.

The performance of the webpipes framework is shown using two different methods of
connecting components together, Chain and ProcChain. Recall that the first uses function
calls and method invocation to invoke components, while the second has the additional syn-
chronization overhead of a channel that is connecting each process. The load that is able to
be sustained by a server using our toolkit is reasonable for low-traffic situations, it remains
ideal until somewhere between 1500-2000 requests per second, but performance above that
is difficult to measure due to the related bugs in Go.

4.1. Identifying Overhead

For a compiled language with a relatively simple http package and web server, it is initially
surprising that the Go-based web server is unable to achieve better performance under heavier

3There is currently a bug in Go that causes performance measurements of Go web servers to be unreliable
above this point. At the time of publication, these bugs have been reported but are outstanding.



loads. However, it turns out that this specific type of test, where a small static file is being
delivered to the network client as part of the response, is an optimised case in the Apache
server implementation. Specifically, it makes use of the sendfile [15] system call which
can be used to copy data from a file to a socket. This system call is an optimisation over the
standard read/write in that it attempts to avoid kernel/user context switches and in some cases
is capable of performing a zero-copy [16] transmission of the file data. We believe that the
performance of the Go http package could be improved through the use of this system call.

Currently, the test we are performing hits a non-optimal path through the I/O code in
Go’s libraries:

1. The headers are written by the file handler to the response. These writes are performed
using a buffered network writer with the default limit of 4KB of buffer space. Since
the header data is smaller than this limit, the write is buffered until later.

2. The file is read in 32Kb blocks using the read system call. Since the file in question
is under this limit, it only requires a single call to read.

3. The data is written to the http.ResponseWriter object which then performs the
write on the underlying buffered network connection without copying.

4. The data is then written to the buffered network connection. Because the buffer is not
empty, this either requires the headers to be send in a different network packet from
the payload or data to be copied. The bufio in this case will perform a copy of the
file data to fill the non-full buffer and then flush that to the client. The remaining file
data is then sent without requiring a copy.

The webpipes framework introduces even more overhead with its system of con-
tent readers and writers. Currently, these are implemented using the io.PipeReader and
io.PipeWriter interfaces which explicitly copy data on every paired read/write operation.
For the static file test performed above, this means that in addition to the buffering issue
identified above, the file data is copied an additional time before ever being written.

Interestingly, in our tests we do not show a significant difference between the Chain and
ProcChain versions of constructing processing pipelines despite the heavy use of short-lived
goroutines in the latter. However, it is possible that any differences between the two may be
masked by the outstanding issues with the Go web server. If these results hold, it will be an
encouraging result for programs that make heavy use of goroutines.

5. Conclusions and Future Work

In this paper, we have presented a compositional architecture for constructing processing
pipelines. This architecture was demonstrated through the webpipes toolkit, a framework
for constructing component-based web servers using the Go programming language. This
framework makes use of a series of type and semantic definitions that allow multiple com-
ponents to participate in the generation of responses. This is accomplished by de-coupling
the generation of response headers from the generation of the actual content of the response.
This toolkit encourages the use of simple components that are strung together to create more
complicated behaviours.

The behaviour of web servers constructed using the webpipes toolkit are easy to un-
derstand; often there is a direct correlation between the structure of the code used to create
a server and the definition of that server’s behaviour. The same might be accomplished in
mainstream web servers through the clever use of domain specific configuration languages,
however we believe the component model used by the webpipes toolkit is inherently easier
to understand.

This work is the product of an initial case study in concurrent software design. Through-
out the design process we have restricted ourselves to a model of concurrency where com-



ponents communicate with each other solely via message passing over explicit channels. In
order to accomplish this, it was necessary to determine an appropriate level of abstraction for
processes and define the nature of the communication between these processes. Our design
follows the premise that a web request can be fulfilled by a series of single-purpose compo-
nents. We chose to model these notions of components as concurrent processes. The com-
ponents communicate with each other, passing an abstraction connection object. This object
contain the details of the request as well as a way for components to construct the response.
By thinking about how web server behaviour might be modelled as a collection of concurrent
processes, this abstraction came quite naturally.

5.1. Impressions of Go

Go is a relatively young entry in the field of programming languages, released in November
2009. It offers a syntax that is familiar to C, C++ and Java programmers while providing a
novel interface-based type system and channel-based concurrency. We initially explored the
Go programming language in order to understand how it relates to other concurrent program-
ming languages, specifically Scala, Erlang, and occam-π. After working with the language
for some time, we chose it as the target language for our case study. This choice was primarily
motivated by the following:

1. The ability to define new concurrent processes without need for additional wrappers
or classes. This enabled rapid prototyping and experimentation without verbose pro-
grams.

2. The simple concurrency model built around synchronous communication via first-
class channels.

3. The “safety” provided by the static typing, lack of pointer arithmetic, and require-
ments for explicit casting.

Through our experience implementing webpipes, we have found the first point, com-
bined with the ability to define methods on any data type, to be incredibly important. This
allowed us to create an abstraction for components that made them easy to use when con-
structing new web servers. In addition, the ability to provide methods for functions gave us
the ability to provide boilerplate code for components, making it easier for developers to add
new functional components to the system with minimal code.

Although the pervasive use of interface types can take some getting used to, their con-
sistent use allows easy interoperability with the rich set of standard packages included with
the language. It is a testament to these libraries that we can implement a fully functional
compositional framework for constructing web servers in under 1500 lines of code!

On the other hand there are opportunities for improvement with the Go programming
language. In particular the goroutine scheduler is immature and does not always scale well
when multiplexing goroutines onto more than one operating system process. Additionally,
there are currently two sets of compilers for the language. The gc compiler set is a very fast
compiler that can produce reasonable code, while the gccgo front-end is much slower but
can produce more efficient code. The latter is currently not able to multiplex goroutines and
instead uses operating system threads, although this feature is expected to be implemented in
the future.

Despite the relatively young age of the programming language, we believe that Go helps
to fill an interesting niche in the field of programming languages. The unique feature-set and
aims of the language make it worth investigation for systems-level concurrent programming.



5.2. Future Work

Through the development and evaluation of the webpipes toolkit, we have identified many
opportunities that require further investigation. The overhead introduced by the content
reader/writer system negatively affects the performance of the toolkit. In addition it is not a
very idiomatic style of writing Go code. It would be worth investigating a design removes the
explicit use of content readers and writers by providing a higher level of abstraction for the
registration of filter components. This abstraction could remove an additional level of copy-
ing and synchronization from the toolkit and would be much closer to the way Go programs
are normally written.

The use of pointers in a concurrent program introduces the possibility of race conditions
and non-deterministic behaviour when components retain the reference and access it directly.
This problem might be alleviated by introducing a concept of ownership to the type system,
perhaps utilizing some form of linear types [17] or uniqueness typing [18]. This would allow
us to specify at the language level that only one reference to an object should exist at any
time.

The Go language provides for a form of distributed channels via the netchan package. It
would be interesting to develop a web server that acts as a load balancer using the component-
based architecture presented in this paper and these network channels in order to distribute
the incoming load to multiple back-end web servers. It is possible that may expose other
advantages or drawbacks of our architecture.

References

[1] T. Berners-Lee, R. Fielding, and H. Frystyk. RFC1945: Hypertext Transfer Protocol–HTTP/1.0. RFC
Editor United States, 1996.

[2] Apache: HTTP Server - Multi-Processing Modules (MPMs). http://httpd.apache.org/docs/2.0/
mpm.html, October 2010.

[3] Lighttpd Web Server. http://www.lighttpd.net/, August 2010.
[4] Nginx Web Server. http://nginx.org/en/, April 2011.
[5] Matt Welsh, David Culler, and Eric Brewer. Seda: an architecture for well-conditioned, scalable internet

services. In Proceedings of the eighteenth ACM symposium on Operating systems principles, SOSP ’01,
pages 230–243, New York, NY, USA, 2001. ACM. doi: 10.1145/502034.502057.

[6] Yaws - Yet Another Webserver. http://yaws.hyber.org/, September 2010.
[7] Fred Barnes. occwserv: An occam web-server. In J.F. Broenink and G.H. Hilderink, editors, Communi-

cating Process Architectures 2003, volume 61 of Concurrent Systems Engineering Series, pages 251–268,
Amsterdam, The Netherlands, September 2003. IOS Press.

[8] James Whitehead II. Webpipes: A Compositional Web Sever Toolkit. http://github.com/jnwhiteh/
webpipes.

[9] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, London, 1985. ISBN: 0-131-53271-
5.

[10] The Go Programming Language Specification. http://golang.org/doc/go_spec.html, March 2011.
[11] The Go Programming Language. http://golang.org/, March 2011.
[12] D. Robinson and K. Coar. The common gateway interface (CGI) version 1.1. Technical report, RFC 3875,

October 2004.
[13] David Mosberger and Tai Jin. httperf: a tool for measuring web server performance. SIGMETRICS

Perform. Eval. Rev., 26:31–37, December 1998. doi: 10.1145/306225.306235.
[14] James Whitehead II. autohttperf: Automated and distributed benchmarking using httperf. https://

github.com/jnwhiteh/autohttperf.
[15] Erich Nahum, Tsipora Barzilai, and Dilip D. Kandlur. Performance issues in www servers. IEEE/ACM

Trans. Netw., 10:2–11, February 2002. doi: 10.1109/90.986497.
[16] Dragan Stancevic. Zero copy I: user-mode perspective. Linux J., 2003:3–, January 2003.



[17] P. Wadler. Linear types can change the world. In M. Broy and C.B. Jones, editors, Programming concepts
and methods: proceedings of the IFIP Working Group 2.2/2.3 Working Conference on Programming Con-
cepts and Methods, Sea of Galilee, Israel, 2-5 April, 1990, pages 561–581. North-Holland, 1990. ISBN:
978-0-444-88545-6.

[18] Edsko Vries, Rinus Plasmeijer, and David M. Abrahamson. Implementation and application of functional
languages. chapter Uniqueness Typing Simplified, pages 201–218. Springer-Verlag, Berlin, Heidelberg,
2008. ISBN: 978-3-540-85372-5.


