vvvvvvvvvvvvvvvvvvvvvvvvvvv

BMRKERE

Development of
an ML-based Verification Tool
for Timed CSP Processes

Takeshi Yamakawa, Tsuneki Ohashi

and Chikara FukunagaPresenter
Tokyo Metropolitan University

CPA2011 at University of Limerick 21 June 2011

BMRKERE

Contents

® (CSPand Timed CSP
® New Operators for Timed CSP

® Timed CSP Explorer
® |mplementation of (untimed) CSP processes with ML functions
® Extension for Timed CSP

® Execution of Timed CSP processes

® Refinement with Timed CSP explorer

® Refinement of Fischer’s algorithm
(Exclusive control for shared memory)

- ® Summary and Outlook

CPA2011 at University of Limerick 21 June 2011

o

® Development of TPCORE (IP core of general purpose
processor) (CPA2004)

® compatible with transputer assembly language
® Programs written in (Inmos) occam can be executed
® 50MHz (FPGA) and 130MHz (ASIC)

® TPCORE2 (one of 4 link I/Fs—=>DS-link for virtual link and
IEEE1355), 1355 router (PDNS2010) and FPUs

® Application of these processors in embedded system
® Real time programming
~® Need a Timed CSP verlﬁcatlon tool é Motlvatlon fo

CPA2011 at University of leerlc - P 21 June 2011

BMRKERE

CSP and Timed CSP

® CSP: Process transition with events only (event
transition)

p-X, p

® Timed CSP: Consideration of process transition
with time (evolution transition)

Q ~ Q'

CPA2011 at University of Limerick 21 June 2011

vvvvvvvvvvvvvvvvvvvvvvvvvvv

BMRKERE

New Operators for Timed CSP(1)

® Timed Event Prefix a@u —> P

Occurrence time of event a after start of the process is
recorded in timed variable u. Once a is occurred, P can
refer the value recorded in u.

(a@u — P) % P[0/u] Reset u at event a

d a is not occurred after
(a@u — P) ~~ (a@u — Plu + d/u]) time d has passed

(a@u — out!u — SKIP) -
(a@u — out!(u+5) — SKIP) —
(out!(0 +5) — SKIP) 2t SKIP

CPA2011 at University of Limerick - 21 June 2011

BMRKERE

New Operators for Timed CSP(2)

. d
® Timeout P> Q
Choice with an event in P and the elapsed time from start of the process;
for example,

(a—P) & Q

the process P will follow after the event a if a takes place in d time unit
otherwise the process Q will start.

® Timed Interrupt PNy Q

Unless the process P is finished until d, it is terminated and
the process Q will follow, but P is finished within d, Q will not be invoked to
start i

.._J%:&_

CPA2011 at University of Limerick 21 June 2011

BMRKERE

Timed CSP Explorer

® A program described in ML (Meta Language)

® Lexical analysis, parsing of Timed CSP Processes described in CSP,, and
generation of ML functions

® Execution of the ML functions

® Refinement analysis (timed trace/time-wise trace) for safety (trace
based) verification

ML description

channel in,out:int

fun P=prefix(input(in,x),
prefix(output(out,fact(x)),P)))

fact(x)=

if x>1 then x*fact(x-1)

else 1

CPA2011 at University of Limerick _— S e 21 June 2011

Implementation of CSP ™
processes with ML (1)

® Definition of additional ML datatypes

® datatype process
= Proc of (event -> process) | Stop | Skip | Bleep ;

® process has 4 constructors

® Proc is a function to take an event as argument and return a
process

® datatype event
= Event of string*chanType ;

® event as a tuple of (string, chanType)

® Time information for Timed CSP processes will be added afterwards

® datatype chanType
= Int of int | Seq of int list | String of string
| Any | None ;

CPA2011 at University of Limerick ' " 21 June 2011

Implementation of .

CSP ith ML (2)
® Example of a CSP Operator ; Event Prefix a — P
prefix(Event(ch,v),P:process)=
let
fun temp(Event(ch’,v’)) if ch=ch’ andalso v=v’ then P else Bleep
in
Proc temp
end
® Execution of processes ; P=b— (a — SKIP)
® execution of the process
W|th Single Step - val P= prefix(Event("b",None),prefix(Event("a",None),Skip)) ;
val P = Proc (fn,[Event (#,#)]) : process
fun run(Proc temp) - val Pl=run(P) ;
— . b
- temp’ val P1 = fn : event -> process

- val P2=run(Pl(Event("b",None))) ;
a

val P2 = fn : event -> process

- val P3=run(P2(Event("a",None))) ;
tick.

val P3 = fn : event -> process

-

CPA2011 at University of Limerick 21 June 2011

Extension for Timed CSP

® Addition of Time constructor to datatype event
datatype event

= Event of string*chanType | Time of int ;

® Modification of ML functions for CSP operators extended by
time concept

® |mplementation of Timed CSP operators
® fun tprefix(Event(ch,v), Time d, P:process)
® fun timeout(P:process, Time d, Q:process)

® fun tinterrupt(P:process, Time d, Q:process)

T

CPA2011 at University of Limerick 21 June 2011

Execution of Timed CSP ™
processes (1)

® Process with timed interrupt
test = out!10 —

a — SKIP (1 |lrsy b — SKIP) Ao ¢ — SKIP)
{a} ll{b}

® ML expression & execution

- exec(test()) ; event: b 10time event: 10time
fun test() = event: out.1l0 b 10time
prefix(Event("ou out.10 event: a 10time event: ¢
concurren event: a b 10time a c
pa tick event: Stime prefix(Event("b",None),Skip)
) event: b 10time event: 1l0time Stime
Time 10, b 10time tick
tprefix(E tick event: ¢ *
)) event: 10time c *
e 10time event: 5time *
event: c S5time
c tick finished.
event: 5time * val it = () : unit
5time *
tick

CPA2011 at University of Limerick | e 21 June 2011 ‘I ‘I

Execution of Timed CSP ™im
processes (2)

® Process with Timed event prefix and timeout
HELEN = (meet °% work — SKIP) &> work — SKIP

45
CARL(d) = WAIT d 3 ((meet —> home — SKIP) > home — SKIP)
test = HELEN || (CARL(15) N CARL(40))

IO:::msa;:r:lmll event: 15time event: R 30time event: 45time event: 40time
. IVI L val HELEN = Proc (fn,[Event (#,#),Time 30]) : process 15time . R . a 45time 40time
val CARL = fn : int -> process event: work 30time event: 30time event: work home event: work 45time
val test = Proc (fn,[Event (#,#),Event (#,#),Time 30]) : process work 30time work work
val spec = fn : chanType -> process event: 30time event: work 10time event: home e T e
wval |val Meet = fn : chanType -> process 30t work home *
val it = () : unit o event: 10time e 45time
- exec(test); event: home 10time . event: home
t: L R 30time .
svens: :ﬁ eveni:\; 45time e TETD home
event: 15time S L home tick
15time FeEma e event: work &
event: meet 15time * home work *
meet event: 30time tick tick event: 45time
event: 60time 30time * * 45t
60time o X * o~ ime
event: work home eve: ipvorkitione : event: work home
work ‘wor]
event: 10time work
event: home event: home 5 * .
fun (nome e 10time) . event: home
tick - event: work 45time home
* tick jfoch tick
event: home = event: 45time " " x
home event: home 45time Bvent(home G0
event: work home event: home G0 LD
:‘;’:: event: work home e
- < e tick event: work
tick * work

finished.
val it = () : unit

Refinement with -
Timed CSP Explorer

® Trace refinement (Safety verification with Timed CSP traces)

SPEC C1 IMP <= traces(SPEC) 2 traces(IMP)

® Trace timewise refinement
SPEC 7 Crp IMP
<= V(s,X) € TF[IMP] -ts < oo = strip(s) € traces(SPEC)

e strip(< (15, meet), (45, work), (45, home) > = < meet, work, home >

® refine(Spec,Imp)

® All the traces generated by Imp process are followed with Spec

° Spec follows them all w/o Bleep, refinement is establishe

=

CPA2011 at University of Limerick — 21 June 2011 ‘I 3

Exclusive control of shared ™m
resources

BMRKERE

® Exclusive access control for the critical region in shared resources

® The critical region can be accessed by any number of processes but
only one can access at one time

® |f 3 process accesses the region the other process should wait this
access is over

® We need an efficient and safe mechanism to control the processes in
as each process accesses the critical region as if only one process
occupies it.

® As one of candidates to be used for the exclusive control is called
Fischer’s algorithm

~ © Idea of this example comes from S. Schneider, “Concurrent and Real- |
~ time systems The CSP Approach” (2000)

CPA2011 at University of leerlck 21 June 2011 1 4

Fischer’s algorithm with CSP

. _ . ‘?
o Qi) =req.i— read?z — @ read shared memory and if it

if z # 0 then SKIP is 0, write | (process ID) and
else write!i — enter.i— exit.i — STOP enter (occupy)
QS =Q) Il Q) ||l --- lI| Q(n) € Independent operation

® V(value) = (write?z — V(z)) O (read!value — V (value))

® FIS = QS |[| read, write |]| V(0) € V value must be initially zero

® Specification: enter.i must be followed with exit.i before enter.i’

enter.1

req.1

~&L

CPA2011 at University ofALimerﬁh dne 2011

Refinement of Fischer’s ™m
algorithm

® Trace verification with Timed CSP explorer for this algorithm with n=2

BMRKERE

® 3s a Specification for this algorithm,

SPEC = (enter.1 — exit.1 — SPEC O enter.2 — exit.2 — SPEC)

® and hided the events read, req, write from FIS

FIS = FIS \ {| read, write, req |}
® Refinement result: observation of enter.1 & enter.2 in a trace

event: L R

L

event: (read).0 N
(read).0

event: (write).2 N
(write).2

event: (write).l
(write).1

event: enter.l enter.2
enter.1l

event: exit.l enter.2
exit.1

stop

event: enter.2
enter.2

not satisfy

(req).l (req).2 (read).0 L (read).0 (write).2 (write).l enter.l enter.2
val it = () : unit

CPA2011 at University of LM 21 June 2011 ‘I 6

Extension of Fischer’s algorithm
with Timed CSP

® Redefinition of process Q(i) with Timed CSP

BMRKERE

Qi) = req.i — read?r —
if 2 # 0 then SKIP
else ((write!i — read?y —
if y # i then SKIP 5
else enter.i — exit.i — SKIP) > STOP

® |ntroduction of waiting time & for writing j into the shared
memory

® |ntroduction of maximum time limit for occupation of the
shared memory 0

® > Oshould be satisfied

® In this analysis, we have modified also SPEC,FIS slightl

CPA2011 at University of Limerick S 21 June 2011

Refinement of the extended ™im

. , . HBXEEERE
Fischer’s algorithm
® Trace timewise refinement with Timed CSP Explorer
® c=4,0=2 £=2,0=4
::::1.:? write.l 2time Z:Z::: read 8 > 6 8 < 6
write.l read.2
Syent: dtime R I T N I I O N B
::ent: read.1l ev;nt;zexit. l I l I l I I l l l I I I I
::::;1 enter.1l ::;;.2 Cl(l) Cl(l)
enter.1 event: writd read.0 write.1 read.1 read.0 write.1 read.1
event: exit.1 write.1l) enter.1 enter.1
exit.1 ev?nt: exit.
e 1Q2) ——— Q(2) —
. S read.0 read.1 read.0 read.2
* event: exit, write.2 E write.2 enter.2
event: 2time exit.2 v ski

2time stop
% event: read.l
read.1l .
: SUCCQEded ev:nt:lenter.l exit.2 Fa|IEd
enter.
* here2:
* not satisfy
satisfy req.l req.2 read.0 L read.0 write.2 2time read.2 enter.2 write.l 2time read.l enter.l

val it = () : unit val it = () : unit

CPA2011 at University of Limerick B— 21 June 2011 ‘I 8

vvvvvvvvvvvvvvvvvvvvvvvvvvv

Summary and Outlook

® \We have developed (are developing) a verification tool for Timed CSP processes,
but it has just started a year ago out of our urgent necessity

® Timed CSP Explorer makes a lexical analysis and parsing of a machine readable

(CSP,,) description of a Timed CSP process, and generates the corresponding ML
expression

® run, exec command of the tool can generate trace sequences that the process
will produce (step by step or continuously till end)

® refine command can verify the process with its specification in terms of trace
and trace timewise refinement

® Development is still underway
® \We need more efficient, complete and robust parsing system

~ ® and must add failures based (failure timewise and timed failure) refinement facili

CPA2011 at University of Limerick | e 21 June 2011 ‘I 9

