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Abstract. The use of formal methods in the development of concurrent systems con-
siderably reduces the complexity of specifying their behaviour and verifying proper-
ties that are inherent to them. Development, however, targets the generation of exe-
cutable programs; hence, translating the final specification into a practical program-
ming language becomes imperative. This translation is usually rather problematic due
to the high probability of introducing errors in manual translations: the mapping from
some of the original concepts in the formal concurrency model into a correspond-
ing construct in the programming language is non-trivial. In recent years, there is a
growing effort in providing automatic translation from formal specifications into pro-
gramming languages. One of these efforts, JCircus, translates specifications written
in Circus (a combination of Z and CSP) into Java programs that use JCSP, a library
that implements most of the CSP constructs. The subtle differences between JCSP and
Circus implementation of concurrency, however, imposed restrictions to the transla-
tion strategy and, consequently, to JCircus. In this paper, we extend JCircus by pro-
viding: (1) a new optimised translation strategy to multi-way synchronisation; (2) the
translation of complex communications, and; (3) the translation of CSP sharing paral-
lel and interleaving. A performance analysis of the resulting code is also in the context
of this paper and provides important insights into the practical use of our results.
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1. Introduction

Using formal methods, developers are able to describe the properties of the system under de-
velopment in a concise, correct, and unambiguous manner. Furthermore, the formal descrip-
tions of the systems are amendable to verification. For this reason, the use of formal methods
in the development process increases the reliability of software systems and allows develop-
ers to ensure that the resulting system meets a determined set of properties. Development,
however, aims at providing executable programs; there exists an intrinsic need to translate
formal specifications into programming languages.

Manual translations are very likely to introduce errors due to the inherent complexity
of concurrent systems. In the last decade, tool support for formal methods have increasingly
added automatic translation into programming languages [5,4,20]. These translators fosters
the use of formal methods as they provide a possibility of effortlessly generating executable
code from a verified formal specification.

A very well known formal method is Z [28], which is semantically based on the Zer-
melo/Fraenkel set theory and provides a notation for the specification of state-rich sequential
systems. Although possible, the specification on concurrent systems is not within the main
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scope of Z. An efficient notation for concurrent systems is Communicating Sequential Pro-
cesses (CSP) [15] that represents systems as processes that perform events. CSP, however,
does not support a concise and elegant way to describe the data aspects of state-rich systems.

The combination of different formalisms allows the reuse of notations in an integrated
framework that is able to describe different aspects of the systems. Many formalisms com-
bine data and behavioural aspects of the system. Combinations of Z with CCS [13], Z with
CSP [9], Object-Z [2] with CSP [8], and Object-Z with timed CSP [16] are some of these at-
tempts to combine both schools. Further combinations of other state-based formal languages
like B with CSP [22] are also available in the literature. Circus [27] is a formal language that
combines Z and CSP providing an elegant style for the specification of state-rich concurrent
systems. It differs from other combination languages in that it also has an associated refine-
ment calculus [18] that allows a calculational correct-by-construction system development.

The Circus tool set includes a model-checker [12] and a tool that supports its refinement
calculus [19] and its tactic language [7]. All tools are based on the Circus parser and type-
checker provided by the CZT [1], which were also the basis of JCircus, a translator from
Circus to Java, whose initial version was presented in [10].

JCircus generates Java code that uses JCSP [26,24], an API that provides an abstraction
interface for most CSP primitives in Java. The concurrency implementation of JCSP, how-
ever, has some subtle differences from the CSP’s concurrency model used in Circus. For
instance, JCSP implements Hoare’s parallelism [14] in which processes synchronise in the
intersection of their alphabets. On the other hand, Circus uses Roscoe’s parallel composition
in which it is possible to restrict the events on which the processes involved synchronise [21].
For this reason, JCircus as presented in [10], imposed restrictions to the parallel composition
used in the Circus specification given as input. By way of illustration, processes with shared
channels could not be composed in interleaving.

This paper describes an extension to JCircus that: (1) optimises the translation of
multi-synchronisation; (2) includes the translation of complex communications; and (3) re-
moves the restrictions on sharing parallel and interleaving. The optimisation of multi-
synchronisation replaces the previously used multi-synchronisation protocol by a new strat-
egy that makes extensive use of the JCSP’s AltingBarrier [25]. The translation of prefixing
is extended with the possibility of translating communications with an arbitrary decoration
of fields (the original strategy only translates communications with dot fields, and a possible
input or output field as the last field of the communication). Finally, the translation of sharing
parallel and interleaving rewrites the specification using CSP’s renaming whilst preserving
the specification’s semantics.

This paper also discusses the integration of JCircus with CRefine [19]. This integration
provides Circus with a framework that can be used to formally develop systems from an
abstract specification to a Java executable program. Finally, the paper provides a performance
analysis of the resulting code, which indicates the possibility of using JCircus in larger
developments.

This paper is organized as follows: Section 2 describes Circus, the source language of
the JCircus, which is described in Section 3. The JCSP library is described in Section 4. The
main contribution of the paper is presented in Section 5, where we describe the details of our
translation of multi-synchronisation, complex communication and interleaving. An analysis
on the performance of extensions is presented in Section 6. Finally, Section 7 presents our
concluding remarks and discusses future work.
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2. Circus

Concurrent and Integrated Refinement CalculUS (Circus) [27] is a formal language that
combines Z, CSP, and guarded commands [6]. With this combination, Circus aggregates
the power of representing complex data structures in Z with the process algebra of CSP.
Furthermore, Circus also has a refinement calculus associated to it [3].

A Circus program is formed by a sequence of paragraphs. Each paragraph can be a Z
paragraph, a channel declaration, a channel set declaration, or a process declaration. Circus
processes may be explicitly defined or defined in terms of other processes.

For illustration purposes, in Figure 1, we present an example of a Circus specification
of a casino that specifies a Roulette, with two players (only 50-50 bets), a single table, and its
croupier. The global constant VALUE is a Z paragraph declared at the top of the specification.
All channels used in the specification are declared in the channel declaration paragraphs.
The specification has six processes: Roulette, Player, and Croupier are the basic processes.
The remaining processes Table, Players, and Casino are defined as compositions of the basic
processes.

An explicitly defined process is delimited by the keywords begin and end. It may have
a state (represented by a Z schema), and zero or more Circus actions (state operations or
CSP-like actions). An explicit defined process, however, must have a declared main action
that describes its main behaviour.

By way of illustration, process Player represents a player at the casino. Each player is
given an identification id and has a bankRoll that represents the player’s initial amount of
money. The Player state is defined in the Z state schema PlayerSt: it is composed by the
player’s current bet b and his amount of cash. This state may be changed using the operations
PlayerInit, PayBet, or WinBet. The CSP-like action BRBet describes the Player’s behaviour
in a single bet. Finally, the Player behaviour is defined in its main action: the state is ini-
tialised and the Player behaves recursively. In each iteration, the Player makes a BRBet and
terminates if his cash finishes or his winnings are above 100; he recurs and keeps betting
otherwise.

Circus has three primitive actions: Skip, Stop and Chaos. The action Skip terminates
successfully and does not change the state. The second action deadlocks and Chaos diverges.
The prefixing operator is standard, but a guard construction may be associated with it. For
instance, given a Z predicate p, if the condition p is true, the action p & c?x→ A inputs
a value through channel c and assigns it to the variable x, and then behaves like A, which
has the variable x in scope. If, however, the condition p is false, the same action blocks.
Such enabling conditions like p may be associated with any action. Prefixing may also allow
one or more values to be transferred from a process to another (or to other processes, in
the case of a multi-synchronisation) by using multiple communication fields, each of which
has a decoration: an input decoration (?), an output decoration (!), or a dot decoration (.).
For example, for a channel c : N × N × N, the communication c?x.5!4 receives any natural
number and assigns this value on x, synchronises on 5, and outputs 4. Hence, c.0.5.4 is a
possible synchronisation.

Circus actions may be composed using the CSP operators of sequence, external and in-
ternal choice, parallelism, interleaving and hiding. However, the parallelism and interleaving
actions have a different declaration. In order to avoid conflict, they require the declaration of
two sets that partition the variables in scope. In the parallel composition A1 |[ns1 | cs | ns2 ]|A2
the actions A1 and A2 synchronise on the channels in the set cs. Both actions, A1 and A2, have
access to the initial values of all variables in scope. However, A1 and A2 may modify only
the variables in ns1 and ns2, respectively. Interleaved actions A1 ||[ns1 | ns2]|| A2 have the same
behaviour regarding the state variables but they do not synchronise on any channels and run
independently.
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VALUE ::= RED | BLACK

channel start,stopBet
channel enter,pay : N
channel bet : N× VALUE
channel result : VALUE

process Roulette =̂
begin

• µ X • start→
(

result.RED→ X
u result.BLACK→ X

)
end
process Player =̂ id : N; bankRoll : N •
begin

statePlayerSt =̂ [b : VALUE; cash : N]

PlayerInit =̂ b,cash := RED,bankRoll

PayBet =̂ cash := cash−1

WinBet =̂ cash := cash+2

BRBet =̂

enter!id→


(b := RED u b := BLACK);
PayBet; bet.id!b→ result?x→ if (x = b)→ pay.id→WinBet

[] (x 6= b)→ Skip
fi




2 stopBet→ Skip

• PlayerInit; µ X • BRBet;

 if (cash = 0 ∨ cash > 100)→ Skip
[] (cash 6= 0 ∧ cash≤ 100)→ X
fi


end

process Croupier =̂
begin

StartRoulette =̂ start→ TakeBet

TakeBet =̂ enter?id→ bet.id?b→ result?x if (x = b)→ (pay.ident→ Skip)
[](x 6= b)→ Skip
fi


u stopBet→ Skip

• µ X • StartRoulette; X
end

process Table =̂ Roulette |[{| start,result |} ]|Croupier

process Players =̂ Player(0,10) ||| Player(1,20)

process Casino =̂ Players |[{| enter,bet,result,pay |} ]|Table

Figure 1. An Example of a Circus Specification.
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In process Player, the action PayBet specifies the payment of the bet, which decrements
the cash by one. On the other hand, the WinBet increments the cash by 1. The CSP-like action
BRBet initially offers an external choice: the Player may either output his id on channel enter,
or successfully terminate after the stopBet event. After sending his id, the Player makes an
internal choice on the bet. Next, the Player stores the chosen bet value i in b, pays the bet
by invoking PayBet, puts the bet on channel bet, and receives the result. If the result is the
same as the value of the bet, the Player receives an indication of payment on channel pay and
increments his cash; the bet simply terminates otherwise.

The process Croupier is an instance of a stateless Circus process and also has a recursive
behaviour. The action StartRoulette starts the Roullette, and then behaves like the TakeBet
action. In this action, the Croupier internally decides if he will take a bet or close the table.
If he decides to take a bet, the Croupier allows a player to enter the table, takes his bet and
receives the result from the Table. If the Player made the right bet, the Croupier pays the
bet; it simply recurs otherwise. The Roulette process is yet another instance of a stateless
Circus process. Its recursive main behaviour is very simple. The Roulette receives the start
command and internally decides the VALUE that will provide on channel result.

The CSP operators of sequence, external and internal choice, parallelism, interleaving,
their corresponding iterated operators, and hiding may also be used to compose processes.
For instance, process Table is a parallel composition between a Roulette and a Croupier. Both
processes synchronise on the events start and result. On the other hand, process Players is
an interleaving of two players; hence, both players run independently. Finally, the Casino is
a parallel execution of the Players and the Table synchronising on enter, bet, result and play.

In this paper we extend a strategy for implementing Circus programs in JCSP. We as-
sume that, before applying the translation strategy presented in this chapter, the specification
of the system we want to implement has been already refined, using the Circus refinement
calculus to meet the translation strategy’s requirements discussed in [18]. The concrete nature
of this specification allows a natural translation into most of constructs presented in the next
Section. Nevertheless, some restrictions on previous versions of the tool have been removed
based on the results presented in Section 5.

3. JCircus

JCircus [11]1 is a Java application that translates Circus specifications into Java code that
uses the JCSP API. It has four modules: the parser is provided by the CZT and returns an
Abstract Syntax Tree (AST) of the given specification; the type-checker verifies the type cor-
rectness of the specification and adds type information into the AST; the pre-processor visits
the AST nodes and collects information from the specification (e.g. variables, names, and
types) in environments and checks if the specification satisfies the requirements of JCircus;
and the translator visits the AST nodes and returns a package with the generated Java code.
The generated code is distributed in a way such that each process of the specification has a
corresponding Java file.

JCircus is based on transformation rules of a translation strategy proposed in [18]. For
example, there are rules for translating Circus actions into Java methods, and rules for trans-
lating Circus communications on c into c.read() or c.write(null). The main constructs
of Circus are translated as follows:

• Processes are translated into Java classes. The process local variables, state compo-
nents and visible channels are declared as private attributes in the class and are instan-
tiated in the constructor of the class;

1Project Webpage: http://www.dimap.ufrn.br/~marcel/research/jcircus/
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• Circus actions are translated into private methods;
• The main action of a Circus process is translated into the run method of the process;
• Communication is translated into an invocation to either the read or the write meth-

ods (possibly accessing array positions in the case of more than one value being com-
municated);

• Multi-synchronisation is translated into a code that implements an extension of the
protocol from [18];

• External choice is translated using the Alternative class;
• Internal choice between two actions is implemented using a random choice;
• Parallelism is implemented using the Parallel class (the intersection of the pro-

cesses alphabets must be a subset of the synchronisation channel set);

JCircus has an extremely simple GUI, composed of a single window, in which the user
enters the path of the input specification and the name and path of the generated Java project.
Compilation errors, type errors, and non-compliance with the tool’s requirements are exhib-
ited in a Log area. If no errors are found, the user is asked to choose the system’s main
process, after which the code is automatically generated.

Despite being already very useful, the previous version of JCircus had a number of
restrictions, some of which imposed interesting challenges. In the next section, we discuss
the challenges involved in removing some of these restrictions.

4. JCSP

Java Communicating Sequential Processes (JCSP) [26,24] is a Java API that provides a CSP
style for programming concurrency. JCSP is implemented on the top of the original Java
primitives for concurrency (threads), and its main goal is to simplify the implementation of
concurrent systems. A process in JCSP is a class that implements the CSProcess interface.
The behaviour of the process is implemented in the method run, and the implementation of
CSProcess requires the implementation of this method.

JCSP provides a variety of channel types: Any2OneChannel for many writers and one
reader; Any2AnyChannel for many writers and many readers; One2AnyChannel for one
writer and many readers; and One2OneChannel for one reader and one writer. Each of these
channels has two front-ends: one for input and one for output. For many readers, the in-
put front-end is shared and implemented by SharedChannelInput. On the other hand, if
the front-end is not shared, it is implemented by AltingChannelInput. Similarly, output
front-ends are implemented by SharedChannelOutput and AltingChannelOutput. Shar-
ing, however, does not correspond to multi-synchronisation and the communication on these
channels are point-to-point communications. If two processes try to access a shared channel
end at the same moment, an exception is thrown by the JCSP kernel.

Communications are made by invoking the read and write methods of a front-end of
a JCSP channel. The available channels of JCSP have only one communication field, which
can be an input field or an output field. An input front-end of a channel has an input field, and
an output front-end of a channel has an output field.

The external choice is implemented using an alternation (Alternative), which offers
a set of guards (Guard - e.g. front-ends of alting channels) for synchronisation, and returns
the index of the chosen guard. The front-ends that are not shared extend Guard, and can also
participate on an alternation.

Parallelism is implemented using the class Parallel. This class implements a process
that takes an array of CSP processes (CSProcess) and executes them in parallel. The paral-
lelism supported by JCSP is Hoare’s parallelism, in which parallel processes synchronise on
the intersection of their alphabets.
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In JCSP, a Barrier corresponds to fundamental multiway event synchronisation in CSP.
However, although CSP allows processes to offer multiway events as part of an external
choice, JCSP does not permit this for Barrier synchronisation. In [23], Welch et al intro-
duced to JCSP the AltingBarrier class that removes this constraint, allowing multiple bar-
riers to be included in the guards of an Alternative along with skips, timeouts, channel com-
munications and call channel accepts.

An alting barrier (AltingBarrier) has a set of front-ends: there must be one process en-
rolled in each front-end. The synchronisation of a process on an alting barrier is made either
by invoking the sync method or by offering the barrier in a choice. Any process synchronis-
ing on the alting barrier will be blocked until all processes associated with the alting barrier
have synchronised. In case of a choice, however, the other alternatives are also available for
synchronisation.

By way of illustration, we present parts of the JCSP implementation of the process Player
and Players. As every process in JCSP, Player is a class that implements CSProcess:

public class Player implements CSProcess {

The parameters and state variables are declared as private attributes of Player:

private Integer b, cash, id, bankRoll;

Each of the process’ channel front-ends is also declared as private attributes. In our exam-
ple, bet is declared as an array of AltingChannelOutput because it communicates two val-
ues: the first value is implemented as the array index and the second value is the actual com-
munication value. The channel stopBet is implemented as an alting barrier because of the
multi-synchronisation in the original specification.

AltingChannelOutput enter, pay;

AltingChannelOutput [] bet;

AltingChannelInput result;

AltingBarrier stopBet;

All these attributes are initialised in the class constructor with the values received in the
constructors argument. For conciseness, we omit its definition here.

The actions of the Circus process are implemented as private methods. The translation
of the action WinBet is presented below: the translation of arithmetic expressions and assign-
ments is straightforward for variables of basic types.

private void WinBet () { this.cash = this.cash + 35; }

The BRBet initially offers an external choice on enter and stopBet. Its implementation uses
an Alternative that is initialised with an array of guards containing these two channels.
The select method returns the index of the channel chosen in the choice.

public void BRBet () {

Alternative alt =

new Alternative (new Guard [] { this.enter, this.stopBet });

int select = alt.select();

The value of the variable select is 0 if the enter event is chosen, and 1 if the stopBet event
is chosen. A switch block that follows the selection controls the execution flow according
to the choice made. If the stopBet event is chosen, the implementation skips; otherwise, the
translation of the iterated internal choice is executed. This translation makes a random choice
of a value within the RANGE value and uses this value in the execution of the following
actions, which write the value of the bet on channel bet and receives the result.
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switch (select){

case 0:{

int choosen = RandomGenerator.generateNumber(0, 1);

switch (choosen){

case 0:{ b = new VALUE(VALUE.RED); } break;

case 1:{ b = new VALUE(VALUE.BLACK); } break; };

PayBet();

bet[this.id.intValue()].write(b);

Integer x = (Integer) result.read();

break; }

case 1:{ (new Skip()).run(); break; } }

JCSP does not allow communications of multiple values. For this reason, communication on
bet is implemented as an array access on the first value and a standard JCSP communication
on the second value.

In implementation of the Players process we use the Parallel class as follows.

(new Parallel (

new CSProcess [] {

new Player (0, 10, enter, bet, result, pay, stopBet),

new Player (1, 20, enter, bet, result, pay, stopBet),

}

)).run();

In this example, we run a Parallel object that executes two different Players, given in the
array used as argument in the constructor. Although sharing the same channel ends, such im-
plementation does not present a spurious behaviour because their access to the shared channel
result is controlled by a exclusive communication on enter. JCircus, however, treats these
channels as multi-synchronised channels as we discuss in the next section and in Section 5.

5. Extensions to JCircus

This section explains the extensions done to JCircus. There were three main exten-
sions: multi-synchronisation (Section 5.1), complex communication (Section 5.2), and shar-
ing parallel composition and interleaving (Section 5.3). The following sub-sections explain
these extensions. For conciseness, we omit some details of the examples presented here. A
full account of the examples of this paper, input files, generated code, and the analysis data
can be found at www.dimap.ufrn.br/~marcel/research/jcircus.

5.1. Multi-synchronisation

The first main change to JCircus is an optimisation in the support of multi-synchronisation.
This was previously implemented using a centralised protocol [18] with a controller that deals
with multi-synchronisation requests from each participating process. The controller and the
processes communicate using point-to-point channels.

The multi-synchronisation protocol, however, has two limitations: (1) multi-synchronisation
in a channel must always involve the same number of processes, and (2) a multi-synchronisation
must not define more than one writer. The former is due to the way the controller deals with
the clients using a counter to ensure all participants are willing to synchronise, and the lat-
ter is due to the use of process identification to ensure the writer has the first access to the
synchronisation.
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The use of the multi-synchronisation protocol in [11] was motivated by the lack of
a JCSP built-in constructor for multi-synchronisation on external choices. In [25], how-
ever, JCSP was extended with AltingBarriers that behave as synchronisation barri-
ers (multi-synchronisation) and can take part in external choices. Each instance of the class
AltingBarrier represents one front-end of a whole alting barrier.

The strategy of multi-synchronisation with alting barriers was implemented by encap-
sulating each front-end in GeneralChannel, a class used by JCircus that encapsulates the
multi-synchronisation protocol. Each instance of a multi-synchronised channel, in the ex-
tended version of JCircus, has an alting barrier front-end.

The translation of multi-synchronisation into JCSP was not achieved, however, by di-
rectly using alting barriers because they are not capable of communicating values. Our strat-
egy to use these barriers resulted in an approach that allows value communication in a multi-
synchronisation. Our approach translates multi-synchronised channels that communicate n
values as n-dimensional GeneralChannel arrays, in which each dimension represents one of
the communicated values. For example, a given channel channel c : T1 × T2 is translated to
GeneralChannel [][] c;. Here, c is a bi-dimensional array whose dimensions have sizes
#T1 and #T2, respectively.

In the example presented in Section 2, three processes (the Roulette, the Croupier and
one of the Players) synchronise on channel result making this channel a multi-synchronised
one. In this synchronisation, the Roulette sends the chosen value to the other two parts.

In Figure 2, we present a sketch of the translation of the Roulette’s behaviour. The
Roulette initially takes part in the multi-synchronisation on start. Afterwards, it randomly
chooses to either offer the result RED or BLACK. In both cases, the Roulette gives the result
by taking part in the corresponding multi-synchronisation on result. In the case of the
Roulette, the multi-synchronisation c.i is implemented as a simple synchronisation at the
i-th element of the array c, where i is the randomly chosen value.

public void run(){

start.sync();

int choosen = RandomGenerator.generateNumber(0, 1);

switch (choosen){

case 0:{

result[ (new VALUE(VALUE.RED)).getValue()].sync();

(new Skip()).run(); } break;

case 1:{

result[ (new VALUE(VALUE.BLACK)).getValue()].sync();

(new Skip()).run(); } break;

};

... // Recursion

}

Figure 2. Translating Multi-synchronisation with Value Communication - Roulette.

The implementation of the communication at the Player and the Croupier offers all
elements of the array of barriers result. This is achieved by offering a synchronisation of
all elements of the array result using a Alternative construct.

As we discuss in Section 6, by replacing the use of the protocol by alting barriers we con-
siderably optimised the implementation of multi-synchronisation. Nevertheless, value com-
munication could not be directly translated into channel communication because JCSP bar-
riers do not communicate values. For this, reason we needed to translate value communica-
tion as array access as explained above. This implementation, however, motivated a further
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extension to JCircus: the translation of communications with arbitrary number of fields. In
the next section we describe the approach used to translate these complex communications.

5.2. Complex communications

In JCSP, a communication may only transmit a single value. For this reason, the only direct
translation from CSP into JCSP is for communications of the form c, c!exp, or c?x. In [18],
we provided a strategy to translate communication with multiple fields, but the restriction
on communication values was maintained. Hence, communications like c.0!x and c.0?x were
accepted, but the translation of complex communications was left as future work. Complex
communications are defined as CSP prefixing in which at least one of the fields that is not
the last one is a communication (!exp or ?x). For example, c?x.0 and c?x!0 are complex
communications as both have an input at the first field.

Based on [18], JCircus [11] implements multiple-fields communications (e.g. c.0.1) as
multi-dimensional arrays, in which each dimension represents a field of the communication.
Our approach to accommodate the translation of complex communications in JCircus is
to expand the possibilities of the communication. This expansion, however, may result in
a very large (and possibly inefficient) code. For this reason, it is only applied to complex
communications. For communications that were already supported by JCircus, we left the
previous (and more efficient) approach.

By way of illustration, consider the channel c : {0,1} × {0,1,2,3}. Based, on the chan-
nel’s type declaration, we are able to infer that the action c?x?y → A is initially able to
engage on eight possible synchronisation: from c.0.0 up to c.1.3. It is important to notice
that both variables x and y are in the context of A and the chosen communication deter-
mines their values in A. Hence, after a given communication, we assign the correspond-
ing values to the input variables. For that, we make use of an environment that maps com-
munication possibilities to mappings variable-value. In our example, the environment is
{0 7→ {x 7→ 0,y 7→ 0}, . . . ,7 7→ {x 7→ 1,y 7→ 3}}.

For simple prefixing, it is clear what the following action is. In the example above, after
a communication on c, the action behaves like A. Nevertheless, in external choices (possibly
between two complex communications), we need to infer what the next action is based on the
index of the choice. For example, let us consider the choice c1?x?y→ A1(x,y) 2 c2?x?y→
A2(x,y). A further environment maps the index of the expanded choice to the index of the
original choice. In this example, we have {0 7→ 0, . . . ,7 7→ 0,8 7→ 1, . . . ,15 7→ 1}.

In Figure 3, we present a sketch of the generated code for this example. In Line (03),
we instantiate the object ccMaps_1 that encapsulates both environments mentioned above.
In Line (22), we invoke the method mapLeftOrRight: we provide the chosen index of
the expanded choice as argument to get the corresponding index in the original choice. For
example, given 1 (c.0.1), the method returns 0 (left). In Lines 27 and 31, we invoke the
method mapFromSelectToVarEnv from ccMaps_1 to get the correct values, given the index
of the choice of the variables x and y, respectively. Two further auxiliary environments, one
for each channel, allows a direct use of integers as array indexes. The method abs receives the
channel name, the position of the communication and the value communicated and returns
its corresponding absolute value (Lines 13-19). In our example, this environment does not
play an important role; it, however, is essential in the presence of negative numbers.

The translation of complex communication may lead to inefficient implementations
causing scalability problems. The same problem applies for parts of the strategy that also
requires an expansion of the communication possibilities like value communication in multi-
synchronised channels (see Section 5.1). This problem, however, only happens if the chan-
nels involved have types with large cardinality. On the other hand, these strategies can be
used in practice for non-problematic types such as free types, booleans, and small ranges of
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(00) ...

(01) int select_1;

(02) /* Maps to index of choice and variable values */

(03) CCMaps_CCC_1 ccMaps_1 = new CCMaps_CCC_1 ();

(04)

(05) /* Mapping of original values to absolute values */

(06) Abs_c1 abs_c1 = new Abs_c1();

(07) Abs_c2 abs_c2 = new Abs_c2();

(08)

(09) Alternative a0 =

(10) new Alternative (

(11) new Guard []{

(12) /* Original Index 0 */

(13) c1 [abs_c1.abs ("c1", 0, new BigInteger ("0"))]

(14) [abs_c1.abs ("c1", 1, new BigInteger ("0"))].getEnd(),

(15) ...

(16) /* Original Index 1*/

(17) ...

(18) c2 [abs_c2.abs ("c2", 0, new BigInteger ("1"))]

(19) [abs_c2.abs ("c2", 1, new BigInteger ("3"))].getEnd()}

(20) });

(21) select_1 = a0.select();

(22) switch (((Integer)ccMaps_1.mapLeftOrRight.get(select_1)).intValue()){

(23) case 0:{

(24) int x =

(25) (Integer)

(26) ((HashMap)

(27) ccMaps_1.mapFromSelectToVarEnv.get (select_1)).get ("x");

(28) int y =

(29) (Integer)

(30) ((HashMap)

(31) ccMaps_1.mapFromSelectToVarEnv.get (select_1)).get ("y");

(32) A1 (new CircusInteger (x), new CircusInteger (y));

(33) break;

(34) }

(35) case 1:{

(36) int x = ...

(37) int y = ...

(38) A2 (new CircusInteger (x), new CircusInteger (y));

(39) break;

(40) }

(41)}

Figure 3. Translating Complex Communications.

integers, which are vastly used in practice. Furthermore, our translation of complex commu-
nications as multi-dimensional arrays also allowed an integrated solution for simple point-
to-point communications and multi-synchronised communications (either carrying values or
not).
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5.3. Sharing Parallel Composition and Interleaving

The parallel operator implemented in JCSP corresponds to Hoare’s parallel composition, in
which the processes synchronise on the events that they have in common. By way of illustra-
tion, let us consider the following processes:

processP =̂ begin • a→ b→ d→ Skipend
processQ =̂ begin • a→ c→ c→ Skipend

The only parallel composition, among various possibilities, that can be directly translated
into JCSP Parallel is P |[{| a |} ]|Q. Parallel compositions like P ||| Q and P |[{| a,b,c |} ]|Q
cannot be directly translated using the Parallel. This is because the intersection between
the alphabets of P and Q is {a} and using Parallel they will synchronise exactly on {a}.
As a consequence, JCircus did not support cases in which the processes shared channels that
were not in the synchronisation channel set.

In this section, we describe a translation strategy that we have included into JCircus,
which allows its users to use the full expressiveness of the Circus parallel composition and
interleaving. The strategy is based on renaming and consists of the following steps:

1. Identification of the parallel branches;
2. Construction of a list of possible synchronisation for each channel. Each synchroni-

sation is a set of branches’ identifications and indicates that these branches must syn-
chronise on the given channel;

3. Definition of the renaming for each channel of each branch of the parallelism;
4. Processing the renaming;
5. Hiding the renaming from the interface.

In the sections that follow, we present the details of each of these steps. We will use the
action presented in Figure 4 to exemplify the strategy on each of the steps.

Figure 4. Expression to be used to explain the renaming strategy for the parallelism.

5.3.1. Step 1: Identification of the parallel branches

The branches of a parallel composition are all the leaves of the parallel expressions. For
that, we consider only parallel operators (parallel composition and interleaving) as branching
expressions and identify the leaves from left to right. By way of illustration, we present in
Figure 5, the result of the branches identification of the action presented in Figure 4. In our
example, all branches are prefixing actions a→ Skip.

The branches identification is used in an analysis of the parallel structure of the action
that defines the synchronisation possibilities as we describe in the sequel.

5.3.2. Step 2: Construction of the synchronisation sets

The analysis of the parallel branches returns one list of synchronisation sets for each channel.
Each synchronisation set of a channel represents a synchronisation possibility on that channel
and contains the identification of all branches that take part on it. In our example, we have one
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Figure 5. Branches and indexes of the expression of figure 5.

channel, a, that is mapped to its list of synchronisation sets. Our algorithm to build this list
works recursively, for each channel, as follows: first, each leave composes a singleton set. We
start from the left-most leaf 〈{0}〉. The algorithm then moves into the right-hand side of the
top most parallel composition, whose left most leaves are 〈{2}〉 and 〈{3}〉. Moving upwards,
these lists are not combined because a is not in the synchronisation channel set. Thus, the
algorithm returns a simple concatenation of both lists, 〈{2},{3}〉. Similarly, the algorithm re-
turns 〈{4},{5}〉 from the right-hand side of the parallel composition. Next, the parallel com-
position on a forces a combination of the results of the left-hand side and right-hand side: a
cross-product between both list achieves this combination, 〈{2,4},{2,5},{3,4},{3,5}〉.
Moving upwards in the parallel structure, the algorithm simply concatenates this list with the
list of synchronisation from branch 1 because of the interleaving. The result of this concate-
nation is 〈{1},{2,4},{2,5},{3,4},{3,5}〉. Finally, at the top most parallel composition, the
algorithm combines this list with the list {0} that corresponds to the synchronisation at the
left hand-side. The final result is 〈{0,1},{0,2,4},{0,2,5},{0,3,4},{0,3,5}〉.

5.3.3. Step 3: Defining the renaming of each parallel branch

The next step of the strategy is to define the renaming of each branch. For every channel c,
we apply the renaming c← ci (c becomes ci) to the branch b if, and only if, b is a member of
the i-th element in the the synchronisation list of c. For instance, the branch 0 is a member of
every synchronisation set of channel a. For this reason, c is renamed to every new channel ci.
On the other hand, branch 1 is a member only of the first synchronisation set of c; we rename
c only once. We present below all the renaming on a from our example.

• Branch 0: [a← a0,a← a1,a← a2,a← a3,a← a4]
• Branch 1: [a← a0]
• Branch 2: [a← a1,a← a2]
• Branch 3: [a← a3,a← a4]
• Branch 4: [a← a1,a← a3]
• Branch 5: [a← a2,a← a4]

The next step of the strategy is to apply the renaming to each of the corresponding nodes in
the AST.

5.3.4. Step 4: Processing the renaming

The application of the renaming is relatively simple but behaves slightly different for func-
tional renaming and non-functional renaming. The former renames channels to one new name
only, whilst in the latter one channel is renamed to more than one new name. For instance,
a functional renaming is applied to branch 1 and a non-functional renaming is applied to
branch 0.

In cases where we have a functional renaming, the name of the channel is directly
changed in the AST. Non-functional renaming, however, requires a slightly less simple
change. In such cases, we replace simple prefixing a→ A to an external choice on all new
names followed by A. For example, branch 2 becomes a1→ Skip 2 a2→ Skip.



28 S.L.M. Barrocas and M.V.M. Oliveira / JCircus 2.0

It is important to notice that the only change is on the channels’ references, not in
the communication structure. When the event to be renamed is a complex communica-
tion, for instance, the content of the communication fields is left unchanged. For exam-
ple, if a communicates two values, the prefixing a?x?y→ Skip[a← a1,a← a2] becomes
a1?x?y→ Skip 2 a2?x?y→ Skip. Based on the strategy presented in Section 5.2, JCircus is
able to translate this external choice. Multi-synchronisation is also supported. In this case,
the branches that participate on a multi-synchronisation are members of the same synchroni-
sation set. As a matter of fact, synchronisation sets with cardinality higher than 2 indicate a
multi-synchronised channel.

The expression given in figure 5 is updated to the expression of figure 6. Internally,
JCircus creates a basic process for each of the branches and replaces the branches by an
invocation to its corresponding internal process.

Figure 6. Updated branches and indexes of the expression of figure 5.

5.3.5. Step 6: Hiding the renaming from the interface

The external environment needs to be oblivious of the renaming used in our strategy. This is
achieved by changing the behaviour of the GUI that is generated by JCircus as follows.

Every interaction of the environment with the generated system is done using buttons
that are automatically generated by JCircus. Internally, the GUI propagates this interaction
to the system by trying to synchronise on the channels that correspond to the environment’s
interaction in a random order. In our example, when the environment presses the a button, the
GUI tries to synchronise on the channels a0 to a4, one by one, in a random order. For each
of these channels, it waits for a certain time. If it timeouts, the next possibility is tried, and so
on. If any of the attempts succeeds, the user receives a positive feedback. However, if none
of them succeeds, nothing happens and the interaction is ignored. From the user perspective,
the original channel is the only possibility of interaction. Nevertheless, internally in the GUI,
this is replaced by a communication on any of the possible synchronisation on the new names
given to that channel. This approach has been verified using FDR. The scripts can be found
at the project webpage.

In Figure 7, we present a sketch of the generated code for the branch 0 in the example
discussed above. As explained above, the renaming is applied to the branch before the trans-
lation. The result of the translation of a simple communication is a choice between the re-
named instances of a (a0 up to a4) in corresponding branch. Afterwards, the action behaves
according to the chosen event.

The current distribution of JCircus contains all the extensions discussed in this paper.
Furthermore, we have integrated JCircus into CRefine, a tool that supports the Circus re-
finement calculus and its tactic language. This integration provides an integrated environment
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int select_1;

select_1 = (

new Alternative (

new Guard []{ a0.getEnd(), a1.getEnd(), a2.getEnd(),

a3.getEnd(), a4.getEnd()}

)).select();

switch (select_1) {

case 0:{ (new Skip()).run(); break; }

case 1:{ (new Skip()).run(); break; }

case 2:{ (new Skip()).run(); break; }

case 3:{ (new Skip()).run(); break; }

case 4:{ (new Skip()).run(); break; }

};

Figure 7. Translating Alphabetised Parallel and Interleaving.

that allows users to formally develop systems in a calculational manner. In the next section,
we discuss this integration.

5.4. Integrating into CRefine

CRefine [19] is a Java tool that automates the application of the Circus refinement calcu-
lus [18] and fosters a systematic correct-by-construction approach for systems developments.
Using this approach, developers may start from a (usually centralised) abstract specification
and, with a sequence of steps, achieve a (usually distributed) concrete specification. Each step
is an application of a refinement law, which is usually valid under certain conditions that need
to be proved. CRefine automatically manages the development and its proof obligations,
most of which are automatically proved.

Sometimes, during the development using refinement calculus, the same laws are ap-
plied in the same manner in various developments or even in different parts of a single de-
velopment. A strategy to optimize this calculus is to formalise these applications as refine-
ment tactics, which can then be used as single transformation rules. Using this approach, the
refinement calculus becomes more agile, reducing time and effort. CRefine’s current distri-
bution adds the support for the definition and application of refinement tactics to CRefine.
This extension constitutes an useful addition that can be used while modelling systems in
Circus. Using the new module, users can define and use tactics that considerably optimises
the Circus development process.

The final result of this development process (using tactics or not), however, is not an
executable program but a concrete specification which may be animated using tools like [17].
The integration of CRefine with JCircus allows a final translation of the concrete specifica-
tion into a mainstream programming language. Using CRefine, the user simply clicks on the
concrete specification and invokes the translation to Java. This integration provides Circus
with a complete development path from abstract specification into code.

6. Performance analysis

In this section, we present an analysis of performance of the extensions presented in this pa-
per. In these experiments, we used simple examples as input to JCircus varying the impor-
tant parameters for each of the experiments, and collected the translation time, the execution
time and the memory usage. The experiments allowed us to analyse the scalability of the
approach and to identify issues which must be addressed in JCircus. In what follows, we
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organise this section as follows. In Section 6.1, we describe the results of the experiments
for multi-synchronisation. Next, Section 6.2 describes the results of the experiments for the
translation of complex communications. Finally, in Section 6.3, we present the results of the
experiment for the translation of sharing parallel composition and interleaving. A detailed
account on the information provided in this Section can also be found at the project webpage.

6.1. Multi-Synchronisation Performance

The aim of this experiment was to compare the performance of the translation of multi-
synchronisation using the previous solution (multi-synchronisation protocol) and the new one
that uses AltingBarriers.

In this experiment, we used a specification in which a varying number of process take
part in a given synchronisation. The experiment was executed using both versions of JCir-
cus. The original version translated the process to a code that uses the multi-synchronisation
protocol and the new version translated the process to a code that uses AltingBarriers. The
overall results are presented in Figure 8.

Figure 8. Experiments Results: Multi-Synchronisation.

The translation time was smaller for the solution we implemented using alting barri-
ers. However, this was only valid for an experiment with up to around 35 processes tak-
ing part in the multi-synchronisation. After this number, the translation using the multi-
synchronisation protocol becomes more efficient. This is due to the nature of their growth
rate: the AltingBarrier solution has an exponential growth rate; initially it has a relatively
small growth rate which becomes rather large as we increase the number of participants. On
the other hand, the use of the protocol presented a linear growth rate. This showed us that
the user must be given a choice on which solution JCircus should use. This choice is being
currently included in the tool.

The results of the experiment demonstrate that the execution time of the multi-
synchronisation protocol is higher than the execution time of the solution using barriers. This
difference happens because the protocol executes various point-to-point simple communica-
tions between a controller that manages the processes that take part in the synchronisation
in a two-phase commitment manner. On the other hand, JCSP AltingBarrier uses a fast
implementation that is not a two-phase commit. It has overheads that are linear with respect
to the number of barrier offers being made [25]. On the other hand, the memory experiments
demonstrated a higher memory usage for the multi-synchronisation using AltingBarrier.
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Both increasing rates, however, are linear with respect to the number of participant processes.
Hence, the execution of the barriers approach proved to be feasible even in a network of one
hundred processes.

6.2. Complex Communications Performance

The experiment on the translation results of complex communications was done using a sim-
ple example of one communication between a reader and a writer on a single channel c. The
experiment was divided into two parts. In both parts, the execution time presented a very low
variation (below 10ms) and we omit it in the sequel.

In the first part, we fixed the number of communication fields in 2 (channel c : T × T)
and increased the size of the channel type T from 5 to 25 elements. The overall results of this
first part are presented in Figure 9. The growth in the memory usage was not crucial because
its growth proved to be linear. Nevertheless, as expected, the experiments demonstrated that
the growth in the translation time has an exponential rate. It, however, was still considerably
manageable for types of size below 30. These results shown us a important limitation in the
use of complex communications: these should only be used for channels whose types have a
relatively small cardinality. For example, using such complex communication in the presence
of integers (within the Java boundaries) is not viable.

Figure 9. Experiments Results: Complex Communication (increasing type size).

In the second part, we fixed the size of type T in 2 and increased the number n of fields
in the communications on c from 2 to 8 (channel c : T × ...× T - n times). The overall results
of this second part are presented in Figure 10. The growth in the memory usage also proved
to be linear, hence, not a problem for scaling. The experiments shown an exponential growth
of the translation time on the number of fields in the communication. It was, however, still
considerably manageable for up to 8 communication fields. Although apparently a limitation,
this does not constitute a problem given that to the best of our knowledge on the practical
use of CSP, communications with over 8 communication fields are not largely used (if used
at all).

6.3. Sharing Parallel Composition and Interleaving Performance

The last experiment investigated the translation of sharing parallel composition and interleav-
ing. In this experiment we considered a simple example on which one process is willing to
synchronise on a channel end and the other end is shared among various processes forcing
an interleaving on that end to occur. Hence, synchronisation happens between two process at
a time only. The results of this experiment are presented in Figure 11, in which we increase
the number of readers from 2 up to 10.

The translation of sharing parallel composition and interleaving is strongly based on pre-
vious solutions. Nevertheless, this is only done after a considerable change to the AST that
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Figure 10. Experiments Results: Complex Communication (increasing communication size).

Figure 11. Experiments Results: Sharing Parallel Composition and Interleaving.

reflects the necessary renaming. For this reason, the linear growth in the memory consump-
tion was as expected. On the other hand, the experiment also indicated a linear growth rate in
the translation time.

7. Conclusions

In this paper, we proposed an extension to JCircus, an automatic translator from Circus to
Java. We extended JCircus by providing: (1) a new optimised translation strategy to multi-
way synchronisation; (2) the translation of complex communications, and; (3) the translation
of CSP sharing parallel and interleaving. The extensions are presented in Table 1. We also
described the integration of JCircus into the Circus refinement tool, CRefine, which pro-
vided Circus with a tool support for the whole development process. Finally, a performance
analysis of the resulting code was also presented and discussed.

Multi-synchronisation was originally implemented using a multi-synchronisation two-
phase commitment protocol. However, from December 2006, JCSP provided the class
AltingBarrier, which implements multi-synchronised channels that can engage in an ex-
ternal choice. This implementation optimises the two-phase commitment protocol because
JCSP AltingBarrier uses a fast implementation whose overheads are linear with respect
to the number of barrier offers being made [25]. Our experiments presented in Section 6.1
demonstrates this optimisation. They, however, also indicate that a trade-off must be made
between the execution time and the translation time. The translation using AltingBarrier

was quicker for networks of up to around 35 processes. Because of the exponential nature
of the time growth of this translation, the translation using the protocol, whose growth rate
was linear, proved to be faster. This indicated a further improvement to JCircus that is being
currently implemented: the user must be given a choice on which solution JCircus should
use.

The extension presented in this paper also provided JCircus with the possibility to trans-
late complex communication, in which at least one of the fields that is not the last one is a
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Feature Example 1.0 2.0

no actions Stop X X

successful termination Skip X X

chaotic behaviour Chaos
simple prefix c→ A X X

output prefix c!x→ A X X

input prefix c?x→ A X X

restrictions no nesting like using
same variable c?x→
c?x→ A

none

restricted input prefix c?x?P→ A
complex prefix c?x!y→ A X

sequential composition A1; A2 X X

external choice A1 2 A2 X X

restrictions only prefixing
actions

only prefixing and
guarded actions

no output event
internal choice A1 u A2 X X

parallel composition A1 |[ns1 | cs | cs2 ]|A2 X X

restrictions multi-sync with sin-
gle writer

none

multi-sync with same
processes
α(A1)∩α(A2)⊆ cs

interleaving A1 |[ns1 || cs2 ]|A2 X X

restrictions α(A1)∩α(A2) = /0 none
hiding A \ cs
renaming P[a← b]
parametrisation A(x) X X

recursion µ X • A(x) X X

assignment x := v X X

alternation ifg1→ A1[]g2→ A2 fi X X

variable block varx : T • A X X

deadlock-free GUI X
Table 1. Circus Actions Translation.

communication (!exp or ?x). For example, c?x.0 and c?x!0 are complex communications as
both have an input at the first field. This limitation was due to the absence of an algorithm to
generate the possibilities of communication for a given channel. In this paper, we presented
an approach to implement such algorithm that allows the translation of communications with
an arbitrary number of field decorations. This approach used mappings that stored informa-
tion about the chosen communication in order to determine the values of the input field vari-
ables. The experiments presented here indicated that this approach has limitations due to the
exponential growth in the translation time as we increase the size of the types involved in
complex communications. It, however, was still considerably manageable for types of size
below 30. An interesting piece of future work is to investigate other translation strategies for
complex communications that do not require the expansion of the communication possibili-
ties.

The translation of parallel composition in the previous version of JCircus required the
intersection of the alphabets of the processes to be a subset of the synchronisation channel
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set. For this reason, interleaving on channels that were in the intersection of the processes’
alphabets was not possible. In this paper, we remove this restriction by providing a strategy
for translating Circus parallel composition with any synchronisation channel set. This re-
quired the investigation of an approach to force the interleaving between two channels that
would, otherwise, synchronise. We presented a strategy that internally renames the channels
based on the parallel structure of the main process. The environment remains oblivious of
the renaming; hence, the strategy’s implementation is equivalent to the specification and its
correctness has been validated using FDR.

The extensions described in this paper can also be used in the translation of further lan-
guages into JCSP. This is due to the fact that here we focus on the translation strategy rather
than only on the Circus to JCSP strategy. For instance, the translation strategy for sharing
parallelism and interleaving provides a correspondence between Hoare’s parallel composi-
tion and sharing parallel composition. Thus, any parallel composition from an event-based
language that uses sharing parallel composition can be translated into another event-based
language that uses Roscoe’s parallel composition like OCCAM.

Despite the large set of translatable Circus constructs, there are still further possible
extensions to JCircus that can be done. An interesting challenge is the translation of hiding,
which is not trivial because its operational behaviour depends on the position of the hidden
events and may introduce divergence, deadlock, and non-determinism.

Another approach to extend JCircus is to provide some of the constructors natively in
JCSP, using more efficient algorithms in Java. A native availability of the constructors in JCSP
would make the translation process more direct and efficient removing scalability problems
of the translation process like that presented in Section 6.2. Furthermore, as in the case of
multi-synchronisation, the efficiency of the generated code would also be considerably better.

At last, JCircus was integrated into CRefine, a tool that supports the Circus refine-
ment calculus and tactic language. This integration allows a final translation of the calculated
concrete specification into a mainstream programming language and provides Circus with a
complete development path from abstract specification into code.
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