
A Debugger for
Communicating Scala Objects

Andrew Bate and Gavin Lowe

Department of Computer Science
University of Oxford

Overview

• Implementation of a GUI debugger for Scala+CSO

• Extracts information from the use of concurrency
primitives at runtime

• Produces:
– Sequence diagram

– Communication network diagram

– Composition tree diagram

• Dynamic detection of deadlock

• Behavioural specifications on trace patterns

• Guarantees to detect illegal use of currency primitives

Two Models

Process Model

Describes the syntactic composition of
processes and the way in which those processes
may communicate

Thread Event Model

Logs the runtime behaviour of the system,
including attempted and successful
communications

User CSO Processes

Process Model

Thread Event
Model

Debugger

Dining Philosophers Problem

Phil1

Phil2

Phil3 Phil4

Phil5

Fork1

Fork2

Fork3

Fork4

Fork5

Generating Hamming Numbers

• The Hamming numbers are those whose only
prime factors are 2, 3 and 5.

• Thus, inductively:

– 1 is a Hamming number.

– If ℎ is a Hamming number, then so are 2ℎ, 3ℎ and 5ℎ.

Communication Network

Tee

x2 x3

x5

Merge

Prefix 1

Console

Tee

Merge

Tee

Running the Program…

Contention Network

Tee

x2 x3

x5

Merge

Prefix 1

Console

Tee

Merge

Tee

!

! !

! !

!
? ?

?

!

Deadlock Detection

• Deadlock can only occur if the communication
network contains a cycle

– The Hamming numbers program contains a cycle

• Deadlock occurs when there is a cycle of
ungranted requests without escape

– This is the fate of the Hamming numbers program

• We can detect deadlock at runtime by recording:

– The processes currently trying to ! and ? to a channel

– The processes that may ever ! and ? from a channel

𝑅

𝑄

𝑆

𝑃 𝑇

𝑅

𝑄

𝑆

𝑃 𝑇

Cycle at time step 𝑡

Cycle broken at step 𝑡 + 1

This process has no
ungranted request

Algorithm

1. If communication network acyclic, then deadlock free.

2. Otherwise:

a) Define the leaves be all those processes without
ungranted requests in the contention network

b) Label the leaves and all processes with a path to
the leaves as not deadlocked

c) If some process is unmarked then some
subnetwork is deadlocked

Behavioural Specifications

• Can be specified in the CSO program

• Akin to programing with assertions

• Specifications are constraints on trace patterns

• Two flavours:

1. Specify function 𝑓: List 𝐸 → Boolean to be
checked, where 𝐸 ≤ SelfLoggedEvent

2. Specify a state machine with update function.
The assertion is then the set of legal states.

trait CounterSpecEvent extends SelfLoggedEvent
object A extends CounterSpecEvent
object B extends CounterSpecEvent

val spec = new Logger ({
 trace: List[CounterSpecEvent] =>
 val diff = trace.count(_ == A) - trace.count(_ == B)
 0 <= diff && diff <= 1
})

val c = ManyOne[CounterSpecEvent]

def P = proc("P"){ repeat { c!A; spec.log(A) }
def Q = proc("Q"){ repeat { c!B; spec.log(B) }

def Consumer = proc("Consumer"){ repeat { println(c?) } }
val System = P || Q || Consumer

Marker trait used to define specs

trait CounterSpecEvent extends SelfLoggedEvent
object A extends CounterSpecEvent
object B extends CounterSpecEvent

val statefulSpec = new StatefulLogger[Int,CounterSpecEvent] (
 0,
 (diff,evt) => evt match { case A => diff+1; case B => diff-1 },
 diff => (0 <= diff && diff <= 1)
)

val c = ManyOne[CounterSpecEvent]

def P = proc("P"){ repeat { c!A; statefulSpec.log(A) }
def Q = proc("Q"){ repeat { c!B; statefulSpec.log(B) }

def Consumer = proc("Consumer"){ repeat { println(c?) } }
val System = P || Q || Consumer

Marker trait used to define specs

Timing Evaluation

• Evaluated the wall-time range of Commstime
for a single cycle of the network for each test

• In the parallel variant, Delta outputs to
Consumer and Succ concurrently using an
inner parallel composition.

Prefix Delta

Succ

Consumer

Timing Evaluation

• For Windows 7:
– Without deadlock detection:

• Sequential case: overhead < 10%
• Parallel case: overhead ~16%

– With deadlock detection
• Sequential case: overhead increase ~5%
• Parallel case: overhead increase in upper ranges

• For Linux, Solaris, Mac OS X:
– Without deadlock detection:

• Sequential case: overhead < 10%
• Parallel case: overhead < 2%

– Running deadlock detection did increase upper range
of time on Solaris 11 and Mac OS X.

Prefix Delta

Succ

Consumer

Future Work

• Extend for hybrid approaches to currency,
with local shared-variable concurrency

– Example: Distributed systems

• Mobile channels are supported by CSO, but
not presently by our tool

• Cache historic data to disk for long runs

• Log clones of objects communicated, not
just a reference

Previous Work

• Concurrency simulators
• INQUEST Transputer Network Debugger (1993)

– Allow modification of program at runtime
– Breakpoints, watchpoints for specific threads
– Step through individual threads
– Similar tool developed of occam-π by

Ritson and Simpson (2008)

• INMOS Transputer Development System (1987)
provided deadlock detection
– Required source code modification and changes to underlying

communication network

• Visputer (1995) for occam 2 produced sequenced diagrams
of inter-process communications, but only after the network
had terminated

Summary

• Diagramming of internal state

– Provides an intrinsic explanation for the
extensional behaviour of the program

• Guarantees to detect illegal use of CSO library

• Behavioural specifications: constraints on
trace patterns

• Dynamic deadlock detection

• Low overhead

