UNIVERSITY OF TWENTE.

Design and Use of CSP Meta-Model for Embedded Control Software Development

Communicating Process Architectures 2012

Maarten Bezemer, Robert Wilterdink and Jan Broenink Robotics and Mechatronics, University of Twente, The Netherlands

Outline

- Introduction
- CSP Meta-Model
- Use Case
- Example
- Conclusions and Future Work

Demo afterwards!

Introduction - Context

- Model-Driven Design tools help with development of complex software
- CSP helps with development of concurrent software
- The combination helps with complex concurrent software
 - Eg embedded control software for large(r) robots

Introduction - Meta-Models

- Constituting elements of models is required
 - Multiple tools (of a tool suite) need knowledge of the models
 - Interchangeable models within a community
- A meta-model describes the format of a model
 - A meta-meta-model describes the format of a meta-model
 etc.
- Models that conform to a meta-model use format that is known on before-hand
- No existing CSP meta-model available with a focus on graphical modelling

Base Meta-Model

- Modular design
- Base Meta-Model

Component-Port-Connector (CPC) implementation

- Usable for multiple types of models
 - Graph based models
 - Communication based interfaces to external tools
 - Basically any model having 'communicating' objects

CSP Meta-Model

CSP Meta-Model for Embedded Control Software Development

CSP Meta-Model details

UNIVERSITY OF TWENTE.

- BaseRelation defines ANY relation
 - Used to define compositional relations
- BaseLink defines a communicational relation
 - Used to define communication channels

Use Case - TERRA

Twente Embedded Real-time Robotic Application

- CSP/FDR \rightarrow Formal verification of model
- C++/LUNA \rightarrow Towards on target execution of model

Use Case – CSP Editor

 \mathbf{v}

- Graphical representation similar to gCSP
 - More compact models, due to some changes

period

CSP Meta-Model for Embedded Control Software Development

UNIVERSITY OF TWENTE.

Use Case – Model Validation

- Validation in editor
 - Rules are defined by Meta-Model 'What to fill in where'
 - Addition rules for transformations
- Keeps models compliant for model transformation
 - Compatible with specific target transformation rules
 - Object names must be correct and unique (CSP and C++ LUNA)
 - Sub-models must be defined (CSP)

```
context CSPProcess {
    critique hasSubmodel {
        guard : CodeGenDescription.isUndefined() or CodeGenDescription == "CSP"
        check : self.submodel.isDefined()
        message : "CSP code generation will fail: " + self.name + " does not
        have a sub-model set"
        }
}
```

Use Case – Model transformation

- Possible to use external expert tools
 - FDR for formal verification of the models
- No need to reinvent these external tools!
- Put the models to actual use
 - C++/LUNA code generation to execute model on target
- Prevent errors due to manual conversion of correct models

(The demo afterwards will show actual examples)

Use Case – Model transformation

UNIVERSITY OF TWENTE.

Representation of model in CSP (FDR)

CSPm	Meta-model representation	Additional Attributes
p =	CSPProcess	
	CSPCompositionalGroup	groupedRelations: relations that are grouped
channel c	CSPChannel	ports: two connected ports / processes
datatype <type> = <name></name></type>	CSPVariableDescription	<i>name</i> : name of the variable <i>type</i> : boolean, integer
c! <var></var>	CSPWriter	<i>variable</i> contains data <i>link</i> : channel to write to / read from
c ? <var></var>	CSPReader	
p;q	CSPCompositionRelation	<i>type</i> = SEQ or PAR or ALT <i>compositionalObject</i> : the two related objects
p q	CSPCompositionRelation	
p [] q	CSPCompositionRelation	
if-statement	CSPRecursionProperty	expression: true when another loop is required

UNIVERSITY OF TWENTE.

Example

- Corresponding CSP (FDR) code available in paper
- Real-life examples
 - JIWY and Production Cell available (JIWY will be showed in the demo afterwards)

Conclusions

- CSP Meta-Model usable to store CSP related models
- TERRA tool suite makes use of CSP Meta-Models
 - Editors
 - Validation
 - Transformations to plain text
- Actual suitable for Embedded Control Software Development
 - JIWY and Production Cell models are designed
 - Used by students for their assignments

Future Work

- Better integration between external modelling tools and TERRA
 - 20-sim suitable for physics modelling
 - Directly integrate 20-sim models as CSP sub-models
- Building blocks
 - Provide standard Control Software functionality
 - Generic Architecture Component as a template/skeleton block
- Simulation and co-simulation capabilities
 - Better understand of models
 - Able to test a control model using a dynamics model of the plant

"Hopefully a standard meta-model will emerge that is suitable for the needs of the community and helping to improve interaction between multiple disciplinaries within the community."

- Standard storage format
- Interchangeable with the tools developed within our community
- Tighter cooperation!

UNIVERSITY OF TWENTE.

CSP Meta-Model for Embedded Control Software Development