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Abstract. Software that is used to control machines and robots must be predictable
and reliable. Model-Driven Design (MDD) techniques are used to comply with both
the technical and business needs. This paper introduces a CSP meta-model that is
suitable for these MDD techniques. The meta-model describes the structure of CSP
models that are designed; using this meta-model it is possible to use all regular CSP
constructs when constructing a CSP model. The paper also presents a new tool suite,
called TERRA, based on Eclipse and its frameworks. TERRA contains a graphical
CSP model editor (using the new CSP meta-model), model validation tools and code
generation tools. The model validation tools check whether the model conforms to the
meta-model definition as well as to additional rules. Models without any validation
problems result in proper code generation, otherwise the developer needs to address
the found problems to be sure code generation will succeed. The code generation tools
are able to generate CSPm code that is readable by FDR and to generate C++/LUNA
code that is executable on embedded targets. The meta-model and the TERRA tool
suite are tested by designing CSP models for several of our laboratory setups. The
generated C++/LUNA code for the laboratory setups is able to control them as ex-
pected. Additionally, the paper contains an example model containing all supported
CSP constructs to show the CSPm code generation results. So it can be concluded that
the meta-model and TERRA are usable for these kind of tasks.
Keywords. co-simulation, code generation, CSP, eclipse, EMF, LUNA, meta-model,
model transformations, model verification, TERRA

Introduction

Context

Software that is used to control machines and robots must be really predictable and reli-
able, as these Cyber-Physical Systems are Safety-Critical. Model-Driven Design (MDD) and
Model-Driven Engineering (MDE) are nowadays inevitable to comply with both the tech-
nical and business needs. Designers in engineering domains usually have graphical design
tools, in which the designs are formulated as labelled and directed graphs. Quality control
and automatic consistency checking are crucial here, to support an effective design process.
When these design graphs/models can be formulated in a formal language, the quality and
consistency issues can be rigorously checked. The CSP process algebra [1] can be used for
this, provided CSP models can be specified, shown and edited.
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Twente, P.O. Box 217 7500 AE Enschede, The Netherlands. E-mail: M.M.Bezemer@utwente.nl.
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For sound reasoning about and working with domain models, the collection of domain
concepts must be known. Meta-models, as abstraction to models, are able to highlight the
properties of the model itself. However, the CSP process algebra is not defined by a meta-
model but rather by using a context-free grammar (cf. [1]). Creating a formal CSP meta-
model will elucidate CSP semantics and open-up many more possibilities, like model-to-
model transformations from UML diagrams to CSP.

The construction and editing of CSP models needs to be supported by a domain specific
editor for CSP. This will eliminate syntax errors and trivial contextual flaws, like unconnected
rendezvous channels. Unfortunately, the existing gCSP tool [2] has not the quality we need
and is not based on an explicit meta-model. The entire model definition lives mostly in the
developers minds. An added benefit of having a meta-model is, that it is relatively easy to
construct a domain specific (CSP) editor in an editor-generator framework like the Eclipse
Model Framework (EMF) [3].

To alleviate the problems mentioned above, an explicit CSP meta-model has been de-
veloped. The new CSP tool suite presented in this paper, called Twente Embedded Real-time
Robotic Application (TERRA), contains among others a CSP editor, which uses the CSP
meta-model.

The ultimate goal for MDE is to create designs that are first-time right, i.e. have the
model(s) verified at multiple stages in the design process, implementation (code) correct
by (model) specification and satisfying all requirements targeted by the design. Based on
the meta-model, shown in Figure 1, interfaces between tools can be designed, e.g. for
(co-)simulation. Model-to-model (M2M) transformations can be used to optimise CSP mod-
els. From the CSP model, via model-to-text (M2T) transformations, TERRA is able to gen-
erate C++ code for the LUNA framework [4]. This is a hard real-time, multi-threaded, CSP-
capable execution framework designed for embedded control software. Although the LUNA
CSP execution engine was created before the CSP meta-model was created, LUNA does con-
form to the CSP meta-model. Thus, CSP models can be executed on embedded computers
and control actual hardware, as was specified in the design.

Figure 1. Meta-model usage. The bold items are newly designed and presented in this paper. (The numbers
between the parenthesis refer to the corresponding sections).



M.M. Bezemer et al. / CSP Meta-Model for Embedded Control Software Development 187

Related Work

Meta-Models

For describing software designs, UML diagrams [5] are the de-facto standard. However, the
standards are purely declarative and do not provide formal semantics. Formalising UML di-
agrams with CSP (i.e. adding formal semantics in general) is desired, such that livelock and
termination checks can be done, to guarantee the quality of service of the components. In
[6] a case study on model-to-model transformation from UML activity diagrams to CSP is
discussed, whereby multiple transformation solutions and tools are evaluated. The authors
divide the solutions in three categories: pure graph transformations, solutions with control
structures and solutions based on a host framework / language. The presented (target) CSP
meta-model resembles an Abstract Syntax Tree (AST) [7] for CSP grammar, where program-
ming language concepts (e.g. ProcessAssignment) are mixed with CSP concepts. Since the
meta-model is more concerned with storing a CSP document than modelling the process
composition and communication, this meta-model is considered not suitable for the use cases
presented in this paper. In [8] a rule-based model transformation solution with control is dis-
cussed, whereby the transformation from UML state charts to CSP is taken as a case study.
However, no explicit CSP meta-model is given.

In the BRICS project work is ongoing to define a new generalised component meta-
model, called the BCM [9]. However, in the BCM concurrency cannot be expressed as ex-
plicitly as in CSP (e.g. sequential execution cannot be specified). At the basis the meta-
model uses the well-known Component-Port-Connector (CPC) meta-model (among others
described in [10]), whereby components exchange information through ports over connectors
(i.e. channels). The CSP meta-model, introduced in this paper, also has a CPC meta-model at
its basis, as will be shown in Section 1.1.1.

In the DESTECS project, work is being done to define a Structural Operational Seman-
tics (SOS) of co-simulation of discrete-event (DE) controller schemes and continuous-time
(CT) behaviour of the machine to be controlled [11]. An SOS description consists of type
definitions describing the static structure and transition relations for the behaviour of the
model [12]. The DESTECS SOS description is not a meta-model, but it serves more or less as
a meta-model, because a precise definition of the model elements comprising a co-simulation
is given. Models here also use the CPC approach, mentioned above.

Tools

Many (supporting) tools are available to design and execute CSP models. The Failure Di-
vergence Refinement (FDR) tool [13] can be used to check CSP models, among others on
livelock and deadlock conditions. The gCSP tool [2] can be used to design CSP models. The
C++CSP2 [14] and the LUNA [4] software frameworks implement CSP model execution in
C++. However, none of these tools and frameworks provide an explicit meta-model, which
is required for model validations and model transformations. Furthermore, since the meta-
models are not available, the exact implementation of the tools lives mostly in mind’s of the
developers and thereby limits their extensibility and transparency.

Ptolemy II [15] is a heterogeneous modelling and simulation tool that allows to create
multi-domain models using different models of computation (e.g. Finite State Machines or
CSP), consisting of actors and directors. Actors are comparable to submodels or processes.
The director determines the domain and the model of computation that is used by the sim-
ulator for executing an actor. The interaction between actors with different models of com-
putation is based on well defined interfaces and flow of control rather than model-to-model
transformations.
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Outline

The first section discusses the design and implementation of the CSP meta-model. Next, the
construction process for models that conform to the meta-model is described in Section 2.
Followed by use cases for these models, showing situations where the (meta-)models provide
additional advantages. Section 4 presents a concrete example of a hypothetical application
created with TERRA. Conclusions are given in Section 5. The paper finishes with future
work.

1. CSP Meta-Model

A meta-model in general consists of elements, as shown in Figure 2, to capture domain con-
cepts (model objects). Each element might have one or more attributes and/or operations.
Attributes hold data associated with the element, like a string to store the name of the ob-
ject, or references to store a relation between this object and the referenced object. Element
operations provide additional functionalities or ways to use the element. Each element, at-
tribute and operation has a set of properties to refine the element, attribute or operation. These
properties include a name, type, default value, and so on.

Figure 2. Meta-model terminology (applied on the CSP meta-model).

The meta-model presentation in Eclipse/EMF is similar to the UML class diagram pre-
sentation. Both methods can be used to create an object oriented ontology to capture the do-
main concepts. Concepts like the described elements, attributes and operations can be found
in the UML class diagrams, however they are named classes, variables and methods respec-
tively.

1.1. Design Choices

The CSP meta-model employs a modular design, as different use cases require different de-
tails. The meta-model can be extended to make it suitable for a variety of different use cases,
ranging from designs of practical robotic setups to mathematical models with process alge-
bra. For example, a design for a robotic setup requires information of the target hardware,
while a mathematical model does not require such information. The following sections de-
scribe the modular parts of the CSP meta-model.
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1.1.1. Base Meta-Model

The base meta-model captures the common factors used in component based designs. It pro-
vides means to design CPC (data-flow) like models, as it provides elements like component
(BaseObject), port (BasePort) and connection (BaseRelation) objects, as shown in Figure 3.

The base meta-model objects are also shown on the left side in Figure 4, making it
clear how the CSP meta-model is extending the base meta-model. All meta-models use the
(absolute) base meta-model, directly or indirectly via other meta-models and more domain
specific features to the base elements. In BRICS the CPC (base) meta-model is presented as
another layer of abstraction, i.e. the meta-meta-model [9]. The inheritance relation between
the meta-models, as proposed in this paper, is stronger than the regular ‘conforms to’ relation
between meta-model and its meta-meta-model.

Figure 3. Partial base meta-model, showing the interesting parts of the meta-model.

The BaseObject element stores very basic details, like its name. Most other objects ex-
tend this BaseObject element and add more specific details. The same goes for relations, the
BaseRelation defines that two or more objects are related. The actual type of relation that
is shared between the objects, is defined by elements that extend the relation element. For
example, the BaseLink element defines a data exchanging relation between objects.

For creating hierarchical models, multiple nested levels of objects need to be supported,
i.e. each sub-process contains its own processes. For this purpose the meta-model provides
a specialised container element called IBaseContainerObject. This element is used by other
elements to provide support for containing other objects. For example, the BaseDiagram
element uses the IBaseContainerObject element to contain all of its model objects, ports and
links.

1.1.2. CSP Meta-Model

The CSP meta-model extends the base meta-model and provides CSP domain specific ele-
ments, like readers, writers, channels and object compositions, see Figure 4. These elements
detail an explicit meta-model for Hoare’s [1] context-free grammar CSP definition.

A CSPChannel is a BaseLink defining a rendezvous or buffered channel. The additional
attribute provides the means to optionally specify the channel buffer size, used when the
channel is a buffered channel. The same can be applied to readers and writers: they require
a port attribute, so it is possible to connect a CSP channel to these objects. An intermediate
element is added for shared functionality of the reader and writer elements, because both
require a port and are also a BaseObject.

The main addition of the CSP meta-model to the base meta-model is the facility to ex-
press CSP algebra. Therefore, the CSP meta-model provides compositional meta-model ele-
ments, which are divided into a CompositionalObject, a CompositionalRelation and a Com-
positionalGroup element. The CompositionalObject (extended BaseObject) is used to spec-
ify that the object has a compositional relation to another CompositionalObject. Composi-
tionalRelations are extending BaseRelations and are used to add details of this compositional
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Figure 4. Partial CSP meta-model, showing the relation with the base meta-model objects and the CSP com-
positional objects.

relation, for example a type attribute defines whether it is a parallel, sequential, alternative
or another relational type. The CompositionalGroups are used to group the relation objects,
with the same type, to make the actual groups. They are extending CompositionalObject, so
it is possible to hierarchically define compositional relations between compositional groups
and objects as well.

Table 1. Representation of CSP constructs with the meta-model definition.

CSPm meta-model representation additional attribute(s)
p = ... CSPProcess

CSPCompositionalGroup groupedRelations: relations that are grouped
channel c CSPChannel ports: two connected ports/processes
datatype <type> CSPVariableDescription name: name of the variable

= <name> type: boolean for Bool, integer for Int, . . .
c !<variable> CSPWriter variable contains data to write on the channel

link: channel to write to
c ?<variable> CSPReader variable contains data read from the channel

link: channel to read from
p ; q CSPCompositionalRelation type = SEQUENTIAL

compositionalObjects: the two related objects
p || q CSPCompositionalRelation type = PARALLEL

compositionalObjects: the two related objects
p [] q CSPCompositionalRelation type = ALTERNATIVE

compositionalObjects: the two related objects
if-statement CSPRecursionProperty expression: true when another loop is required



M.M. Bezemer et al. / CSP Meta-Model for Embedded Control Software Development 191

Table 1 shows the relation between CSP definitions and their representations using the
CSP meta-model. Most of the CSP meta-model representations are shown in Figure 4 as well.

CSPProcess and CSPCompositionalGroup are both used to define a process. Their dif-
ference is that CSPProcess is used to define a process from a sub-model and CSPComposi-
tionalGroup is used to define a process from a series of processes that have the same compo-
sitional relation type.

Processes that are part of an alternative compositional relation, require guard constructs.
These are provided by a guardExpression that is contained in the process object, this ex-
pression must have a boolean result. The guardExpression is optional for the CSPReader or
CSPWriter objects, if it is not provided a channel guard implementation is used.

The meta-model supports recursions called CSPRecursionProperty. Recursions are im-
plemented as properties, so they can be attached to other model objects. Depending on the
<expression> it loops over the <process>. The CSP representation would be similar to
this:

p = if (<expression>) then <process> ; p else SKIP

The CSP meta-model does support all regular CSP constructs required to define pro-
cesses and the communication between them. More modern CSP extensions, like mobile
channels [16], are currently not supported by the meta-model. If the need rises, the meta-
model can be extended easily to support such an additional feature.

1.1.3. Other Meta-Models

The CSP meta-model, described in the previous section, is designed according to Hoare’s
CSP definition. If an application requires additional elements the CSP meta-model can be
extended. For example, to add notion of mobile channels, the port and channel elements
should be extended to store additional information to support this. Extending the CSP meta-
model can be done either directly or by designing a new meta-model that inherits the original
CSP meta-model. Depending on the additional requirements and the nature of changes one
of these possibilities can be chosen.

A pure CSP model is only able to communicate data between processes, the robotic sys-
tem example requires, among others, mathematical calculations and interfacing with hard-
ware. The required executable code is implemented in a programming language, which can
be modelled as another meta-model element. By extending the compositional object element
of the CSP meta-model, an additional attribute could be added containing the code that is
executed when it is activated.

1.2. Model validation

A model is restricted by the meta-model definition, basically alien concepts are not repre-
sentable in the meta-model. Furthermore, additional checks are needed to verify that the mod-
elled reciprocal elements are correct and valid attribute values are used. For example all ob-
jects require a valid name to identify themselves. These names need to be unique, otherwise
it is ambiguous which object is meant by a name.

Depending on the purpose of the (meta-)model, additional validation rules are required.
These additional validation rules are not (strictly) defined by the meta-model, as they need
additional knowledge of the modelled system and its use cases. Therefore, model constructing
tools require additional validation rules, especially if a user is involved in the construction
process, as the user might not be aware of all these additional rules.

The earlier example indicates that the names, besides needing to be unique, also need
to conform to additional rules in order to be valid. The target language definition, aimed
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at by the code generation, defines naming requirements from which validation rules can be
inferred.

1.3. Implementation

The meta-model is implemented using the Eclipse Model Framework (EMF)[3]. This is a
framework that provides means to design a custom meta-model. It uses a meta-model itself,
called Ecore, to model that custom meta-model. The actual (Java) implementation is obtained
through round-trip code generation from the modelled custom meta-model. The framework
also provides additional services that are required for the implemented meta-models, like
notification on model changes or model (de-)serialisation to load/store models.

Model validation and code generation are using the Eclipse Epsilon framework [17]. It
provides a new language called Epsilon Object Language (EOL) which use used to specify
the Epsilon Validation Language (EVL) and the Epsilon Generation Language (EGL) and
several more. The Epsilon framework provides means to used these languages for validation
and code generation purposes.

2. Constructing Models

There are multiple methods of constructing models using the meta-model information. The
most obvious method is by an editor. The user is able to (graphically) design a model, using
the meta-model elements provided by the editor. TERRA is such an editor for the CSP meta-
model, the rest of this section gives more details of its design.

Another model construction method is model-to-model transformation: A source model
is used to construct the resulting model. Whether the result conforms to the same meta-
model as the source model, depends on the type and reason of the transformation. Section 3.2
provides more details on model-to-model transformation.

Text-to-model transformation is another way to construct models, it could be used to
reverse-engineer a model to make its structure more clear. For example, C++ code could be
converted to a CSP model to understand concurrent architecture of the code. As code files
do not contain all required information that (graphical) models require, like coordinates and
object dimension, this should be added by the transformation algorithm or the user. This form
of model construction is not seen often, probably due to complexity issues of missing model
data and the lack of functional use.

2.1. TERRA

Currently, TERRA is the only tool (or editor) to construct and design CSP models, that con-
form to the described CSP meta-model. TERRA is basically a collection of Eclipse plugins,
shown by Figure 5.

The figure is a snap-shot of the current version of TERRA, new plugins are added when
additional functionalities/services are added. The dashed lines separate grouped collections
of plugins, the bold text indicates the specific functionality of each group. Most plugins are
dependent on one of more other plugins, shown by the arrows in the figure. Dependencies on
non-TERRA plugins are left-out to prevent the figure getting overly complex.

Each plugin within a group contributes to the group’s overall functionality, like a meta-
model, an editor, a specific type of model transformation/code generation, model validation
and so on. All plugins together result in a complete CSP model development environment,
providing support from constructing the model to using it for various purposes.
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Figure 5. Overview of all TERRA plugins and their dependencies (the figure is generated using the source
code of TERRA, as it was on the moment of writing).

2.1.1. The Graphical Eclipse Framework

A graphical user interface is preferred to be able to efficiently develop CSP models, as a
graphical representation of a model result in a clearer overview of the design. The Graphical
Eclipse Framework (GEF) [18] is used for this purpose. GEF provides means to add a graph-
ical user interface that is nicely integrated with EMF. As described in Section 1.3, EMF is
used to handle the meta-model details. The CSP editor exactly uses this EMF functionality
to access and update the model data.

Each EMF model element has a GEF counter-part. These so called edit-parts provide the
editor with a figure that graphically represents the model element. The edit-part also provides
commands to modify the corresponding model element, and handles these commands.

2.1.2. Modular Tools and Editors

As mentioned earlier and shown in Figure 5, TERRA is a modular collection of tools and ed-
itors. Besides the CSP meta-model, TERRA includes also an architecture meta-model, which
is also based on the base meta-model. Together with its accompanying editor, it provides
means to model the system on a higher, architecture level.

From an architecture point of view, complete system parts, like a rotation belt or a robotic
feeder arm, can be represented by a single component in the architecture model. These com-
ponents have generic ports (CPC) that can be connected to each other using channels to com-
municate data from one component to another. For example the belt might need to commu-
nicate with the feeder arm to check whether it ready to picket a new object from the belt.

The details of the components can be hierarchically modelled using sub-models. These
sub-models can be of any (supported) meta-model type, therefore the CSP models can be
used for this. It is also possible to use another architecture sub-model to further specify the
architecture of a component. For example, a feeder arm consists of a motor and several sen-
sors that all could be considered as complete system parts. The level of detail is up to the
designer.

Integration of TERRA with other tools extends the capabilities of TERRA with the ad-
vantages of these external tools. For example, in 20-sim [19] it is possible to model (parts
of) physical systems and design their loop controllers. Since the model of computation used
by 20-sim is data-flow, its concepts match with the CPC concepts of the base meta-model.
Therefore a 20-sim interface meta-model could extend the base meta-model and thereby
seamlessly integrating 20-sim models into TERRA.

Due to the modular design of TERRA, is it also possible to add (new) ways of model-
to-model or model-to-text transformations. Each transformation type can be tailored for a
specific target system or use case. Currently, it is possible to perform model-to-text transfor-
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mations for FDR and C++/LUNA. More information on these transformations is provided in
Section 3.1.

3. Use Cases

The previous section described ways to construct models conforming to the meta-model def-
inition. This section explains ways to make use of these constructed models, first model-to-
text transformation is described, also known as code generation. Next, model-to-model trans-
formations are discussed. They differ from model-to-text transformations, as their result can
still be used by the modelling tools. Simulation and co-simulation are discussed last.

3.1. Model-to-Text Transformation

In MDE it is common to use model-to-text transformations for generating the implementation
of the model. It transforms the model into a (plain) text file, for example source code that can
be compiled into an executable application. After a model is correctly constructed, the model-
to-text transformation results in executable code that behaves as specified by the model. Using
model-to-text transformations, TERRA is able to generate C++ code that is compatible with
LUNA [4]. This (compiled) code is used to execute the model on an embedded target.

Shorter development cycles can be obtained by using model-to-text transformations
making it easier to fix a problem in the application. Updating the model and just regener-
ate the code is much faster than diving into the source code and finding the problem. Each
time when the model is modified, other development processes, e.g. model validation, can be
(automatically) repeated. Using validation in an automatic way is called live-validation and
helps the developer greatly in preventing problems with the model.

Formal verification of the model might be required to guarantee the quality of the ex-
ecutable application. When the model is formally verified, the resulting application code is
also formally correct by specification. Formally checking the model could be done in the
construction tool or editor, but it is also possible to use an external tool for this. For example,
FDR [13] is able to formally verify CSP models. Because FDR cannot read the TERRA CSP
models directly, model-to-text transformations are used to convert the TERRA CSP model
into an FDR readable file.

In an ideal situation code generation of a formal verified model results in a first-time
right implementation. Unfortunately this is not always the case. The CSP meta-model pro-
vides means of adding user C++ code, in order to be able to do actually something with the
generated code, besides transporting data around. The custom C++ code cannot be checked
by FDR and thus the code generation result might still be formally incorrect even though
FDR did not find any problems with the model.

3.2. Model-to-Model Transformation

In contrast to model-to-text transformation, model-to-model transformation results in an us-
able model afterwards. The resulting model should conform to the same or a different meta-
model, depending on the purpose of the transformation. A transformation conforming to a
different meta-model can be used to export the model from one tool to another.

Transformations to the same meta-model are interesting to change the model from one
point of view to another. For example, the designer, while constructing a model according
to his own way of working, includes lots of sub-models to create a clear hierarchical model.
When model-to-text transformation is used to generated an executable application, this hier-
archical construction is not required. The target will not benefit from a nicely formatted hier-
archical view, on the contrary it probably results in additional overhead and resource usage.
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Model-to-model transformation can be used to convert the hierarchical model into a flattened
model. Both models are still equal from a CSP point of view. More information on this topic
and possible techniques are described in [20].

Furthermore, model-to-model transformations are also interesting for removing unnec-
essary model parts based on their configuration. For example, take a composition of multiple
Generic Architecture Components (GACs). The GAC is a template object/model for robotic
control applications and are typically used on an architectural model level. Since each GAC
is designed to handle a broad spectrum of configurations, in order to make them re-usable,
they can benefit greatly from optimisations based on their used configuration. Besides other
features, a GAC could contain error handling support on a local and global level. When a
GACs only used the local error handling, the model-to-model optimisation is able to remove
the global error handling support and vice versa.

Both optimisation cases can serve as input to a model-to-text transformation to generate
the optimised code without limiting the way of working of the designer.

3.3. (Co-)Simulation

To gain insight in models, simulations are commonly used. These simulations can be cate-
gorised into simulations of one or more different domain models. For DE simulations of CSP
models, the order of active (and blocked) processes is determined from the CSP algebra (in-
cluded in the meta-model). Running a CSP model has helped new model designers (students)
to understand the CSP semantics of their designed model.

Figure 6. Co-simulation with scenario based testing [21].

The simulation of multiple different types of domain models is commonly known as
co-simulation. For instance, a CT dynamic model of the proposed hardware is simulated
together with the DE software simulation, as shown in Figure 6. This will increase confidence
in a CSP model, since the dynamic model of the system will create external stimuli based
on the modelled physical behaviour of the proposed setup. Extending the simulations with
scenario-based tests, based on system requirements, will create more reliable software, as
was experienced in the DESTECS project [21,22].

The design of both types of simulation engines should be based on their respective meta-
models, as depicted in Figure 1. For co-simulation, the external stimuli can be generated
by using external models provided external tools (Section 2.1.2) that are capable of running
stepwise simulations. When an object is activated by the TERRA simulation engine, that
contains an external models capable of this, ports can be used to first communicate required
data to the external simulation tool and after a simulation step, grab the results and send
it back to the TERRA simulation engine. Depending on its current use, a top-level port in
TERRA can easily be (re)connected to either actual hardware (drivers) or a simulation engine.
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4. Example

This section shows an example application to demonstrate that TERRA is fully functional. It
uses all CSP constructs of Table 1, designed using the TERRA CSP editor. Real applications
for some for our laboratory setups, like JIWY [4] and the ProductionCell [23], have also been
developed using TERRA. Some of our students are also successfully using TERRA for their
assignments.

Most of the symbols of Figure 7 are similar compared with the ones used by gCSP [2].
Basically, the example application does some calculations in the ‘Calculations1’ process.
It defines following variables: pickFirst, firstValue, secondValue and readValue. Depending
on the calculations the value of the variable firstValue or secondValue is communicated to
‘THREAD2’ were it is used to perform some other calculations. The boolean pickFirst vari-
able is set by ‘Calculations1’ to determine which reader from the ‘READERS’ group should
be used to read the correct value. The dashed line of the readers shows that they are condi-
tional/expression guarded readers. Note that in real-life applications the required values for
the calculations and their results are communicated with the (embedded) set-up, however this
is left-out to keep the example simple.

Figure 7. Model of example application designed with TERRA.

A CSP implementation of this application is shown by Listing 1. At the moment of
writing, both the channel guards and conditional guards are not yet supported by the ‘CSPm
to CSP code generator’, so the listing shows the result as if the guards would have been
supported.

The recursion property of ‘THREAD1’ and ‘THREAD2’ is expressed by

if(<boolean expression>) (<statement>) ; <original process> else SKIP

CSPm code generation could be improved in the future to optimise this piece of code. The
boolean expression is always true in this case, so the if-statement is redundant and
should be left out in such cases.

After the model is formally checked for correctness, the ‘LUNA/C++ code generator’
can be used to generate C++ code using the LUNA framework. This code can be compiled in
order to let the (control) application run on an embedded target. The calculation blocks can
be filled in using C++ code blobs that perform the required (control) software calculations.
For robotic targets the control software could be generated by external tools, like 20-sim. In
future versions of TERRA, models from these external tools can be added to the TERRA
CSP model directly, so the manual integration is not required anymore.

The generated C++ code is fully object oriented. The (full) resulting C++ code listings
are not provided here as they would be extensive and take too much space. Basically, the
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datatype Bool = pickFirst

datatype Int = firstValue , secondValue , readValue

channel FW_to_FR -- FirstWriter to FirstReader channel

channel SW_to_SR -- SecondWriter to SecondReader channel

APPLICATION = THREAD1 [| {| FW_to_FR , SW_to_SR |} |] THREAD2

THREAD1 = if (true) then (Calculations1 ; WRITERS ) ; THREAD1

else SKIP

THREAD2 = if (true) then (READERS ; Calculations2 ) ; THREAD2

else SKIP

WRITERS = FirstWriter ||| SecondWriter

READERS = FirstReader [] SecondReader

FirstWriter = FW_to_FR!firstValue -> SKIP

SecondWriter = SW_to_SR!secondValue -> SKIP

FirstReader = pickFirst & FW_to_FR!readValue -> SKIP

SecondReader = not pickFirst & SW_to_SR!readValue -> SKIP

Listing 1. Partial CSP of the design of Figure 7 (mainly) generated by the ‘CSPm to CSP code generator’

generated C++ code first initialises all channels that are defined by the object that is being
generated. Next all sub-objects that are contained by an object are generated. The generated
channels are attached to reader, writers and sub-models that have ports. After that all gen-
erated objects are grouped by their compositional groups. These created groups are grouped
again if required, for example the ‘THREAD1’ and ‘THEAD2’ groups are grouped together
into the ‘APPLICATION’ group. The top-most diagram is instantiated and started up from
the generated main function to make the model executable.

The actual code generation requires a logical sequence of steps based on (construction)
dependencies introduced by LUNA. However, these details are considered out of the scope
of this text.

This example section showed that TERRA is suitable to design models, its CSPm code
generation is usable to formal check TERRA models and the LUNA/C++ code generation
allows the model to be executed on an embedded target. When the required inclusion of the
generation of the guards is finished, even more complex models can be properly checked,
without manually adding the missing code.

5. Conclusions

The presented CSP meta-model is suitable to design CSP models that conform to Hoare’s
CSP definition. Section 1 describes how the CSP meta-model is derived using a modular
approach by extending the base meta-model. The CSP meta-model has all kinds of use cases,
as described in Section 3. For example, model-to-text transformations are used to formally
verify the CSP model with FDR or to generate code that can be executed on an embedded
target.

TERRA is an integrated collection of tools to support the MDD/MDE way of working.
The user is able to graphically construct a CSP model that conforms to the CSP meta-model.
Model checking on livelocks and deadlocks conditions is supported by using FDR. When
satisfied, the CSP model can be transformed into LUNA based code using model-to-text
transformations.

The modular nature of the base and CSP meta-models makes it possible to support ad-
ditional requirements. Therefore, the CSP meta-model is suitable as a standard for all kinds
of CSP modelling related work. It is recommended to make use of this meta-model to stan-



198 M.M. Bezemer et al. / CSP Meta-Model for Embedded Control Software Development

dardise modelling within the CSP community. Hopefully a standard meta-model will emerge
that is suitable for the needs of the community and helping to improve interaction between
multiple disciplinaries within the community.

6. Future work

TERRA needs to be extended to be able to make use of external models (see also Sec-
tion 2.1.2). TERRA focuses on process (communication) flow modelling, where other
tools/models focus on other specific areas. Being able to make use of their expertise is better
than re-inventing the wheel. Therefore to support an external tool, a meta-model needs to be
added to TERRA to create model interfaces that can be used by the existing TERRA editors.

Robotic systems, one of the target modelling uses of TERRA, consist often of similar
components, for example to drive motors or read sensors. Having a library of building blocks
(Section 3.2) and patterns decreases development time and makes the software more reliable.
For efficient re-use of these building blocks and patterns should be parametrisable. TERRA
needs to be extended to present the developer with these parameters when such a building
block or pattern is used in a model.

For example, a composition of GACs will most likely not result in optimal executable
code. This problem can be tackled to add model-to-model transformations to TERRA for
optimisations [20]. This optimised model can be used for the model-to-text transformation.

For educational purposes and testing, a CSP simulator is going to be added to TERRA,
as described in Section 3.3. Integration with external tools will also be included for co-
simulation purposes and thus adding the possibility to combine DE and CT simulations. This
will make the simulations more realistic and thereby helping the developer to create a first-
time right application.

The simulator can also be used to playback a real-life situation using the application logs.
Instead of the CSP algebra to determine the order of active processes, the log data combined
with sensory readings will be used.
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