
Fringe Session:
Developing JIWY using TERRA

Communicating Process Architectures 2012

Maarten Bezemer, Robert Wilterdink and Jan Broenink
Robotics and Mechatronics, University of Twente, The Netherlands

TERRA Fringe 2

Summary of the Paper

 CSP Meta-Model just presented

 Used by
 CSP Editor
 Model validation
 Code generation (FDR, C++/LUNA)

 Obviously it all is very nice (and works)

 At least that is what we just told...

TERRA Fringe 3

Outline

Time for a demo!

 CSP Editor
Modeling a simple robotic setup

 Transformation to CSPm/FDR

 Transformation to C++/LUNA

 Execute C++ code on target

TERRA Fringe 4

CSP Editor

 JIWY with an architecture model
 Two controllers (Pan & Tilt)
 Safety / Scaling model
 Interaction with hardware

 CSP Models to implement the sub-models
 Communication defined by the architecture model

 Not available unfortunately

 So we will use only a CSP model

TERRA Fringe 5

CSP Editor

 JIWY with a CSP model
 Controller sub-models

 Readers/Writers for data communication
 Empty sub-models used for (20-sim) controller algorithm containers

 Safety sub-model
 Readers/Writers for data communication
 Separated for Pan and Tilt signal
 Empty sub-models used to add some C++ code for safety checks

 Fake interaction with hardware
 Thrown away!
 Channels replaced by link drivers to communicate with HW

TERRA Fringe 6

CSP Editor

Live demo

TERRA Fringe 7

Transformation to CSPm / FDR

 Formal verification of TERRA models

 Basic CSP objects can be transformed

 C++ Code (blocks) not... (obviously)
 Process = SKIP

 Formally checking of robotic oriented models is limited
 Only software structure (ie pure CSP)

TERRA Fringe 8

Transformation to CSPm / FDR

Live demo

TERRA Fringe 9

Transformation to C++ / LUNA

 All CSP constructs represented by C++ / LUNA code

 All (sub-)models expressed in header/source file
 Contains channels, processes, ports, groups, etc.

 Modifying generated code is possible
 Protected regions: comment, constructor/destructor, execute()

 Code blocks filled in by custom code
 Or by code generated from control law design tools (e.g. 20-sim)

 Additional generated files
 Entry point (main() function)
 Makefile to build the application

TERRA Fringe 10

Transformation to C++ / LUNA

Live demo

TERRA Fringe 11

Execute on target

 Compile & Link
 Should be automated in the future

 Send executable to (QNX) target
 Should be automated in the future

 Execute, experiment, test, ...!
(and hope we did not make any mistakes...)

 Would be nice to automate as well, but probably stays manual...

TERRA Fringe 12

Execute on target

Live demo

TERRA Fringe 13

That's all folks

 As claimed by the paper presentation

Usable for “Developing Embedded Control Software”

 If you are still interested

 Come to us for a 'Do It Yourself' session!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

