
27/AUG/12 CPA 2012 1

Supporting Timed CSP

Operators in CSP++

William B. Gardner & Yuriy Solovyov

Modeling & Design Automation Group

School of Computer Science

University of Guelph, Ontario, Canada

27/AUG/12 CPA 2012 2

Outline

1. Overview of CSP++

2. Adding timed operators to CSP++

– Verification and validation approaches

– Translator, run-time framework, performance

3. Case study

4. Conclusion & future plans

5. Obtaining open source CSP++,

contributing

27/AUG/12 CPA 2012 3

1. Overview of Approach

CSP++

implements CSP computation model

invokes plug-in modules

handles interprocess sync/comm

Bridge between CSP and popular programming language

CSP

formal “backbone”

models control structure

interprocess sync/comm

verification tools

C++

plug-in modules

bulk of data processing

external I/O

restrictions (no IPC)

27/AUG/12 CPA 2012 4

Notion of “selective formalism”

• Designer decides how much of system to model in

CSP vs. C++

• Conceptual line between formal high-level spec

and lower-level programming realization

– move line “down” to enforce more rigorous formal

modeling

– move line “up” for reasons of efficiency or richness of

language constructs

– CSP not intended as full-featured prog. language

27/AUG/12 5

User-coded

Functions

Target System

User

Functions

CSP++ Design Flow

CSP Specs

Verification

Tool

cspt

translator

CSP++ Control Layer

CPA 2012

27/AUG/12 CPA 2012 6

Integration of User Code

Hardware Components

RTOS Facilities

Packages

External Event

Routines

CSP++ Control

Layer
P2

P3 P1

f1
f3

f4

f2

P1 CSP process

CSP event

f1 user function

27/AUG/12 CPA 2012 7

Restrictions on User Code

• Can link to individual events, or multiple
cooperating events of leaf-level process

• Cannot rely on static storage (due to
multiple process instances) except as could
be provided by framework (future work)

• Cannot “go behind back” of CSP spec to
contact other processes

– preserves convention that interprocess
communication/synchronization done via CSP

Related work

• NOCC compiler translates MCSP to

execute on KRoC runtime [Barnes 2006]

• Component libraries with CSP semantics

– JCSP/CCSP/C++CSP2; CTJ/CTC++; JACK

• [Raju et al 2003] translates CSPm to CTJ,

JCSP, CCSP

– CSP++ supports more operators 

27/AUG/12 CPA 2012 8

27/AUG/12 CPA 2012 9

2. Adding timed operators
to CSP++

• Original motivation: modeling of financial

transactions

• Modeling of “soft” real-time systems

– Not safety-critical, where timing constraints

must be guaranteed

• Had planned to support untimed interrupt /\

and timeout [> — may as well add timed

counterparts
27/AUG/12 CPA 2012 10

Verification approaches

• For untimed portions of spec, or where timing

does not affect sync with other processes, remove

time constants and use FDR2 as usual

• Where timing is important, can use HORAE tool

[Dong et al 2006, Nat. Univ. Singapore], minimal

syntax difference from CSP++

• New option: convert timed operators to tock

equivalent, and use FDR 2.94 feature that allows

processes to sync on tock without resolving choice
27/AUG/12 CPA 2012 11

Post-run trace validation

• Run program with –t option to output trace

• Python script available to format and send

trace to FDR2 to check trace refinement of

CSPm spec

27/AUG/12 CPA 2012 12

5 new operators

• Timed prefix: a -5-> b -2-> SKIP

– At least t time units will elapse

before next event

• Timed timeout: a->P [10> Q

– Give a t time units to start, else continue as Q

• First event a should be subject to synchronization

• Untimed timeout: P [> e->Q

– Event e will preempt P from starting

 27/AUG/12 CPA 2012 13

5 new operators (cont.)

• Untimed interrupt: P /\ e->Q

– Event e will grab control from unfinished P

• Timed interrupt: P /8\ Q

– P has t time units to finish, else Q grabs control

• Not like operating system interrupt!

Notes:

– Interrupt applies to all subprocesses of P

– Set time unit by pragma or run-time option

• msec, second, minute, hour

27/AUG/12 CPA 2012 14

Timed prefix

• Implementation

– Translator generates a call to framework

function to make thread sleep for t time units

• Special considerations

– In case process is in scope of interrupt operator,

timed wait must be interruptible

• GNU Pth allows this

27/AUG/12 CPA 2012 15

Timeouts

• Both timeouts treated as a kind of

deterministic choice: a->P “[]” e->Q

– If event a succeeds (does not block), P wins and

the timeout to Q does not occur

• Timed version: a->P [10> Q

– Limit blocking wait for event a to t time units

(interruptible like timed prefix blocking)

27/AUG/12 CPA 2012 16

“Untimed” timeout

• Untimed version: a->P [> Q

– Try a first; if not succeed, resolve choice to Q

• A valid and useful “polling” interpretation

– Different from regular choice a->P [] b->Q

• CSP++ tries alternatives from left to right anyway

• Normally, if a and b don’t succeed, keeps waiting

for both, but in [> case, if a does not succeed, it

loses its chance and “times out” to b->Q

27/AUG/12 CPA 2012 17

Interrupts

• Main challenge: extricating thread of

control from interrupted process so that…

– it does not contribute any more events to the

system trace following the interrupting event

– all internal data structures are cleaned up

• Key method: interrupting event triggers

interrupted process to throw C++ exception

– CSP++ avoided exceptions for fear of overhead
27/AUG/12 CPA 2012 18

Implementing interrupts

S = P /\ e->Q

• Translator generates code to push EnvInt

object on S’s environment stack

– Acts as control centre for that interrupt

– Nested interrupt operators work as well!

• Event e is tried first:

– If succeeds, P never starts, S continues as Q

– Else, spawns thread for P, and S waits for e

27/AUG/12 CPA 2012 19

Interrupts (cont.)

• P’s events executing under scope of EnvInt

environment object check its flag to see if

interrupt occurred

– If so, P throws exception, caught at “top” of

thread, which cleans up and exits

• If P finishes without event e occurring, the

EnvInt object is popped off and S

terminates (or carries on) normally
27/AUG/12 CPA 2012 20

Performance impact

• Was fear of C++ exceptions justified?

– “NO” (at least for g++)

• Additional execution time and memory

costs were only around 1%

– Negligible cost if no interrupts coded in spec

– Highest cost to execute processes within scope

of interrupt operator (checking flags, etc.)

27/AUG/12 CPA 2012 21

3. “VAC” case study

• Robot vacuum

cleaner

demonstrates

all new

operators

27/AUG/12 CPA 2012 22

VAC

USER DIRT ROOM

ENVIRONMENT

/\ pickup
operational
commands

simulated environment

event

event / subsequent delay (s)

/\ interrupting event

process name

NOTATION

directions dust / 1

VAC interrupts

ROBOT(1) =

 RUNNING /20\ low_battery -> SHUTOFF

If robot does not complete RUNNING process within 20 time

units, it will cause a low_battery event and go into SHUTOFF.

RUNNING =

 WHICHOPMODE /\ pickup -> EMERGENCY_STOP

While running normally within WHICHOPMODE process, if a

sensor detects a pickup event (by the human), it will

immediately go into EMERGENCY_STOP.

27/AUG/12 CPA 2012 23

VAC untimed timeout

CLEANING_MECHANISM =

 (adone -1-> SKIP) [>

 ((dust -> clean -1-> CLEANING_MECHANISM)

 [> (idle -1-> CLEANING_MECHANISM))

The process executes a series of checks:

• If it detects the adone event, it pauses one time unit and

terminates.

• If not, it checks for dust and cleans it, then loops back.

• If no dust, it idles for one time unit, then loops back.

27/AUG/12 CPA 2012 24

VAC timed timeout

WHICHOPMODE =

 (manual -> REMOTE_CONTROL) [>

 ((turn_off -> ROBOT(0)) [7>

 AUTOMATIC_MODE)

The process checks for the manual mode event, and if

succeeds, enters REMOTE_CONTROL.

Otherwise, it waits up to 7 time units for a turn_off event,

which will put it into ROBOT(0). But if the timeout expires,

it will default into AUTOMATIC_MODE.

27/AUG/12 CPA 2012 25

4. Conclusion & Future Plans

• CSP++ makes synthesizable subset of

timed CSPm specifications executable &

extensible

– Useful for pedagogy  CSPm simulator

– Tool for carrying out selective formalism with

user-coded C++ functions

– Possibility of making (some) formalism more

palatable & practical to the resistant

27/AUG/12 CPA 2012 26

Future plans

• Work underway…

– Making selective formalism more practical by

providing mechanism for UCFs to access

“process-specific storage” with managed scope

– Garner & Roggenbach (Swansea), adding data

types (sequence, set) and inline functions

• Future work includes…

– Replicated operators (@), interruptible UCFs

27/AUG/12 CPA 2012 27

27/AUG/12 CPA 2012 28

5. Open source project!

• CSP++ home page

– www.uoguelph.ca/~gardnerw/csp++

– Licenses: translator GPL, run-time framework

LGPL (can use to build proprietary system)

• Contributors welcome!

