
Communicating Process Architectures 2012
P.H. Welch et al. (Eds.)
Open Channel Publishing Ltd., 2012
c© 2012 The authors and Open Channel Publishing Ltd. All rights reserved.

201

Exception Handling
and Checkpointing in CSP

Mads Ohm LARSEN a,1 and Brian VINTER b

a Department of Computer Science, University of Copenhagen
b Niels Bohr Institute, University of Copenhagen

Abstract. This paper describes work in progress. It presents a new way of looking
at some of the basics of CSP. The primary contributions are exception handling and
checkpointing of processes and the ability to roll back to a known checkpoint. Chan-
nels are discussed as communication events which are monitored by a supervisor pro-
cess. The supervisor process is also used to formalise poison and retire events. Ex-
ception handling and checkpointing are used as means of recovering from an error.
The supervisor process is central to checkpointing and recovery as well. Three dif-
ferent kinds of exception handling are discussed: fail-stop, retire-like fail-stop, and
checkpointing. Fail-stop works like poison, and retire-like fail-stop works like retire.
Checkpointing works by telling the supervisor process to roll back both participants
in a communication event, to a state immediately after their last successful communi-
cation. Only fail-stop exceptions have been implemented in PyCSP at this point.

Keywords. CSP, PyCSP, Exceptions, Checkpoints, Algebra, Channels

Introduction

Exceptions can occur in any type of software, however reliable software should be able to
handle these exceptions. Currently CSP offers interrupts [1] and has a throw operator [2]
to handle exceptions. These exceptions are internal, however other processes in a network
might want to know about them. In this paper we want to propagate exceptions throughout a
network. These exceptions would trigger a checkpointing mechanism, which would roll back
a pair of processes to a know working state.

To get an understanding of the inner workings of CSP, the basics of channels, poison and
retire will be discussed in sections 1, 2 and 3 respectively. Together with poison a supervisor
paradigm will be developed. This supervisor is critical for telling other processes how to
poison a network, but will also be useful for telling other processes about exceptions. Section
4 contains a discussion on how to handle exceptions using CSP and leads up to the reasoning
behind and discussion of checkpointing in section 4.4.4.

This is work in progress and a working implementation of exception handling as well as
checkpointing is in the making. It will be available together with Mads Ohm Larsen’s masters
thesis [3].

1Corresponding Author: Mads Ohm Larsen, Datalogisk Institut, Universitetsparken 1, DK-2100,
Copenhagen, Denmark. Tel.: +45 3532 1421; Fax.: +45 3532 1401; E-mail: omega@diku.dk.

202 M.O. Larsen et al. / Exception Handling and Checkpointing in CSP

1. Basics

Four different kind of channel types exist: one-to-one, one-to-any, any-to-one, and any-to-
any. These four types are very much alike, however only one-to-one are part of “Core CSP”
as defined by Hoare [1]. The rest have to be built with the use of the interleaving operator.

In the following section i, j, n,m are all elements of N, and 1..n will be used as a short-
hand for the set {1, 2, . . . , n}.
One-to-One A one-to-one channel is simply a channel with one writer and one reader. This
is exactly what we have in the algebra as a communication event.

P = c!x→ P ′

Q = c?x→ Q′(x)

O2O = P ||Q
(1)

P Q
c

Figure 1. One-to-one channel

Any-to-One The any-to-one channel has any amount n of writers, but only one reader. This
can be modelled with the algebra as many writers interleaving on a communication event.
The reader and one of the writers must be ready to communicate in any order.

Pi = c!x→ P ′
i

Q = c?x→ Q′(x)

A2O =

(
|||

i∈1..n
Pi

)
||Q

(2)

P1

P2

Pn

Q
c

Figure 2. Any-to-one channel

One-to-Any The one-to-any channel type is equivalent to that of the any-to-one, but with
the readers and writers reversed. Here we have one writer and many interleaving readers.

Any-to-Any The last channel type is the any-to-any channel. Here there are many writers
and many readers, all can communicate at once.

Pi = c!x→ P ′
i

Qj = c?x→ Q′
j(x)

A2A =

(
|||

i∈1..n
Pi

)
||

(
|||

j∈1..m
Qj

) (3)

M.O. Larsen et al. / Exception Handling and Checkpointing in CSP 203

P1

P2

Pn

Q1

Q2

Qm

c

Figure 3. Any-to-any channel

At each step, one of the Pi writers gets to write to the channel and one of the Qj readers
gets to read.

Note that if n = 1 and m = 1, all we have left is:

P1 = c!x→ P ′
1

Q1 = c?x→ Q′
1(x)

O2O =

(
|||

i∈1..n
Pi

)
||

(
|||

j∈1..m
Qj

)
= P1 ||Q1

(4)

This is identical to that of the one-to-one channel. Having either n = 1 or m = 1 gives
us one-to-any and any-to-one channels respectively.

With the channels covered, we can explore the poison mechanism.

2. Poison

To poison a network is to provide a safe termination of said network [4,5]. This is done by
injecting poison into the network, and having the processes propagate this poison throughout
the network. In PyCSP a poisoned channel throws an exception when other processes try to
communicate over it, thus poisoning the other channels.

To model a network capable of being poisoned, a supervisor process is introduced. This
supervisor is listening to all the communications over a channel, be it one-to-one or any-
to-any. As the communication has to be synchronised, the supervisor process can disallow
communication by not engaging in the communication event.

Thus, allowing outside processes to poison the channel via a cpid event, we can model a
poisoning network like:

P = (c!x→ P ′) 2 (cpoison → Pp)

Q = (c?x→ Q′(x)) 2 (cpoison → Qp)

Sok = (d : {c.m |m ∈ αc})→ Sok

)
2
(
~
id
cpid → Se

)
Se = cpoison → Se 2 SKIP

(5)

Note that no two other processes can have the same cpid as that would mean that they
had to agree on poisoning the c channel. Pp and Qp are two processes that poison all of P ’s
and Q’s channels respectively. Se is a process which will poison the processes that share c.
Figure 4 shows how these processes interact.

204 M.O. Larsen et al. / Exception Handling and Checkpointing in CSP

Pp = ||
c∈αP

cpid → SKIP (6)

To create a poisonable-network P , Q, and Sok process should be run in parallel.

POISON = P || Q || Sok (7)

P Q

Sok

c

cpid

Figure 4. Poison on one-to-one channel

This one-to-one algebra of poison in equation (5) can easily be extended to any-to-any
channels. The Sok and Se processes are the same, as they only concern the channel.

Pi = (c!x→ P ′
i) 2 (cpoison → Ppi)

Qj = (c?x→ Q′
i(x)) 2 (cpoison → Qpj)

(8)

Again, Ppi and Qpj are processes that poison all of Pi and Qj’s channels respectively
like equation (6).

P1

P2

Pn

Q1

Q2

Qm

Sok

c

cpid

Figure 5. Poison on any-to-any channel

To create a poisonable-network we need to let all of Pi and Qj interleave. Sok should be
run in parallel with these:

POISONA2A =

(
|||

i∈1..n
Pi

)
||

(
|||

j∈1..m
Qj

)
||Sok (9)

And again, having n = 1 and m = 1 gives us

POISONO2O = P1 || Q1 || Sok (10)

With poison on any-to-any channels, we can now explore retirement, which works much
like poison.

M.O. Larsen et al. / Exception Handling and Checkpointing in CSP 205

3. Retirement

Instead of poisoning a channel we can retire a process from the channel [6]. This works by
letting a process decide no longer to subscribe to events on a channel c.

When modelling retirement the initial processes for Pi andQi, from equation (3), are the
same.

Pi = (c!x→ P ′
i) 2 (cpoison → Pp)

Qj =
(
c?x→ Q′

j(x)
)
2 (cpoison → Qp)

(11)

The supervisor’s Se process is also the same, as it should tell all processes with channel
c that all processes are retired.

The Sok process needs to be altered to incorporate retirement. Here we give two new
events, crwid

and crrid , to retire either a writer or a reader. As it is up to the programmer to
make sure that a process P no longer writes or reads from c after it has retired, the supervisor
only needs to know how many of each are subscribing to the channel in the first place.

Sok(n,m) = if (n = 0 or m = 0)

Se

else

((d : {c.me |me ∈ αc})→ Sok (n,m))

~
(
crwid

→ Sok(n− 1,m)
)

~
(
crrid → Sok(n,m− 1)

)
end

(12)

Again each of the crrid and crwid
events should be unique for each processes, as multiple

of these means that the processes need to agree on synchronisation. When either all of the
readers or writers have left a channel, it will be poisoned. This means that a process cannot
input on a channel after all the readers are retired and likewise the readers cannot get output.

All the Pi and Qj should be interleaving as usual, but this time, the supervisor needs to
know how many of them there are.

RETIREA2A =

(
|||

i∈1..n
Pi

)
||

(
|||

j∈1..m
Qj

)
||Sok(n,m) (13)

With the notion of the supervisor in mind, we can now move on to exception handling.

4. Exception Handling

As already written exceptions can occur in any type of software, but reliable software should
be able to handle these exceptions. Hilderink describes an exception handling mechanism for
a CSP library for Java, called “Communicating Thread for Java” (CTJ) [7], however this is
not formalised for CSP, but rather just shown to work with the current Java implementation.

Two models are discussed: the resumption model, where the exception handler corrects
the exception and returns; and the termination model, where the exception handler cleans up
and terminates.

Hilderink also proposes a notation for describing the exception handling in CSP algebra,
using ~∆ as an exception operator [8].

206 M.O. Larsen et al. / Exception Handling and Checkpointing in CSP

P = Q ~∆ EH (14)

Here the process P behaves like Q, unless there is an exception, then it behaves like
EH . EH in this case will only collect the exceptions, and not act upon them.

4.1. What is an Exception?

A process that suddenly behaves as STOP is often an undesirable behaviour, which we
would like a way to escape from. This is where exception handling comes in action.

To understand how an exception handling mechanism works, we first need to know what
an exception, or exception state, is.

A process is in an exception state if part of it has caused an error and cannot terminate.
This could be a division-by-zero error, failure in hardware, or another kind of error. The
process cannot continue after being in an exception state, and therefore behaves like the
deadlock process STOP , however with an exception handling mechanism, we can interrupt
the failed process, and perhaps either fix and resume; or clean up and terminate the process.

A second important thing we need to understand is when the exception handling mech-
anism should step in. Hilderink proposes that this is done when another process tries to com-
municate with the failed process. This is very similar to both poison and retire, where a pro-
cess is poisoned if it tries to read from or write to a poisoned channel, and it will fit together
nicely with the supervisor paradigm, used for both poison and retire. In a real-life example we
want a CSP-like programming language, like PyCSP, to handle some exceptions internally,
using the language’s normal exception handling, but in some cases we want other processes
to be aware that a process has failed.

A last important thing is that a process in an exception state, will not be able to release its
channels, which means that the rest of the network cannot terminate correctly. The exception
handler must therefore also be responsible for releasing the channels of the process. Different
ways to shut down the network in a clean manner will be discussed.

4.2. The Exception Handling Operator

As already mentioned Hilderink proposes using ~∆ as an exception operator, however CSP
already offers an interrupt operator: ∆ [1,9].

P ∆ Q (15)

This process behaves as P , but is interrupted on the first occurrence of an event from Q.
P is never resumed afterwards. It is assumed that the initial event of Q is not in the alphabet
of P . Hoare describes a disaster from outside a process, as a catastrophe [1] and denotes this
with a lightning bolt � /∈ αP . A process that behaves as P up until a catastrophe and then
behaves as Q is defined by:

P �̂ Q = P ∆ (� → Q) (16)

Roscoe continues Hoare’s idea of a catastrophe, and creates a throw operator Θ for in-
ternal errors [2].

P Θx:A Q(x) (17)

Here P is interrupted by a named event x from A. Hilderink and Roscoe’s two operators
are very similar, in the way that they interrupt the current flow of a process, and hands the
control over to another process.

With the throw operator we have a way of talking about exceptions. Exceptions is simply
an event x from A which occurs when a process P enters an exception state. As mentioned

M.O. Larsen et al. / Exception Handling and Checkpointing in CSP 207

above, this could be a division-by-zero error or similar. As proposed by Hilderink, this event
should occur instead of communication on a channel belonging to a process in an exception
state. When it occurs this way, we can treat it as a communication event.

In a real-life example we could have multiple processes running on multiple machines.
Having the exception as a communication event means that we can transfer it from one ma-
chine to another, thereby propagating the exception throughout the network letting the right
process handle the exception.

4.3. Exceptions and the Supervisor

Using the same paradigm as with poison and retire (the supervisor paradigm), the exception
handling mechanism can be incorporated into a network. We want the exception handler to
catch all exceptions, with which it can then decide what to do. The alphabet error therefore
contains all errors. In this section Θ will be used as a short hand for Θerror, when it is not
necessary to denote the error-alphabet.

Here it is shown for a network utilising the any-to-any channel, but of course it works
for the other types of channel, by setting either the amount of writers or readers, or both, to
one. A writer and reader process could be expressed as Pi and Qj

Pi = (c!x→ P ′
i) Θ Pei

Qj = (c?x→ Q′
j(x)) Θ Qej

(18)

The Pei and Qej processes could be telling the supervisor that the process in hand is in
an exception state.

Pei = cei → SKIP

Qej = cej → SKIP
(19)

However, they could also be used to correct the problem at hand; or try and then only
tell the supervisor if they failed.

Depending on which of the following exception patterns one chooses, the supervisor
processes will have to be adapted to this. The Se process could try to commend the problem,
poison the rest of the network, or it might even have an exception handler of its own, which
it could tell. Again, as with both poison and retire, the cei has to be unique for that process,
else multiple processes would have to agree on the error state.

With this handling of exceptions we can explore different ways of shutting down the
network.

4.4. Exception Patterns

The exceptions are always “triggered” by the next process reading or writing to a channel,
that the process in an exception state is subscribing to. This is the same way both poison and
retirement works.

4.4.1. Fail-stop

When a process enters an exception state, it stops and all data previously sent to it will get lost.
An example could be a producer, sending jobs to workers. One worker enters an exception
state, and the job it was granted will get lost, without the chance of recovery.

If another process tries to communicate with the failed one, the exception should propa-
gate though the network, until the entire network is in an exception state. This is effectively
the same as the process in the exception state poisoning all of its channels.

208 M.O. Larsen et al. / Exception Handling and Checkpointing in CSP

from pycsp_import import *

2
@process

4 def producer(cout):
for i in range(-2, 3):

6 cout(i)

8 @process
def worker(cin, cout):

10 while True:
x = cin()

12 cout(1.0/x)

14 @process
def consumer(cin):

16 while True:
print cin()

18
c = Channel()

20 d = Channel()

22 Parallel(
producer(-c),

24 2 * worker(+c, -d),
consumer(+d)

26)

-0.5

2 -1
integer division or modulo by zero

4

6

8

10

12

14

16

18

20

22

24

26

Figure 6. Fail-stop in PyCSP

In Figure 6, an implementation of a small producer and worker network is shown. The
workers job is to take 1

x
for every x passed by the producer. Of course 1

0
is undefined, so the

network fails.

P

W1

W2

C
c d

Θ poisons its channels

Figure 7. Fail-stop in worker process

Figure 7 shows the fail-stop network from Figure 6. The supervisor processes, which
are not shown in the figure, will have to behave much like the one we saw with poisoning in
equation (8), where all other processes are poisoned.

In PyCSP we have a central object where each process are created. This central object
has a run-method, which is surrounded by a try-catch block. When we reach the division-by-
zero, this try-catch block catches the error, runs through the process channels, and poisons
each of them, thereby shutting down the network in a proper manner. Poison and retire work
in the same way.

4.4.2. Retire-like Fail-stop

While fail-stop resembles poison, retire-like fail-stop mimics retire. The information sent to
the processes that are in an exception state will still be lost, as with the original fail-stop.
However, we have the added ability that the entire network is not shut down because of one
exception. If we have a lot of distributed workers, and one fails because of e.g. a disk failure,
the network will continue, but that one worker, and its job, will be lost.

4.4.3. Checkpointing

With checkpointing it is possible for a process in an exception state to roll back to the last
checkpoint, which could either be defined by the programmer, or it could simply be just after
the last communication with another process. That way, all information would be kept intact,

M.O. Larsen et al. / Exception Handling and Checkpointing in CSP 209

and the process at hand could try the operation that caused it to go into an exception state
again. This could be a non-deterministic event, which means that it could succeed the second
time around.

A counter could be attached to this form of exception pattern, which means that the
process can only roll back so many times before actually failing like fail-stop, retire-like fail-
stop or even broadcasting the failure. No side-effects are allowed between the last checkpoint
and the point where the exception occurred, because these are operations that cannot be rolled
back.

Checkpoints are quite similar to transactions, as we know them from SQL, in that we
either do all the operations between two checkpoints, or none of them, because they will be
rolled back.

With checkpoints the handling of the exception could be invisible to the outside world,
as the roll back could happen without any other process being aware of it. This is essentially
what the exceptions are meant to do, however the roll back method might not be the best way
to go for it.

Remembering that PyCSP should be convenient to use, having the programmer think
about checkpoints and side-effects in their code is not the way to go.

Think of the following scenario:

1. Events up to this point
2. Process A communicates with Process B
3. Process B receives and terminates/makes a side-effect
4. Process A goes into an exception state and wants to roll back to 1.

Process A can try to roll back the state to between the second and third item; that is, after
the communication between Process A and Process B. Process B would have to roll back to
its last checkpoint. If Process B has in fact terminated, Process A should enter an exception
state, and possibly resolve it with fail-stop.

In the algebra, Process B wouldn’t be able to terminate, before every other process was
willing to do so. Therefore this is only a problem in the implementation, where we allow
processes to terminate when their work is done.

4.4.4. Checkpointing algebra

Checkpointing can be modelled in the algebra with the use of a checkpoint event c© [1] as
well as a roll back event r©. With this, we can define a new process Ch(P) which behaves
like P , but also incorporates checkpoints. We assume that c©, r© /∈ αP . To define Ch(P) we
need a helper Ch2(P,Q) where P is the current process and Q is the most recent checkpoint.
As the initial checkpoint must be the start point, we have

Ch(P) = Ch2(P, P) (20)

If P = (x : A→ P (x)), then Ch2(P,Q) is defined as

Ch2(P,Q) =
(
x : A→ Ch2(P (x), Q)

| c© → Ch2(P, P)

| r© → Ch(Q,Q)
)

Θ r© → Ch2(Q,Q)

(21)

That is, the process P is working as usual, but upon the event c© we save the current
P as our checkpoint. Upon r© or an error, caught by Θ, we continue on Q, which is our
checkpoint.

210 M.O. Larsen et al. / Exception Handling and Checkpointing in CSP

With this checkpointing construct, it is possible to checkpoint an entire network

Ch(P || Q) (22)

However, in practice, this is not what we want. We would much rather like to checkpoint
each individual process

Ch(P) || Ch(Q) (23)

This gives us the advantage that we can roll back each process individually. However, as
already discussed, because of side-effects we cannot safely roll back over a communication.
Therefore, the event c© should happen after every communication. In order to do this, we
need to make a change to equation (21) as the checkpoints and roll backs needs to be defined
per communication, and not just one for the entire process:

Ch2(P,Q) =
(
x : A→ Ch2(P (x), Q)

~
c∈αP

(c©c → Ch2(P, P))

~
c∈αP

(r©c → Ch2(Q,Q))
)

Θ ~
c∈αP

r©c → Ch2(Q,Q)

(24)

As the supervisor is listening to all communication, the supervisor process from equation
(5) can be rewritten to:

Sok =
(
d : {c.me |me ∈ c}

)
→ c©c → Sok

2
(

r©c → Sok

) (25)

That is, after every communication, the supervisors tells all parties of the communi-
cation to make a synchronised checkpoint. Upon an exception, caught by Θ, they will roll
themselves back as this is part of the definition in equation (24).

4.4.5. Checkpointing Examples

A small example of using the checkpointing is shown in the following network is shown in
Figure 8. We wantA andB to be processes which send each other a message, and forward this
message to a collector C. The collector does not care about the order in which the messages
are given.

A and B message each other over the same channel c, and message the collector via
channel f , however, in order to do both, we need an intermediate process for both A and B
called A′ and B′.

A = c!x→ c?y → a!y → A

A′ = a?x→ f !x→ A′

B = c?x→ c!y → b!x→ B

B′ = b?x→ f !x→ B′

C = f?x→ C

(26)

A supervisor is needed for each pair of communication events:

CPNet =
(
Ch(A) ||Ch(B)

)
||
(
Ch(A′) |||Ch(B′)

)
||Ch(C)

||Sok(2, 2) ||Tok(1, 1) ||Uok(1, 1) ||Vok(2, 1)
(27)

M.O. Larsen et al. / Exception Handling and Checkpointing in CSP 211

Here S, T , U and V are the supervisors, one for each channel. Therefore c ∈ αS ,
a ∈ αT , b ∈ αU and f ∈ αV

We need these intermediate processes A′ and B′ because we want A and B to commu-
nicate, but we also want either one of A or B to communicate with C at time.

If the communication on f between B and B′ fails, both are rolled back to right after the
previous event. None of the other processes are affected by this.

A

B

Cc
f

(a) Programming model

A A′

B B′

Cc

a

b

f

(b) CSP with intermediate processes

Figure 8. Small checkpointing example

The network in Figure 8 is implemented in PyCSP and Figure 9 shows it utilising check-
pointing. This is not a working example, but rather the way we want it to work.

from pycsp_import import *

2 from random import randint

4 @process
def A(cout, cin, fout):

6 while True:
cout("Ping")

8 fout(cin())

10 @process
def B(cout, cin, fout):

12 while True:
x = cin()

14 cout("Pong")
1/randint(0, 1) # This line fails

16 fout(x) # half the time

18 @process
def C(fin, num):

20 for i in range(num):
print i, fin()

22
c = Channel()

24 f = Channel()

26 Parallel(
A(-c, +c, -f),

28 B(-c, +c, -f),
C(+f, 1000)

30)

0 Ping

2 1 Pong
2 Ping

4 3 Pong
4 Ping

6 5 Pong
6 Ping

8 7 Pong
8 Ping

10 9 Pong
10 Ping

12 11 Pong
12 Ping

14 13 Pong
14 Ping

16 15 Pong
16 Ping

18 17 Pong
18 Ping

20 19 Pong
20 Ping

22 21 Pong
22 Ping

24 23 Pong
...

26

28
...

30 999 Pong

Figure 9. Checkpointing in PyCSP

5. Conclusions and Future Work

With a simple supervisor paradigm we are able to introduce exceptions in the CSP algebra,
and have them work over communications. To support the supervisor paradigm, a way of
visualising one-to-one, one-to-any, any-to-one, and any-to-any channels have been made.
Using the supervisor together with checkpointing, we are able to roll back to previous states
in pairs.

Further investigation is needed in some areas:

• A way of stopping the roll back should be devised, as explained in section 4.4.3.

∗ As already discussed, this could be simply defining a explicit number of times a
process is allowed to roll back, before it goes into another exception state.

212 M.O. Larsen et al. / Exception Handling and Checkpointing in CSP

• Checkpointing only works on “off” processes as described by Roscoe [10]
• A working implementation of exception handling and checkpointing using PyCSP is

the topic of Mads Ohm Larsen’s masters thesis [3].
• A checkpoint could be saved to disk and restored at a later time; or could be used as

initial state for another identical process in another network.

Acknowledgements

Thanks go to Andrzej Filinski for his comments on this paper and contributions to the algebra.

References

[1] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
[2] A. W. Roscoe. Understanding Concurrent Systems. Springer, 2010.
[3] Mads Ohm Larsen. Exception Handling in Communicating Sequential Processes. To appear, aug 2012.
[4] N.C.C. Brown and P.H. Welch. An introduction to the Kent C++CSP library. In J.F. Broenink and G.H.

Hilderink, editors, Communicating Process Architectures 2003, volume 61 of Concurrent Systems Engi-
neering Series, pages 139–156, Amsterdam, The Netherlands, September 2003. IOS Press.

[5] Bernhard Sputh and Alastair R. Allen. JCSP-Poison: Safe Termination of CSP Process Networks. In
Communicating Process Architectures 2005, pages 71–107, sep 2005.

[6] Brian Vinter, John Markus Bjø rndalen, and Rune Mø llegard Friborg. PyCSP Revisited. In Peter H.
Welch, Herman Roebbers, Jan F. Broenink, Frederick R. M. Barnes, Carl G. Ritson, Adam T. Sampson,
G. S. Stiles, and Brian Vinter, editors, Communicating Process Architectures 2009, pages 263–276, nov
2009.

[7] Gerald Henk Hilderink. Exception Handling Mechanism in Communicating Threads for Java. In Jan F.
Broenink, Herman Roebbers, Johan P. E. Sunter, Peter H. Welch, and David C. Wood, editors, Communi-
cating Process Architectures 2005, pages 317–334, sep 2005.

[8] Gerald Henk Hilderink. Managing complexity of control software through concurrency. PhD thesis,
Enschede, May 2005.

[9] A. W. Roscoe, C. A. R. Hoare, and Richard Bird. The Theory and Practice of Concurrency. Prentice Hall
PTR, Upper Saddle River, NJ, USA, 1997.

[10] A. W. Roscoe. On the expressiveness of CSP. feb 2011.

