
"XCHANs: Notes on a New Channel Type"

XCHAN

1

CPA-2012 at Abertay University
Dundee, Scotland

Øyvind Teig
Autronica Fire and Security

Trondheim, Norway

http://www.teigfam.net/oyvind/pub/pub_details.html#XCHAN
http://wotug.org/paperdb/

Version 28. Aug.2012 07:29 (55 incremental pages)

2

http://www.teigfam.net/oyvind/pub/pub_details.html%23XCHAN
http://www.teigfam.net/oyvind/pub/pub_details.html%23XCHAN
http://wotug.org/paperdb/
http://wotug.org/paperdb/
http://www.autronicafire.com
http://www.autronicafire.com
http://www.autronicafire.com
http://www.autronicafire.com
http://www.autronicafire.com

XCHAN =
x-channel + CHAN

x-channel

CHAN

3

Background

• From discussions at Autronica
• Not implemented
• Goal for me was to try to merge asynchronous and

synchronous "camps"..
• ..to arrive at a common methodology
• To make it "easier" to comply to SIL (Safety Integrity

Level) approving according to IEC 61508 standard for
safety critical systems

• Assumed implementation loosely based on implemented
ideas with EGGTIMER and REPTIMER. ([9] CPA-2009
paper)

4

XCHAN (100) OF BYTE my_xchan:

asy
nc

hro
no

us,

 n
onb

uff
ere

d

5

XCHAN (100) OF BYTE my_xchan:

asy
nc

hro
no

us,

 b
uff

ere
d

6

XCHAN (...) OF BYTE my_xchan:

Sender is notified as to its success or "failure"

7

XCHAN (...) OF BYTE my_xchan:

Sender is notified as to its success on return of send:
- data moved to buffer
- data moved to receiver

8

XCHAN (...) OF BYTE my_xchan:

Sender is notified as to its "failure" on return of send:
- buffer full
- receiver not present

9

XCHAN (...) OF BYTE my_xchan:

Sender is notified as to its "failure" on return of send:
- buffer full
- receiver not present It always returns!

10

If "failed" to send on XCHAN:

11

If "failed" to send on XCHAN:

"Not sent" is no fault!

12

If "failed" to send on XCHAN:

"Not sent" is no fault!

But a contract to send later

13

If not sent on XCHAN:

- listen to x-channel (in an ALT or select)
- resend old or fresher value when it arrives
- this send will always succeed

14

If not sent:

- listen to x-channel (in an ALT or select)
- resend old or fresher value when it arrives
- this send will always succeed

"ch
annel-re

ady-c
hannel"

15

If not sent:

- listen to x-channel (in an ALT or select)
- resend old or fresher value when it arrives
- this send will always succeed

This contract (design pattern)
between sender and receiver

must be adhered to

16

17

All said!

The rest is really rationale and

Send and forget

Tradition

18

Send, if not sent then don't forget x-channel

New

19

Send, if not sent then don't forget x-channel

Send and forget
Asynchronous

Asynchronous

20

Send, if not sent then don't forget x-channel

Send and forget
Asynchronous

Asynchronous

Restart if buffer overflow (bridge metaphor: collapse)

Full flow control (bridge only ever full)

21

Send, if not sent then don't forget x-channel

Send and forget
Asynchronous

Asynchronous

Restart if buffer overflow (bridge metaphor: collapse)

Full flow control (bridge only ever full)

..finding "enough" buffer size..

22

Send, if not sent then don't forget x-channel

Send and forget
Asynchronous

Asynchronous

Restart if buffer overflow (bridge metaphor: collapse)

Full flow control (bridge only ever full)

Forget means no application handling

Full application handling (but don't forget x-channel)

23

Send and forget
Asynchronous

Restart if buffer overflow (bridge metaphor: collapse)
Forget means no application handling

Those programmers..

24

Send, if not sent then don't forget x-channel

Send and forget
Asynchronous

Asynchronous

Restart if buffer overflow (bridge metaphor: collapse)

Full flow control (bridge only ever full)

Forget means no application handling

Full application handling (but don't forget x-channel)

Those programmers..
..could love this..

25

Send, if not sent then don't forget x-channel

Send and forget
Asynchronous

Asynchronous

Restart if buffer overflow (bridge metaphor: collapse)

Full flow control (bridge only ever full)

Forget means no application handling

Full application handling (but don't forget x-channel)

Those programmers..
..could love this..

..merging asynchronous and synchronous traditions

26

27

XCHAN is a new tool (in the not empty toolbox!)

1. buffering on-the-way:
a. after send-and-forget (asynchronous only, no flow control)
b. inside a buffered channel (asynchronous until full, then

blocking)
c. inside a buffered XCHAN (asynchronous until full, then wait for

ready)

2. buffering inside a process (task, thread, …) combined with:
a. no buffering on-the-way with zero-buffered channel

(blocking synchronous, communication by synchronisation)
b. buffering on-the-way, see bullets 1a or 1b above
c. no buffering on-the-way with zero-buffered XCHAN

(ready synchronous or wait for ready)

3. no explicit buffering at all (with zero-buffered channels)

Buffering (or not)

28

Something old, something new, something borrowed, something blue - and a sixpence in her shoe..

CSP CHAN

unix
pipe

ewouldblock
select

"If further events are to be possible (such as a channel
which can report on whether or not the channel is empty)
…" Schneider [10]

flow control

XCHAN

29

CSP CHAN

unix
pipe

ewouldblock
select

output guards

"If further events are to be possible (such as a channel
which can report on whether or not the channel is empty)
…" Schneider [10]

flow control

XCHAN

Something old, something new, something borrowed, something blue - and a sixpence in her shoe..

30

Output guard and/versus XCHAN

XCHAN Output guard

Never blocks May block

Would have blocked is explicit One taken, which others could have?

Next is sure Next is attempt and part of ALT

Commit to send, not what to send ALT commits to what to send

Commitment is state No such state

31

Output guard and/versus XCHAN

XCHAN Output guard

Never blocks May block

Would have blocked is explicit One taken, which others could have?

Next is sure Next is attempt and part of ALT

Commit to send, not what to send ALT commits to what to send

Commitment contains state No such state

A priori = "first order" A posteriori = "second order"

32

Do observe

the source of the x-channel is the run-time system,
as for a "timeout-channel"

33

Architectural leak

is when application code is added
(made more complicated)

to compensate for missing features at link level

Extra processes
Extra channels
Busy polling
Shared state

...

34

When Server S cannot get rid of this data,
it can still input more,

and finally send newer data

Fast producer, slow consumer and XCHAN

35

Figure 1. Example of an overflow buffer (OBUF)

"Traditional" solution

36

Figure 2. Buffered XCHAN, as shown in Listing 1 (below)

An XCHAN solution

37

Listing 1. Overflow handling and output to buffered channels (ANSI C and macros)

01 while (TRUE) {
02 ALT();
03 ALT_SIGNAL_CHAN_IN (XCHAN_READY); // data-less
04 ALT_CHAN_IN (CHAN_DATA_IN, Value);
05? ALT_END(); // Delivers ThisChannelId:
06
07 switch (ThisChannelId) {
08 case XCHAN_READY: { // sending will succeed
09! CP->Sent_Out = CHAN_OUT (XCHAN_DATA_OUT,Value);
10 } break;
11 case CHAN_DATA_IN: {
12 if (!CP->Sent_Out) {
13 ... handle overflow (decide what value(s) to discard)
14 }
15 else { // sending may succeed:
16! CP->Sent_Out = CHAN_OUT (XCHAN_DATA_OUT,Value);
17 }
18 } break;
19 _DEFAULT_EXIT_VAL (ThisChannelId)
20 }
21 }

An XCHAN solution (code)

38

Figure 3. Zero buffered XCHAN

Another XCHAN solution

39

XCHANs as tool to break deadlock cycles

40

Figure 4. Traditional "knock-come" pattern

"Knock-come"

41

Figure 5. Same pattern with XCHAN

Knock-come(?) with XCHAN

42

Figure 5. Same pattern with XCHAN

Knock-come(?) with XCHAN

No need to think about knock-come, it comes for free!

43

• XCHAN sending could return more than "sent" / "not sent"
(like "percentage full")

• x-channel could deliver more than "ready"
(like "closed")

Extending XCHANs

44

• XCHAN sending could return more than "sent" / "not sent"
(like "percentage full")

• x-channel could deliver more than "ready"
(like "closed")

Extending XCHANs

45

• XCHAN sending could return more than "sent" / "not sent"
(like "percentage full")

• x-channel could deliver more than "ready"
(like "closed")

From runtime system,
(not process)?

Extending XCHANs

46

• XCHAN that sends immediately has standard channel
semantics

• x-channel has standard channel semantics
• Triggering of x-channel and intermediate blocking in

receiver before sender do send, probably cannot be
modeled in CSP,
and needs help from runtime system. That was at paper
time. We now know better: stay tuned

Semantics and implementation

47

Appendix

Code courtesy of golang-

48

Figure 6. Go example (right channel capacity irrelevant

Go has output guards

49

Appendix

Listing 2. Managing without xchan in Go with goroutines

01 func Server (in <-chan int, out chan<- int) {
02 value := 0 // Declaration and assignment
03 valid := false // --“--
04 for {
05 outc := out // Always use a copy of "out"
06 // If we have no value, then don't attempt
07 // to send it on the out channel:
08 if !valid {
09 outc = nil // Makes input alone in select
10 }
11 select {
12? case value = <-in: // RECEIVE?
13 // "Overflow" if valid is already true.
14 valid = true
15! case outc <- value: // SEND?
16 valid = false
17 }
18 }
19 }

50

Appendix

51

Appendix

Another code example also
shown in paper

There, sender empties
receiver end!

- if channel is seen to be full,

Send to itself?

We have not studied whether buffered XCHAN
could be wrapped into the sending process,

enabling the process to send to itself - but we
think this is possible

52

Modeling XCHAN

53

Fin
all

Modeling XCHAN
• Model of buffered XCHAN in occam-pi

• Model of unbuffered XCHAN in occam-pi

• Done as a feasability study by the editor
of the paper, Peter H. Welch, during and
after the editing

Co
ur

te
sy

54

Thank you!

55

¿questions?

http://en.wikipedia.org/wiki/Vemork
http://en.wikipedia.org/wiki/Vemork
http://en.wikipedia.org/wiki/Vemork
http://en.wikipedia.org/wiki/Vemork
http://en.wikipedia.org/wiki/Vemork
http://en.wikipedia.org/wiki/Vemork
http://en.wikipedia.org/wiki/Vemork
http://en.wikipedia.org/wiki/Vemork
http://en.wikipedia.org/wiki/Vemork
http://en.wikipedia.org/wiki/Vemork
http://en.wikipedia.org/wiki/Vemork
http://en.wikipedia.org/wiki/Vemork
http://en.wikipedia.org/wiki/Vemork
http://en.wikipedia.org/wiki/Vemork
http://en.wikipedia.org/wiki/Vemork
http://en.wikipedia.org/wiki/Vemork
http://en.wikipedia.org/wiki/Vemork
http://en.wikipedia.org/wiki/Vemork
http://en.wikipedia.org/wiki/Vemork
http://en.wikipedia.org/wiki/Vemork
http://en.wikipedia.org/wiki/Vemork
http://en.wikipedia.org/wiki/Vemork
http://en.wikipedia.org/wiki/Vemork
http://en.wikipedia.org/wiki/Vemork
http://en.wikipedia.org/wiki/Vemork
http://en.wikipedia.org/wiki/Vemork
http://en.wikipedia.org/wiki/Vemork
http://en.wikipedia.org/wiki/Vemork
http://en.wikipedia.org/wiki/Vemork
http://en.wikipedia.org/wiki/Vemork
http://en.wikipedia.org/wiki/Vemork
http://en.wikipedia.org/wiki/Vemork
http://en.wikipedia.org/wiki/Vemork
http://en.wikipedia.org/wiki/Vemork
http://en.wikipedia.org/wiki/Vemork
http://en.wikipedia.org/wiki/Vemork
http://en.wikipedia.org/wiki/Vemork
http://en.wikipedia.org/wiki/Vemork
http://en.wikipedia.org/wiki/Vemork
http://en.wikipedia.org/wiki/Vemork
http://en.wikipedia.org/wiki/Vemork
http://en.wikipedia.org/wiki/Vemork

Three pictures: Vemork hydroelectric plant Rjukan (1911),
 now the Norwegian Industrial Workers Museum (2012)

First page: Drammen signal box (1910), now at the Railway Museum at Hamar

Small toolbox that I made for Isac

56

