Cancellable Servers:
a Pattern for Curiosity

Peter Welch (phw@kent.ac.uk)

CPA 2012 (University of Abertay, 26th. August, 2012
-l y ¥ gust, i

Curiosity on Mars

This is a student exercise to design and implement part of the control logic
for an autonomous robot.control process for a rover vehicle on Mars.

— o

MASASfIPFL-CALTECH

—oeme = Curiosity on Mars

This is a student exercise to design and implement part of the control logic
for an autonomous robot.control process for a rover vehicle on Mars.

RU

The controller has to respond to commands from its operator back on
Earth, to operate simple actuators (start/stop motors, deploy gadgets) and
to monitor and respond appropriately to input from peripherals (motor
feedback clicks, raw echo sensor data, processed camera images).

martian rocks

camera view
(90 degrees)

echo detection | martians
(all round)

curiosity

Curiosity on Mars

This is a student exercise to design and implement part of the control logic
for an autonomous robot.control process for a rover vehicle on Mars.

The controller has to respond to commands from its operator back on
Earth, to operate simple actuators (start/stop motors, deploy gadgets) and
to monitor and respond appropriately to input from peripherals (motor
feedback clicks, raw echo sensor data, processed camera images).

This could be implemented by a purely sequential process ... but that's
hard.

A concurrent implementation is simpler, with a process for each external
agent (mission control, motor, echo sounder and camera). These
processes are linked and communicate as a client/server network.

One twist is that three of the servers must be cancellable (since two
transactions need to run in parallel, with the first to complete causing
the cancelation of the other).

Curiosity on Mars

opr.req
% opr.resp
motor
[l hazard
camera
robot.control
v log
¥ Qripper

| motor.cmd

Curiosity on Mars

opr.req
* opr.resp
motor
[l hazard
monitor.
operator
camera
robot.control
v log
¥ Qripper

| motor.cmd

Curiosity on Mars

opr.req
* opr.resp
monitor.] motor
motors
[l hazard
monitor.
operator
camera
robot.control
v log
¥ gripper

| motor.cmd

Curiosity on Mars

opr.req
* opr.resp
monitor.] motor
motors
[l hazard
monitor. monitor.
operator hazards
camera
robot.control
v log
{ gripper

| motor.cmd

Curiosity on Mars

opr.req
1 opr.resp
monitor.] motor
motors
[] hazard
monitor. monitor.
operator hazards
monitor.] camera
robot.control camera
v log
{ gripper

| motor.cmd

opr.req

4 opr.resp

Curiosity on Mars

motor

a

monitor.
motors

INT

INT

[l hazard

S

operator BOOL hazards

A A A A

INT::[JINT

BLOB

camera

a

monitor.
camera

robot.control

v log
v gripper
| motor.cmd

Curiosity on Mars

distance Server
requested monitor. motor
- motors

INT
INT

distance
achieved

monitor.
operator

Client

Curiosity on Mars

e.g. [5,5,10,10] for moving
forwards, [10,10,5,5] backwards.

array of acceptable
hazard levels

/ Server hazard
operator BOOL hazards

TRUE
(if unacceptable
hazard located)

Curiosity on Mars

Client

monitor.
operator

@d) array of@
f

INT: :[JINT

camera

monitor.
camera

Server

if one is found in one
of the given colours

Curiosity on Mars

opr.req
% opr.resp
motors)
INT
INT AN
\ [l hazard
operator T BoOL hazards .
\\
INT::[JINT S~
robot.control camera
\
v log
¥ gripper cancellable
4 motor.cmd servers

Curiosity on Mars

A

distance Server
requested motor
— motors
INT
distance
achieved

INT

monitor.
operator

Client

Normal client-server transaction:

- the client sends a request, then waits for an answer.

Curiosity on Mars

A

distance Server
requested motor
— motors
INT
distance
achieved

INT

monitor.
operator

Client

Cancellable client-server transaction:

- the client sends a request, then waits for an answer;
- while waiting for an answer, the client may give up and cancel the request.

Problem:

- if the client tries to cancel and the server tries to answer, then deadlock!

Curiosity on Mars

Apart from opening requests, communications
happen in pairs (in parallel, when taking the Server

motor

A

initiative). Now, if both sides take initiative B TONTOT
motors

(client cancel & server answer), there is
no problem! ©® © ©

monitor.
operator

Client

Solution to cancellable client-server transaction:

- the client sends a request, then waits for an answer;

- If an answer is received, client sends an ack (confirming receipt);

- to cancel, the client sends a cancel in parallel with listening for an ack;
- if an ack is received, the request has been cancelled;
- if an answer is received, ignore (server will have seen the cancel);

- to answer, the server sends its answer in parallel with listening for an ack;
- if an ack is received, server knows client accepted the answer;
- if a cancel is received, server knows the service was cancelled.

Curiosity on Mars

. monitor.] motor
motors
[l hazard

monitor. R monitor.
operator hazards

A A A A

To move robot, first check for hazards (normal client-server transaction).
If not clear, don’'t move. Otherwise, start motors to move robot ...

... then request monitor.motors to say when enough clicks have

been seen and request monitor.hazards to look out for specified

hazards. Listen to both servers for answers. Whoever answers first,
cancel the other!

Curiosity on Mars

To find a blob, start motors to turn
robot ...

monitor. motor

A

motors

... then request monitor.motors to

say when enough turn has been done
and request monitor.camera to look

out for specified colour(s). Then, ...

monitor.
operator

monitor. camera

A

camera

... listen to both servers for answers. Whoever answers first, cancel
the other!

Curiosity on Mars

Implement and
Verify ...

occam-m*

Curiosity on Mars

a

ANS watcher |

PROTOCOL ASK
CASE
ask, INT
cancel
ans.ack

—-— target sought

PROTOCOL ANS
CASE
ans, INT
cancel .ack,

-- target found
INT -- target best effort

Curiosity on Mars

ANS watcher i

a

PROC simple.watcher (CHAN ASK in?, CHAN ANS out!,
CHAN INT data?)
WHILE TRUE
PRI ALT
INT target:
in ? ask; target —-- service requested
INT d:
SEQ
data ? d
WHILE d <> target
data ? d -- monitor and check
out ! ans; target
INT d:
data ? d -- monitor and discard
SKIP

Curiosity on Mars

‘ ANS watcher i

But simple.watcher does not deal with a cancel request ...

First, let’s try it the obvious, but wrong, way ...

‘ ANS watcher i

PROC bad.watcher (CHAN ASK in?, CHAN ANS

WHILE TRUE
PRI ALT
INT target:
in ? ask; target
INITIAL BOOL serving IS TRUE:
WHILE serving
PRI ALT
in ? cancel
serving := FALSE

INT d:
data ? d
IF
d = target
SEQ
out ! ans; target
serving := FALSE
TRUE
SKIP
INT d:
data ? d

SKIP

out!, CHAN

service

service

monitor

service

monitor

INT data?)

requested

cancelled

and check

result

and discard

ASK bad. ASK bad. INT

» » -

ANS control | ANS watcher |

PROC bad.control (VAL INT timeout, CHAN ASK in?, CHAN ANS out!,
CHAN ASK to.server!, CHAN ANS from.server?)
WHILE TRUE
TIMER tim:
INT t, target:
SEQ
in ? ask; target —— from mission control
to.server ! ask; target -— request service
tim ? t
ALT
from.server? ans; target —- service result
out ! ans; target —— to mission control
tim ? AFTER t PLUS timeout
SEQ —- (or PAR)
to.server ! cancel —-- cancel service
out ! ans; -1 —- to mission control

ASK bad. ASK bad. INT

»
» »

T ANS control |° ANS watcher

PROC bad.system (VAL INT timeout, CHAN ASK in?, CHAN ANS out!,
CHAN INT data?)
CHAN ASK to.server:
CHAN ANS from.server:
PAR
bad.control (timeout, in?, out!, to.server!, from.server?)
bad.watcher (to.server?, from.server!, data?)

But ...

VERIFY LIVELOCK.FREE bad.system —-—- reassuring

VERIFY NOT DEADLOCK.FREE bad.system -- expected, ©

Curiosity on Mars

ANS watcher i

A

ANS watcher)

Let’'s do it right ...

ASK cancellable. | INT
ANS watcher [

PROC cancellable.watcher (CHAN ASK in?, CHAN ANS out!,
CHAN INT data?)
WHILE TRUE
PRI ALT
INT target:
in ? ask; target -- service requested
INITIAL BOOL serving IS TRUE:
WHILE serving
PRI ALT
... deal with service cancellation
... deal with sensor data
INT d:
data ? d -— monitor and discard
SKIP

{{{ deal with service cancellation
in ? cancel -- service cancelled
SEQ
out ! cancel.ack; target —- acknowledge cancel
serving := FALSE

i3ds

{{{ deal with sensor data
INT d:
data ? d
IF
d = target
SEQ
PAR
out ! ans; target
in ? CASE
ans.ack
SKIP
cancel
SKIP
serving := FALSE
TRUE
SKIP

33}

monitor and check

service result
result accepted

result "i1gnored”

ASK I bad. ASK ___Icancellable.| INT
T ANS control 1~ Ans watcher

PROC bad.control (VAL INT timeout, CHAN ASK in?, CHAN ANS out!,
CHAN ASK to.server!, CHAN ANS from.server?

SEQ
in ? ask; targes
to.server ! ask; tale
tim? t
ALT

from.se

(o)

mission control
request service

, target
<, target
TER t PLUS timeout

EQ —- (or PAR)
to.server ! cancel -—- cancel service
out ! ans; -1 -- to mission control

PROC good.control (VAL INT timeout, CHAN ASK in?, CHAN ANS out!,

CHAN ASK to.server!, CHAN ANS from.server?)

WHILE TRUE
TIMER tim:
INT t, target:
SEQ
in ? ask; target
to.server ! ask; target
tim ? t
ALT
from.server? ans; target
SEQ
to.server ! ans.ack
out ! ans; target
tim ? AFTER t PLUS timeout
SEQ
PAR
to.server ! cancel
from.server ? CASE
ans; target
SKIP
cancel .ack; target
SKIP
out ! ans; target

from mission control
forward request

service result

(or PAR)

acknowledge result

to mission control
(cannot be PAR)
cancel service

accept as acknowledge

actual acknowledge

to mission control

ASK : ASK ___Icancellable.| INT
T ANS control " ANg watcher

PROC good.system (VAL INT timeout, CHAN ASK in?, CHAN ANS out!,
CHAN INT data?)
CHAN ASK to.server:
CHAN ANS from.server:
PAR
good.control (timeout, in?, out!, to.server!, from.server?)
cancellable.watcher (to.server?, from.server!, data?)

And ...

VERIFY LIVELOCK.FREE good.system -- reassuring

VERIFY DEADLOCK.FREE good.system -- gotcha © © ©

Curiosity on Mars

The exercise is to design and implement an autonomous robot.control
process for a rover vehicle on Mars.

The controller has to respond to commands from its operator back on
Earth, to operate simple actuators (start/stop motors, deploy gadgets) and
to monitor and respond appropriately to input from peripherals (motor
feedback clicks, raw echo sensor data, processed camera images).

The controller must not deadlock ... or have a sub-system deadlock ...

For Curiosity (or any autonomousi vehicle), the verification

is noti yet sufficient ... we need fo verify that mu/tip/e
cancellable servers do not cause problems ...

Curiosity on Mars

To find a blob, start motors to turn

robot ... monitor. motor
motors
... then request monitor.motors to
T B monitor. say when enough turn has been done
* operator and request monitor.camera to look
opr.resp

out for specified colour(s). Then, ...

camera

A

monitor.
camera

... listen to both servers for answers. Whoever answers first, cancel
the other!

Curiosity on Mars

To find a blob, start motors to turn
robot ...

counter
... then request monitor.motors to
i S robot. say when enough turn has been done
) control and request monitor.camera to look
opr.resp

out for specified colour(s). Then, ...

camera

A

cancellable.
watcher

... listen to both servers for answers. Whoever answers first, cancel
the other!

Just changing the names ...

Curiosity on Mars

cancellable. motor
counter [
oprTA 1 robot.
b control
opr.resp
cancellable. | camera
watcher
curiosity
VERIFY LIVELOCK.FREE curiosity —— reassuring

VERIFY DEADLOCK.FREE curiosity -- not enough

bad.] motor
counter [
opr.req
P >
opr.resp
L camera
watcher [
bad.curiosity
VERIFY LIVELOCK.FREE bad.curiosity —— reassuring

VERIFY DEADLOCK.FREE bad.curiosity —-— surprise 11! ® ® &

opr.req

\ 4

<
opr.resp

bad.curiosity

bad.
watcher

motor

camera

The green sub-system may deadlock, leaving bad .watcher still
alive (in its outer loop) accepting and discarding camera data forever.

So, the system is not deadlocked!

motor

opr.req

<
opr.resp

camera

bad.curiosity

Or the pink sub-system may deadlock, leaving bad . counter still
alive (in its outer loop) accepting and discarding camera data forever.
So, the system is not deadlocked!

opr.req

Curiosity on Mars

<

opr.resp

o bad.robot.
control

bad.curiosity

‘
counter

motor

camera

:
watcher

Curiosity on Mars

bad.] motor
counter [
bad.robot.
control
bad.] camera
watcher [
bad.curiosity.sensors

motor

black.hole.sensors

‘ camera

Curiosity on Mars

bad.] motor
counter [
bad.robot.
control
| camera
watcher [
bad.curiosity.sensors
VERIFY LIVELOCK.FREE bad.curiosity.sensors —-- reassuring
VERIFY LIVELOCK.FREE black.hole.sensors —-- reassuring

VERIFY NOT bad.curiosity.sensors REFINES.F black.hole.sensors
—— gotcha 11!

Curiosity on Mars

cancellable. motor
counter [
robot.
control
| camera
curiosity.sensors
VERIFY LIVELOCK.FREE good.curiosity.sensors —-- reassuring
VERIFY LIVELOCK.FREE black.hole.sensors —-- reassuring

VERIFY curiosity.sensors REFINES.F black.hole.sensors

—— gotcha 11!

Curiosity on Mars

motor

A

cancellable.
counter

robot.
control

camera

A

cancellable.
watcher

curiosity.sensors

VERIFY curiosity.sensors REFINES.F black.hole.sensors

-— gotcha 11!

Now, black.hole.sensors never refuses motor or camera. Therefore,

neither does curiosity.sensors (Nor curiosity).

Curiosity on Mars

,,,,,,,,,, J mOtor
counter [
bad.robot.
control
,,,,,,,,,,,,,,,,,,,,,,,,,,, I camera
watcher |
bad.curiosity.sensors

VERIFY NOT bad.curiosity.sensors REFINES.F black.hole.sensors
-— gotcha 11!

Now, black.hole.sensors never refuses motor or camera. Therefore,
bad.curiosity.sensors (and bad.curiosity) does.

Curiosity on Mars

motor

bad.robot.
control

bad. J
counter

camera

bad.curiosity.sensors

:
watcher

Run Other
Demo ...

Curiosity on Mars

This is a student exercise to design and implement part of the control logic
for an autonomous robot.control process for a rover vehicle on Mars.

The controller has to respond to commands from its operator back on
Earth, to operate simple actuators (start/stop motors, deploy gadgets) and
to monitor and respond appropriately to input from peripherals (motor
feedback clicks, raw echo sensor data, processed camera images).

The controller must not deadlock ... or have a sub-system deadlock ...

Run Other
Demo ...

Curiosity on Mars [other bemo ..

keyboard

motor.
ﬁ processor
curiosity
camera.

processor

reporter

screen

7-Sep-12 Copyright P.H.Welch 48

Curiosity on Mars [other bemo ...
keyboard
motor.
/ processor
drive —— bad.curiosity
camera.
processor

bad.cancellable.
servers

\ 4

reporter

screen

A 4

Curiosity on Mars [other bemo ..

keyboard

motor.
ﬁ processor
ple.curios
camera.

processor

reporter

screen

7-Sep-12 Copyright P.H.Welch 50

Curiosity on Mars

Source codes for the system in this presentation is available in 3 forms:

cancellable-servers.op2

occam-nt2 source code (showing generated CSPm)u

cancellable-servers.csp

CSP,, script (showing occam-n2 source code) — FDR ready.

cancellable-servers.occ

Executable occam-n source code (with VERIFY
assertions/PROCs commented out) — includes testrig.

* For now, generated by hand ...

Curiosity on Mars

This is a student exercise to design and implement part of the control logic
for an autonomous robot.control process for a rover vehicle on Mars.

MASASfIPFL-CALTECH

	Cancellable Servers:

