
August 27, 2012

Specification of APERTIF
Polyphase Filter Bank in C𝝀aSH

Rinse Westera, Dimitrios Sarakiotisa, Eric Kooistrab, Jan Kupera

University of Twente, Enschede
ASTRON, Dwingelo

1

Monday, August 27, 12

Contents

✤ Introduction

✤ Background

✤ Describing the Filter bank using C!aSH

✤ Results

✤ Conclusions & Future Work

2

Monday, August 27, 12

Introduction

✤ What is C𝝀aSH?

✤ Functional Language and Compiler for Concurrent Digital
Hardware Design

✤ Motivation?

✤ Testing C𝝀aSH on real life complex application

✤ Why APERTIF Polyphase filter bank?

✤ Strict specification on Throughput, Area and clock frequency
3

Monday, August 27, 12

Background

✤ C!aSH

✤ A functional language and compiler for digital hardware design

✤ On the lowest level, everything is a Mealy machine f(s,i) = (s’,o)

✤ A C!aSH description is purely structural i.e. all operations are
performed in a single clock cycle

✤ Simulation is cycle accurate

4

Monday, August 27, 12

Background
4 R. Wester et al. / Specification of APERTIF Polyphase Filter Bank in C�aSH

+
a

*
b

out

s's

Figure 2. Multiply Accumulate structure

The fir example of Listing 2 accepts an additional argument cs which contains a vector
of filter coefficients. The registers of the filter, the input and output are called us , in and out

respectively. The new state of the registers us 0 is the original state us with the input shifted in
one position using the +� operator. vzipWith is used in the second line to pairwise multiply
the coefficients cs with the contents of the registers us . Finally, the last line shows the use of
vfoldl which accepts + as functional argument and therefore adds all ws together. Note that
cs (the filter coefficients) are parameters for the fir function.

Listing 2 Higher order functions in a FIR filter described using C�aSH.

fir cs (State us) inp = (State us

0
, out)

where
us

0
= inp +� us

ws = vzipWith (⇤) us cs

out = vfoldl (+) 0 ws

Important to note is that the description in the where clause only expresses data depen-
dencies and no sequential ordering. Therefore, the description is implicitly parallel and there
is no need for special notation. Also, vzipWith is implicitly parallel, it applies a function
pairwise to the elements of the two lists us and cs . The schematic corresponding with Listing
2 is shown in Figure 3.

+

*

in

+

*

+

*
cN-1c0 c1

out0

u0 u1 uN-1

w0 w1 wN-1

Figure 3. FIR filter structure

2. Specification of APERTIF Polyphase Filter Bank

As explained in Section 1.1, the Polyphase Filter Bank consists of two parts: the Polyphase
Filter and the FFT pipeline. In the following two sections, we present the specification of the
Polyphase Filter and FFT pipeline. First, the specification is given in Haskell which is then
slightly changed such that it is accepted by the C�aSH compiler. These changes are necessary
since the C�aSH compiler does not support floating point numbers and a proper fixed point
representation for numbers is needed.

R. Wester et al. / Specification of APERTIF Polyphase Filter Bank in C�aSH 3

dramatically compared to a fully parallel implementation. All filters can therefore be merged
into a single filter alternating between the different sets of coefficients and registers. This also
means that for each sample consumed by the filters also one sample will be sent to the FFT.

The FFT splits the signal into M distinct frequency components which are combined for
all antennas in the beamformer. The architecture of the FFT is a pipeline as described in [10].
From the size and radix of the FFT, it follows that log4(1024) = 5 stages are required.

The whole Polyphase Filter Bank design should fit on a single Altera Stratix IV FPGA
(EP4SGX230KF40C2). Data from the antenna arrives in the FPGA using high speed serial
interconnect producing data at 800 MS/s. The desired clock frequency for the filterbank is
200 MHz. Therefore, the structure has to be parallelized by a factor of p = 800/200 = 4 in
order to meet the throughput.

1.2. C�aSH

C�aSH [1] is a new functional hardware description language based on Haskell. C�aSH is
both a simulation environment and a compiler . The language accepted by the C�aSH com-
piler (a subset of Haskell that can be translated to hardware) supports advanced features such
as poly-morphism, higher-order functions, pattern matching and type derivation. Polymor-
phism and higher-order functions (functions that have functions as argument or result) allow
circuit designers to describe parameterizable circuits in a natural way. Especially Higher Or-
der functions are a powerful abstraction since they allow for reasoning about structure and
parallelism of the hardware.

C�aSH is a purely synchronous and cycle accurate hardware description language where
everything is, on the lowest level, expressed as a Mealy machine. Therefore, every output
and new state is a function of the input combined with the current state. Since every C�aSH
description is also a valid Haskell program, simulation comes for free. This combination
results in a fast and cycle accurate hardware simulator.

Besides simulating hardware, C�aSH is also able to translate the description to VHDL.
For simulation, C�aSH accepts plain Haskell but for translation to VHDL this is limited to
descriptions without general recursion and lists (the length may change during runtime).

Listing 1 shows a simple example, a multiply accumulate, written in C�aSH. Every func-
tion in C�aSH is formatted as shown in Listing 1. First, the name of the function to be defined
is given (mac) followed by the current state (s) and the inputs (a, b). These are arguments
of the the function mac and separated by spaces instead of commas. The result consists of
the new state s

0 using the State keyword and the output out . Finally, all calculations are
performed, combinatorially, in the where clause.

Listing 1 Multiply Accumulate example in C�aSH.

mac (State s) (a, b) = (State s

0
, out)

where
s

0
= s + a ⇤ b

out = s

0

The Hardware corresponding with Listing 1 is shown in Figure 2.
As mentioned before, C�aSH supports an abstraction mechanism called higher order

functions, which are very useful to describe structure and parallelism. Higher order functions
are functions that can accept functions as argument or return a function as a result which
is particularly useful for describing structure. Listing 2 shows a description of a FIR filter
utilizing the higher order functions vzipWith and vfoldl (the prefix ’v’ refers to vector i.e. a
list of fixed length).

5

Monday, August 27, 12

Background

4 R. Wester et al. / Specification of APERTIF Polyphase Filter Bank in C�aSH

+
a

*
b

out

s's

Figure 2. Multiply Accumulate structure

The fir example of Listing 2 accepts an additional argument cs which contains a vector
of filter coefficients. The registers of the filter, the input and output are called us , in and out

respectively. The new state of the registers us 0 is the original state us with the input shifted in
one position using the +� operator. vzipWith is used in the second line to pairwise multiply
the coefficients cs with the contents of the registers us . Finally, the last line shows the use of
vfoldl which accepts + as functional argument and therefore adds all ws together. Note that
cs (the filter coefficients) are parameters for the fir function.

Listing 2 Higher order functions in a FIR filter described using C�aSH.

fir cs (State us) inp = (State us

0
, out)

where
us

0
= inp +� us

ws = vzipWith (⇤) us cs

out = vfoldl (+) 0 ws

Important to note is that the description in the where clause only expresses data depen-
dencies and no sequential ordering. Therefore, the description is implicitly parallel and there
is no need for special notation. Also, vzipWith is implicitly parallel, it applies a function
pairwise to the elements of the two lists us and cs . The schematic corresponding with Listing
2 is shown in Figure 3.

+

*

in

+

*

+

*
cN-1c0 c1

out0

u0 u1 uN-1

w0 w1 wN-1

Figure 3. FIR filter structure

2. Specification of APERTIF Polyphase Filter Bank

As explained in Section 1.1, the Polyphase Filter Bank consists of two parts: the Polyphase
Filter and the FFT pipeline. In the following two sections, we present the specification of the
Polyphase Filter and FFT pipeline. First, the specification is given in Haskell which is then
slightly changed such that it is accepted by the C�aSH compiler. These changes are necessary
since the C�aSH compiler does not support floating point numbers and a proper fixed point
representation for numbers is needed.

4 R. Wester et al. / Specification of APERTIF Polyphase Filter Bank in C�aSH

+
a

*
b

out

s's

Figure 2. Multiply Accumulate structure

The fir example of Listing 2 accepts an additional argument cs which contains a vector
of filter coefficients. The registers of the filter, the input and output are called us , in and out

respectively. The new state of the registers us 0 is the original state us with the input shifted in
one position using the +� operator. vzipWith is used in the second line to pairwise multiply
the coefficients cs with the contents of the registers us . Finally, the last line shows the use of
vfoldl which accepts + as functional argument and therefore adds all ws together. Note that
cs (the filter coefficients) are parameters for the fir function.

Listing 2 Higher order functions in a FIR filter described using C�aSH.

fir cs (State us) inp = (State us

0
, out)

where
us

0
= inp +� us

ws = vzipWith (⇤) us cs

out = vfoldl (+) 0 ws

Important to note is that the description in the where clause only expresses data depen-
dencies and no sequential ordering. Therefore, the description is implicitly parallel and there
is no need for special notation. Also, vzipWith is implicitly parallel, it applies a function
pairwise to the elements of the two lists us and cs . The schematic corresponding with Listing
2 is shown in Figure 3.

+

*

in

+

*

+

*
cN-1c0 c1

out0

u0 u1 uN-1

w0 w1 wN-1

Figure 3. FIR filter structure

2. Specification of APERTIF Polyphase Filter Bank

As explained in Section 1.1, the Polyphase Filter Bank consists of two parts: the Polyphase
Filter and the FFT pipeline. In the following two sections, we present the specification of the
Polyphase Filter and FFT pipeline. First, the specification is given in Haskell which is then
slightly changed such that it is accepted by the C�aSH compiler. These changes are necessary
since the C�aSH compiler does not support floating point numbers and a proper fixed point
representation for numbers is needed.

6

Monday, August 27, 12

Background

✤ APERTIF Polyphase Filter bank

✤ Increasing field of view of Westerbork telescope using small array

✤ Each antenna in the array requires a polyphase filter bank

✤ Goals: Fclk = 200 MHz and throughput = 800 MS/s
7

APERTIF project
The resultThe result
• Per board: 8 Altera Stratix IV FPGAs (40 nm,1288

18x18 multipliers 400MHz ~0 5TMAC/s)18x18 multipliers, 400MHz, ~0.5TMAC/s)

• Per FPGA: 2 DDR3 memory banks (on backside of
board)

• Four times four 10-GbE links connect to the front
nodes via four SFP+ cages

• high speed mesh connects each front node to all back
nodes

Th b k d i th i t t i f ti• The back nodes in their turn connect via four times
four 8-bits LVDS to a backplane connector

• a 10G break-out board (the XGB) has been designed
in the form of a mini-backplane, with a total of 16 CX4
connectors

• Prototype delivered May 2010, production run
completed

Monday, August 27, 12

Background

✤ APERTIF Polyphase
Filter bank

✤ Polyphase FIR filter

✤ FFT

2 R. Wester et al. / Specification of APERTIF Polyphase Filter Bank in C�aSH

of the resulting hardware are presented in Section 3. Finally, in Section 4 we draw the final
conclusions and discuss future work.

1. Background

The Netherlands Institute for Radio Astronomy (ASTRON) is currently developing technol-
ogy to increase the field of view (area of the sky that can be observed at the same time) of the
Westerbork Synthesis Radio Telescope in the APERTIF project [4]. An important part in the
signal processing chain that combines the signals from the telescope dishes is the Polyphase
Filter Bank. First, the structure of a Polyphase Filter Bank is introduced, followed by an
introduction to the C�aSH language.

1.1. APERTIF Filter Bank

The field of view of the Westerbork Synthesis Radio Telescope is increased by replacing
the single antenna in the dishes with a small array of antennas. The signals of this array are
combined by a beam former which consist of two parts: a Polyphase Filter Bank for each
antenna and a part that combines all these signals. This paper only focuses on the specification
of the Polyphase Filter Bank.

A Polyphase Filter Bank consist of two parts, a polyphase filter and an FFT [8]. The
polyphase filter is used for decimation the input signal before sending it to the FFT. The FFT
on the other hand splits the signal into its frequency components such that all antenna signals
can be easily combined in the beamformer. The structure of the APERTIF Polyphase Filter
Bank is shown in Figure 1.

*

in

+

*

+

*
c(N-1)M

c0 cM

↓M

*

+

*

+

*
c(N-1)M+1

c1 cM+1

↓M

*

+

*

+

*
cNM-1

cM-1 c2M-1

↓M

M
 =

 1
02

4

N = 16

M-point
FFT

M
 =

 1
02

4

Figure 1. APERTIF Polyphase Filter Bank

The polyphase filter consist of 1024 (M) FIR filters each having 16 (N) taps and is
derived from a single filter with M⇥N = 16384 coefficients [9]. All coefficients are column-
wise distributed in the polyphase filter i.e. the first M filter coefficients form the first column
(C0, C1, . . . , CM�1). In front of the filters, a decimation step #M is used to reduce the sample
rate of the data by a factor M . The combination of delays and decimation has the same
effect as a commutator, a switch sending sequentially a single sample to all FIR filters. Since
only one filter is active for each sample, the amount of required hardware can be reduced

8

Monday, August 27, 12

Describing the PFB

✤ Design method

✤ Polyphase filter

✤ FFT pipeline

9

Monday, August 27, 12

Describing the PFB

✤ Design whole Architecture first in plain Haskell

✤ Perform small modification such that the code is accepted by C𝝀aSH

✤ Lists are replaced by vectors: lists with fixed length

✤ Fixed point representation for numbers

✤ A clear division between structure and low level hardware details

Design method

Functional description

Mathematics Haskell C!aSH Hardware

Simulation/behavioral verification 10

Monday, August 27, 12

Describing the PFB

✤ A set of FIR filters
sequentially activated

✤ Parallelization of P=4
needed

Polyphase Filter

R. Wester et al. / Specification of APERTIF Polyphase Filter Bank in C�aSH 5

2.1. Polyphase Filter

2.1.1. Specification in Haskell

Since the basic building block of the Polyphase Filter is a FIR filter, we start by specifying
the C�aSH description of Listing 2 in Haskell. The code of the filter is shown in Listing 3.

Listing 3 FIR filter in Haskell.

fir cs us inp = (us

0
, out)

where
us

0
= inp +� us

ws = zipWith (⇤) us cs

out = foldl (+) 0 ws

The fir function accepts three input arguments: a list of filter coefficients cs , a list of
registers containing the current state us and an input inp. During a single clock cycle, the
new state s

0 and output out are calculated in the where clause. As a matter of notation, lists
and lists of lists are denoted with one s or two ss respectively. Note that parameters cs remain
constant during simulation.

Now that we have defined the FIR filter, we can use the fir function to create the
Polyphase Filter. Since only one filter of the Polyphase Filter is active at each clock cycle,
the hardware performing the fir computation can be reused. However, new filter coefficients
and register contents have to be supplied to the filter every time the next filter is executed.
The architecture that performs this operation is shown in Figure 4.

FIR0

cntr

inp out
FIR1

FIRM-1

FIRcomb

Coefficients

States

inp

Figure 4. Sequential FIR filter execution

To translate this into a Haskell description, all states of the filters have to be stored in
the global state of the Polyphase Filter and a proper selection of the filter coefficients has to
be made at every cycle. The easiest way to control this is by a counter that determines which
set of coefficients and state registers will be used. Listing 4 shows the Haskell code of the
complete Polyphase Filter with proper state and coefficient selection.

Listing 4 Polyphase Filter in Haskell.

pfs css (uss , cntr) inp = ((uss

0
, cntr

0
), out)

where
cntr

0
= (cntr + 1) ‘mod ‘ (length css)

us = uss ! cntr

cs = css ! cntr

(us

0
, out) = fir cs us inp

uss

0
= replace cntr us

0
uss

R. Wester et al. / Specification of APERTIF Polyphase Filter Bank in C�aSH 5

2.1. Polyphase Filter

2.1.1. Specification in Haskell

Since the basic building block of the Polyphase Filter is a FIR filter, we start by specifying
the C�aSH description of Listing 2 in Haskell. The code of the filter is shown in Listing 3.

Listing 3 FIR filter in Haskell.

fir cs us inp = (us

0
, out)

where
us

0
= inp +� us

ws = zipWith (⇤) us cs

out = foldl (+) 0 ws

The fir function accepts three input arguments: a list of filter coefficients cs , a list of
registers containing the current state us and an input inp. During a single clock cycle, the
new state s

0 and output out are calculated in the where clause. As a matter of notation, lists
and lists of lists are denoted with one s or two ss respectively. Note that parameters cs remain
constant during simulation.

Now that we have defined the FIR filter, we can use the fir function to create the
Polyphase Filter. Since only one filter of the Polyphase Filter is active at each clock cycle,
the hardware performing the fir computation can be reused. However, new filter coefficients
and register contents have to be supplied to the filter every time the next filter is executed.
The architecture that performs this operation is shown in Figure 4.

FIR0

cntr

inp out
FIR1

FIRM-1

FIRcomb

Coefficients

States

inp

Figure 4. Sequential FIR filter execution

To translate this into a Haskell description, all states of the filters have to be stored in
the global state of the Polyphase Filter and a proper selection of the filter coefficients has to
be made at every cycle. The easiest way to control this is by a counter that determines which
set of coefficients and state registers will be used. Listing 4 shows the Haskell code of the
complete Polyphase Filter with proper state and coefficient selection.

Listing 4 Polyphase Filter in Haskell.

pfs css (uss , cntr) inp = ((uss

0
, cntr

0
), out)

where
cntr

0
= (cntr + 1) ‘mod ‘ (length css)

us = uss ! cntr

cs = css ! cntr

(us

0
, out) = fir cs us inp

uss

0
= replace cntr us

0
uss

11

Monday, August 27, 12

Describing the PFB

✤ A set of FIR filters
sequentially activated

✤ Parallelization of P=4
needed

Polyphase Filter

R. Wester et al. / Specification of APERTIF Polyphase Filter Bank in C�aSH 5

2.1. Polyphase Filter

2.1.1. Specification in Haskell

Since the basic building block of the Polyphase Filter is a FIR filter, we start by specifying
the C�aSH description of Listing 2 in Haskell. The code of the filter is shown in Listing 3.

Listing 3 FIR filter in Haskell.

fir cs us inp = (us

0
, out)

where
us

0
= inp +� us

ws = zipWith (⇤) us cs

out = foldl (+) 0 ws

The fir function accepts three input arguments: a list of filter coefficients cs , a list of
registers containing the current state us and an input inp. During a single clock cycle, the
new state s

0 and output out are calculated in the where clause. As a matter of notation, lists
and lists of lists are denoted with one s or two ss respectively. Note that parameters cs remain
constant during simulation.

Now that we have defined the FIR filter, we can use the fir function to create the
Polyphase Filter. Since only one filter of the Polyphase Filter is active at each clock cycle,
the hardware performing the fir computation can be reused. However, new filter coefficients
and register contents have to be supplied to the filter every time the next filter is executed.
The architecture that performs this operation is shown in Figure 4.

FIR0

cntr

inp out
FIR1

FIRM-1

FIRcomb

Coefficients

States

inp

Figure 4. Sequential FIR filter execution

To translate this into a Haskell description, all states of the filters have to be stored in
the global state of the Polyphase Filter and a proper selection of the filter coefficients has to
be made at every cycle. The easiest way to control this is by a counter that determines which
set of coefficients and state registers will be used. Listing 4 shows the Haskell code of the
complete Polyphase Filter with proper state and coefficient selection.

Listing 4 Polyphase Filter in Haskell.

pfs css (uss , cntr) inp = ((uss

0
, cntr

0
), out)

where
cntr

0
= (cntr + 1) ‘mod ‘ (length css)

us = uss ! cntr

cs = css ! cntr

(us

0
, out) = fir cs us inp

uss

0
= replace cntr us

0
uss

R. Wester et al. / Specification of APERTIF Polyphase Filter Bank in C�aSH 5

2.1. Polyphase Filter

2.1.1. Specification in Haskell

Since the basic building block of the Polyphase Filter is a FIR filter, we start by specifying
the C�aSH description of Listing 2 in Haskell. The code of the filter is shown in Listing 3.

Listing 3 FIR filter in Haskell.

fir cs us inp = (us

0
, out)

where
us

0
= inp +� us

ws = zipWith (⇤) us cs

out = foldl (+) 0 ws

The fir function accepts three input arguments: a list of filter coefficients cs , a list of
registers containing the current state us and an input inp. During a single clock cycle, the
new state s

0 and output out are calculated in the where clause. As a matter of notation, lists
and lists of lists are denoted with one s or two ss respectively. Note that parameters cs remain
constant during simulation.

Now that we have defined the FIR filter, we can use the fir function to create the
Polyphase Filter. Since only one filter of the Polyphase Filter is active at each clock cycle,
the hardware performing the fir computation can be reused. However, new filter coefficients
and register contents have to be supplied to the filter every time the next filter is executed.
The architecture that performs this operation is shown in Figure 4.

FIR0

cntr

inp out
FIR1

FIRM-1

FIRcomb

Coefficients

States

inp

Figure 4. Sequential FIR filter execution

To translate this into a Haskell description, all states of the filters have to be stored in
the global state of the Polyphase Filter and a proper selection of the filter coefficients has to
be made at every cycle. The easiest way to control this is by a counter that determines which
set of coefficients and state registers will be used. Listing 4 shows the Haskell code of the
complete Polyphase Filter with proper state and coefficient selection.

Listing 4 Polyphase Filter in Haskell.

pfs css (uss , cntr) inp = ((uss

0
, cntr

0
), out)

where
cntr

0
= (cntr + 1) ‘mod ‘ (length css)

us = uss ! cntr

cs = css ! cntr

(us

0
, out) = fir cs us inp

uss

0
= replace cntr us

0
uss

11

Monday, August 27, 12

Describing the PFB

✤ A set of FIR filters
sequentially activated

✤ Parallelization of P=4
needed

Polyphase Filter

R. Wester et al. / Specification of APERTIF Polyphase Filter Bank in C�aSH 5

2.1. Polyphase Filter

2.1.1. Specification in Haskell

Since the basic building block of the Polyphase Filter is a FIR filter, we start by specifying
the C�aSH description of Listing 2 in Haskell. The code of the filter is shown in Listing 3.

Listing 3 FIR filter in Haskell.

fir cs us inp = (us

0
, out)

where
us

0
= inp +� us

ws = zipWith (⇤) us cs

out = foldl (+) 0 ws

The fir function accepts three input arguments: a list of filter coefficients cs , a list of
registers containing the current state us and an input inp. During a single clock cycle, the
new state s

0 and output out are calculated in the where clause. As a matter of notation, lists
and lists of lists are denoted with one s or two ss respectively. Note that parameters cs remain
constant during simulation.

Now that we have defined the FIR filter, we can use the fir function to create the
Polyphase Filter. Since only one filter of the Polyphase Filter is active at each clock cycle,
the hardware performing the fir computation can be reused. However, new filter coefficients
and register contents have to be supplied to the filter every time the next filter is executed.
The architecture that performs this operation is shown in Figure 4.

FIR0

cntr

inp out
FIR1

FIRM-1

FIRcomb

Coefficients

States

inp

Figure 4. Sequential FIR filter execution

To translate this into a Haskell description, all states of the filters have to be stored in
the global state of the Polyphase Filter and a proper selection of the filter coefficients has to
be made at every cycle. The easiest way to control this is by a counter that determines which
set of coefficients and state registers will be used. Listing 4 shows the Haskell code of the
complete Polyphase Filter with proper state and coefficient selection.

Listing 4 Polyphase Filter in Haskell.

pfs css (uss , cntr) inp = ((uss

0
, cntr

0
), out)

where
cntr

0
= (cntr + 1) ‘mod ‘ (length css)

us = uss ! cntr

cs = css ! cntr

(us

0
, out) = fir cs us inp

uss

0
= replace cntr us

0
uss

R. Wester et al. / Specification of APERTIF Polyphase Filter Bank in C�aSH 5

2.1. Polyphase Filter

2.1.1. Specification in Haskell

Since the basic building block of the Polyphase Filter is a FIR filter, we start by specifying
the C�aSH description of Listing 2 in Haskell. The code of the filter is shown in Listing 3.

Listing 3 FIR filter in Haskell.

fir cs us inp = (us

0
, out)

where
us

0
= inp +� us

ws = zipWith (⇤) us cs

out = foldl (+) 0 ws

The fir function accepts three input arguments: a list of filter coefficients cs , a list of
registers containing the current state us and an input inp. During a single clock cycle, the
new state s

0 and output out are calculated in the where clause. As a matter of notation, lists
and lists of lists are denoted with one s or two ss respectively. Note that parameters cs remain
constant during simulation.

Now that we have defined the FIR filter, we can use the fir function to create the
Polyphase Filter. Since only one filter of the Polyphase Filter is active at each clock cycle,
the hardware performing the fir computation can be reused. However, new filter coefficients
and register contents have to be supplied to the filter every time the next filter is executed.
The architecture that performs this operation is shown in Figure 4.

FIR0

cntr

inp out
FIR1

FIRM-1

FIRcomb

Coefficients

States

inp

Figure 4. Sequential FIR filter execution

To translate this into a Haskell description, all states of the filters have to be stored in
the global state of the Polyphase Filter and a proper selection of the filter coefficients has to
be made at every cycle. The easiest way to control this is by a counter that determines which
set of coefficients and state registers will be used. Listing 4 shows the Haskell code of the
complete Polyphase Filter with proper state and coefficient selection.

Listing 4 Polyphase Filter in Haskell.

pfs css (uss , cntr) inp = ((uss

0
, cntr

0
), out)

where
cntr

0
= (cntr + 1) ‘mod ‘ (length css)

us = uss ! cntr

cs = css ! cntr

(us

0
, out) = fir cs us inp

uss

0
= replace cntr us

0
uss

11

Monday, August 27, 12

Describing the PFB Parallel Polyphase Filter

6 R. Wester et al. / Specification of APERTIF Polyphase Filter Bank in C�aSH

As can be seen in Listing 4, the pfs function accepts three arguments: a parameter list
containing lists of filter coefficients css , the internal state of the PF (uss , cntr) (consisting
of the memory and a counter) and the actual input inp. Again, only data dependencies are
described, everything else is fully parallel. During a single cycle, a new filter state is stored
in the memory uss

0, the internal counter is incremented while the output is sent to out . The
actual set of registers us and the set of coefficients cs are selected based on the counter
from uss and css respectively. This is performed using the index operator ”!” i.e. us and cs

are the appropriate registers and coefficients for the current filter. The actual filtering part is
performed in the fourth line in the where clause using the selected register states us and set
of filter coefficients cs . This calculation results in a new filter state us 0 and a new output out .
Finally, the changed filter state is stored in the global state of the Polyphase Filter uss 0.

As is mentioned before, the Polyphase Filter has to be parallelized by a factor of P = 4

to meet the throughput of 800 MSps at a clock frequency of 200 MHz. Since there are no data
dependencies between the FIR filters, the hardware structure represented by the pfs function
can simply be replicated 4 times. However, the filter coefficients and registers have to be
distributed among these four Polyphase Filters. The parallelization is depicted in Figure 5.

cntr

FIRcomb

Coefficients

States

inp0 out0

cntr

FIRcomb

Coefficients

States

inp1 out1

cntr

FIRcomb

Coefficients

States

inp2 out2

cntr

FIRcomb

Coefficients

States

inp3 out3

Figure 5. Parallel FIR filters

As can be seen in Figure 5, the Polyphase Filter is parallelized with a factor P = 4. The
coefficient css and the registers uss are distributed linearly over the four Polyphase Filters
i.e. cs

n

and us

n

are located at pfsm (where m = n mod p) respectively. Since the FIR

comb

function is replicated four times, the new architecture will also have four inputs and four
outputs. The Haskell code describing this architecture is shown in Listing 5.

Listing 5 Parallel Polyphase Filter in Haskell.

parpfs csss states inps = (states

0
, outs)

where
res = zipWith3 pfs csss states inps

(states

0
, outs) = unzip res

As can be seen in Listing 5, the parallel Polyphase Filter accepts three arguments: a list
(of lists of lists) of coefficients csss , a list of states states (for the filter registers and counters)
and a list of inputs (4 since P = 4). Since a single pfs accepts three arguments, the higher
order function zipWith3 is used to create 4 instantiations of this block. zipWith3 accepts a
function pfs and three lists (csss , states , inps) after which pfs is applied to each element in
the lists. This results in a list of tuples res which are split into a list of new states states 0 and
the outputs outs .

2.1.2. Translation to C�aSH

The last step is to apply a few changes to the Haskell description such that the design is
accepted by the C�aSH compiler. Since hardware is finite and fixed, standard Haskell lists are

6 R. Wester et al. / Specification of APERTIF Polyphase Filter Bank in C�aSH

As can be seen in Listing 4, the pfs function accepts three arguments: a parameter list
containing lists of filter coefficients css , the internal state of the PF (uss , cntr) (consisting
of the memory and a counter) and the actual input inp. Again, only data dependencies are
described, everything else is fully parallel. During a single cycle, a new filter state is stored
in the memory uss

0, the internal counter is incremented while the output is sent to out . The
actual set of registers us and the set of coefficients cs are selected based on the counter
from uss and css respectively. This is performed using the index operator ”!” i.e. us and cs

are the appropriate registers and coefficients for the current filter. The actual filtering part is
performed in the fourth line in the where clause using the selected register states us and set
of filter coefficients cs . This calculation results in a new filter state us 0 and a new output out .
Finally, the changed filter state is stored in the global state of the Polyphase Filter uss 0.

As is mentioned before, the Polyphase Filter has to be parallelized by a factor of P = 4

to meet the throughput of 800 MSps at a clock frequency of 200 MHz. Since there are no data
dependencies between the FIR filters, the hardware structure represented by the pfs function
can simply be replicated 4 times. However, the filter coefficients and registers have to be
distributed among these four Polyphase Filters. The parallelization is depicted in Figure 5.

cntr

FIRcomb

Coefficients

States

inp0 out0

cntr

FIRcomb

Coefficients

States

inp1 out1

cntr

FIRcomb

Coefficients

States

inp2 out2

cntr

FIRcomb

Coefficients

States

inp3 out3

Figure 5. Parallel FIR filters

As can be seen in Figure 5, the Polyphase Filter is parallelized with a factor P = 4. The
coefficient css and the registers uss are distributed linearly over the four Polyphase Filters
i.e. cs

n

and us

n

are located at pfsm (where m = n mod p) respectively. Since the FIR

comb

function is replicated four times, the new architecture will also have four inputs and four
outputs. The Haskell code describing this architecture is shown in Listing 5.

Listing 5 Parallel Polyphase Filter in Haskell.

parpfs csss states inps = (states

0
, outs)

where
res = zipWith3 pfs csss states inps

(states

0
, outs) = unzip res

As can be seen in Listing 5, the parallel Polyphase Filter accepts three arguments: a list
(of lists of lists) of coefficients csss , a list of states states (for the filter registers and counters)
and a list of inputs (4 since P = 4). Since a single pfs accepts three arguments, the higher
order function zipWith3 is used to create 4 instantiations of this block. zipWith3 accepts a
function pfs and three lists (csss , states , inps) after which pfs is applied to each element in
the lists. This results in a list of tuples res which are split into a list of new states states 0 and
the outputs outs .

2.1.2. Translation to C�aSH

The last step is to apply a few changes to the Haskell description such that the design is
accepted by the C�aSH compiler. Since hardware is finite and fixed, standard Haskell lists are

12

Monday, August 27, 12

Communicating Process Architectures 2012
P.H. Welch et al. (Eds.)
Draft, 2012
c� 2012 The authors. All rights reserved.

1

Specification of APERTIF Polyphase Filter
Bank in C�aSH

Rinse Wester a, Dimitrios Sarakiotis a, Eric Kooistra b and Jan Kuper a

a University of Twente, Department of Computer Science
Enschede, The Netherlands

b ASTRON, Dwingelo, The Netherlands

Abstract. C�aSH

Keywords. C�aSH, parallel specification, FPGA, filter bank

1. Blaaat

fir :: [Double] ! (State [Double]) ! Double ! (State [Double],Double)
fir cs (State us) inp = (State us , out)

where
us = inp +� us

ws = zipWith (⇤) uscs
out = foldl (+) 0 ws

fir :: (Vector D16 S) ! (State (Vector D16 S)) ! S ! (State (Vector D16 S), S)
fir cs (State us) inp = (State us , out)

where
us = inp +� us

ws = vzipWith ‘fpmult ‘ uscs
out = vfoldl (+) 0 ws

fpmult :: S ! S ! S

fpmult a b = c

where
a

0 = resizeSigned a :: Signed D36

b

0 = resizeSigned b :: Signed D36

c

0 = a

0 ⇤ b 0
c = resizeSigned (c shiftR 17) :: Signed D18

Describing the PFB FIR filter: Haskell → C!aSH

13

4 R. Wester et al. / Specification of APERTIF Polyphase Filter Bank in C�aSH

+
a

*
b

out

s's

Figure 2. Multiply Accumulate structure

The fir example of Listing 2 accepts an additional argument cs which contains a vector
of filter coefficients. The registers of the filter, the input and output are called us , in and out

respectively. The new state of the registers us 0 is the original state us with the input shifted in
one position using the +� operator. vzipWith is used in the second line to pairwise multiply
the coefficients cs with the contents of the registers us . Finally, the last line shows the use of
vfoldl which accepts + as functional argument and therefore adds all ws together. Note that
cs (the filter coefficients) are parameters for the fir function.

Listing 2 Higher order functions in a FIR filter described using C�aSH.

fir cs (State us) inp = (State us

0
, out)

where
us

0
= inp +� us

ws = vzipWith (⇤) us cs

out = vfoldl (+) 0 ws

Important to note is that the description in the where clause only expresses data depen-
dencies and no sequential ordering. Therefore, the description is implicitly parallel and there
is no need for special notation. Also, vzipWith is implicitly parallel, it applies a function
pairwise to the elements of the two lists us and cs . The schematic corresponding with Listing
2 is shown in Figure 3.

+

*

in

+

*

+

*
cN-1c0 c1

out0

u0 u1 uN-1

w0 w1 wN-1

Figure 3. FIR filter structure

2. Specification of APERTIF Polyphase Filter Bank

As explained in Section 1.1, the Polyphase Filter Bank consists of two parts: the Polyphase
Filter and the FFT pipeline. In the following two sections, we present the specification of the
Polyphase Filter and FFT pipeline. First, the specification is given in Haskell which is then
slightly changed such that it is accepted by the C�aSH compiler. These changes are necessary
since the C�aSH compiler does not support floating point numbers and a proper fixed point
representation for numbers is needed.

Monday, August 27, 12

Communicating Process Architectures 2012
P.H. Welch et al. (Eds.)
Draft, 2012
c� 2012 The authors. All rights reserved.

1

Specification of APERTIF Polyphase Filter
Bank in C�aSH

Rinse Wester a, Dimitrios Sarakiotis a, Eric Kooistra b and Jan Kuper a

a University of Twente, Department of Computer Science
Enschede, The Netherlands

b ASTRON, Dwingelo, The Netherlands

Abstract. C�aSH

Keywords. C�aSH, parallel specification, FPGA, filter bank

1. Blaaat

fir :: [Double] ! (State [Double]) ! Double ! (State [Double],Double)
fir cs (State us) inp = (State us , out)

where
us = inp +� us

ws = vzipWith (⇤) uscs
out = vfoldl (+) 0 ws

fir :: (Vector D16 S) ! (State (Vector D16 S)) ! S ! (State (Vector D16 S), S)
fir cs (State us) inp = (State us , out)

where
us = inp +� us

ws = vzipWith ‘fpmult ‘ uscs
out = vfoldl (+) 0 ws

fpmult :: S ! S ! S

fpmult a b = c

where
a

0 = resizeSigned a :: Signed D36

b

0 = resizeSigned b :: Signed D36

c

0 = a

0 ⇤ b 0
c = resizeSigned (c shiftR 17) :: Signed D18

Communicating Process Architectures 2012
P.H. Welch et al. (Eds.)
Draft, 2012
c� 2012 The authors. All rights reserved.

1

Specification of APERTIF Polyphase Filter
Bank in C�aSH

Rinse Wester a, Dimitrios Sarakiotis a, Eric Kooistra b and Jan Kuper a

a University of Twente, Department of Computer Science
Enschede, The Netherlands

b ASTRON, Dwingelo, The Netherlands

Abstract. C�aSH

Keywords. C�aSH, parallel specification, FPGA, filter bank

1. Blaaat

fir :: [Double] ! (State [Double]) ! Double ! (State [Double],Double)
fir cs (State us) inp = (State us , out)

where
us = inp +� us

ws = zipWith (⇤) uscs
out = foldl (+) 0 ws

fir :: (Vector D16 S) ! (State (Vector D16 S)) ! S ! (State (Vector D16 S), S)
fir cs (State us) inp = (State us , out)

where
us = inp +� us

ws = vzipWith ‘fpmult ‘ uscs
out = vfoldl (+) 0 ws

fpmult :: S ! S ! S

fpmult a b = c

where
a

0 = resizeSigned a :: Signed D36

b

0 = resizeSigned b :: Signed D36

c

0 = a

0 ⇤ b 0
c = resizeSigned (c shiftR 17) :: Signed D18

Describing the PFB FIR filter: Haskell → C!aSH

13

4 R. Wester et al. / Specification of APERTIF Polyphase Filter Bank in C�aSH

+
a

*
b

out

s's

Figure 2. Multiply Accumulate structure

The fir example of Listing 2 accepts an additional argument cs which contains a vector
of filter coefficients. The registers of the filter, the input and output are called us , in and out

respectively. The new state of the registers us 0 is the original state us with the input shifted in
one position using the +� operator. vzipWith is used in the second line to pairwise multiply
the coefficients cs with the contents of the registers us . Finally, the last line shows the use of
vfoldl which accepts + as functional argument and therefore adds all ws together. Note that
cs (the filter coefficients) are parameters for the fir function.

Listing 2 Higher order functions in a FIR filter described using C�aSH.

fir cs (State us) inp = (State us

0
, out)

where
us

0
= inp +� us

ws = vzipWith (⇤) us cs

out = vfoldl (+) 0 ws

Important to note is that the description in the where clause only expresses data depen-
dencies and no sequential ordering. Therefore, the description is implicitly parallel and there
is no need for special notation. Also, vzipWith is implicitly parallel, it applies a function
pairwise to the elements of the two lists us and cs . The schematic corresponding with Listing
2 is shown in Figure 3.

+

*

in

+

*

+

*
cN-1c0 c1

out0

u0 u1 uN-1

w0 w1 wN-1

Figure 3. FIR filter structure

2. Specification of APERTIF Polyphase Filter Bank

As explained in Section 1.1, the Polyphase Filter Bank consists of two parts: the Polyphase
Filter and the FFT pipeline. In the following two sections, we present the specification of the
Polyphase Filter and FFT pipeline. First, the specification is given in Haskell which is then
slightly changed such that it is accepted by the C�aSH compiler. These changes are necessary
since the C�aSH compiler does not support floating point numbers and a proper fixed point
representation for numbers is needed.

Monday, August 27, 12

Communicating Process Architectures 2012
P.H. Welch et al. (Eds.)
Draft, 2012
c� 2012 The authors. All rights reserved.

1

Specification of APERTIF Polyphase Filter
Bank in C�aSH

Rinse Wester a, Dimitrios Sarakiotis a, Eric Kooistra b and Jan Kuper a

a University of Twente, Department of Computer Science
Enschede, The Netherlands

b ASTRON, Dwingelo, The Netherlands

Abstract. C�aSH

Keywords. C�aSH, parallel specification, FPGA, filter bank

1. Blaaat

fir :: [Double] ! (State [Double]) ! Double ! (State [Double],Double)
fir cs (State us) inp = (State us , out)

where
us = inp +� us

ws = vzipWith (⇤) uscs
out = vfoldl (+) 0 ws

fir :: (Vector D16 S) ! (State (Vector D16 S)) ! S ! (State (Vector D16 S), S)
fir cs (State us) inp = (State us , out)

where
us = inp +� us

ws = vzipWith ‘fpmult ‘ uscs
out = vfoldl (+) 0 ws

fpmult :: S ! S ! S

fpmult a b = c

where
a

0 = resizeSigned a :: Signed D36

b

0 = resizeSigned b :: Signed D36

c

0 = a

0 ⇤ b 0
c = resizeSigned (c shiftR 17) :: Signed D18

Communicating Process Architectures 2012
P.H. Welch et al. (Eds.)
Draft, 2012
c� 2012 The authors. All rights reserved.

1

Specification of APERTIF Polyphase Filter
Bank in C�aSH

Rinse Wester a, Dimitrios Sarakiotis a, Eric Kooistra b and Jan Kuper a

a University of Twente, Department of Computer Science
Enschede, The Netherlands

b ASTRON, Dwingelo, The Netherlands

Abstract. C�aSH

Keywords. C�aSH, parallel specification, FPGA, filter bank

1. Blaaat

fir :: [Double] ! (State [Double]) ! Double ! (State [Double],Double)
fir cs (State us) inp = (State us , out)

where
us = inp +� us

ws = zipWith (⇤) uscs
out = foldl (+) 0 ws

fir :: (Vector D16 S) ! (State (Vector D16 S)) ! S ! (State (Vector D16 S), S)
fir cs (State us) inp = (State us , out)

where
us = inp +� us

ws = vzipWith ‘fpmult ‘ uscs
out = vfoldl (+) 0 ws

fpmult :: S ! S ! S

fpmult a b = c

where
a

0 = resizeSigned a :: Signed D36

b

0 = resizeSigned b :: Signed D36

c

0 = a

0 ⇤ b 0
c = resizeSigned (c shiftR 17) :: Signed D18

Describing the PFB FIR filter: Haskell → C!aSH

13

4 R. Wester et al. / Specification of APERTIF Polyphase Filter Bank in C�aSH

+
a

*
b

out

s's

Figure 2. Multiply Accumulate structure

The fir example of Listing 2 accepts an additional argument cs which contains a vector
of filter coefficients. The registers of the filter, the input and output are called us , in and out

respectively. The new state of the registers us 0 is the original state us with the input shifted in
one position using the +� operator. vzipWith is used in the second line to pairwise multiply
the coefficients cs with the contents of the registers us . Finally, the last line shows the use of
vfoldl which accepts + as functional argument and therefore adds all ws together. Note that
cs (the filter coefficients) are parameters for the fir function.

Listing 2 Higher order functions in a FIR filter described using C�aSH.

fir cs (State us) inp = (State us

0
, out)

where
us

0
= inp +� us

ws = vzipWith (⇤) us cs

out = vfoldl (+) 0 ws

Important to note is that the description in the where clause only expresses data depen-
dencies and no sequential ordering. Therefore, the description is implicitly parallel and there
is no need for special notation. Also, vzipWith is implicitly parallel, it applies a function
pairwise to the elements of the two lists us and cs . The schematic corresponding with Listing
2 is shown in Figure 3.

+

*

in

+

*

+

*
cN-1c0 c1

out0

u0 u1 uN-1

w0 w1 wN-1

Figure 3. FIR filter structure

2. Specification of APERTIF Polyphase Filter Bank

As explained in Section 1.1, the Polyphase Filter Bank consists of two parts: the Polyphase
Filter and the FFT pipeline. In the following two sections, we present the specification of the
Polyphase Filter and FFT pipeline. First, the specification is given in Haskell which is then
slightly changed such that it is accepted by the C�aSH compiler. These changes are necessary
since the C�aSH compiler does not support floating point numbers and a proper fixed point
representation for numbers is needed.

Monday, August 27, 12

Communicating Process Architectures 2012
P.H. Welch et al. (Eds.)
Draft, 2012
c� 2012 The authors. All rights reserved.

1

Specification of APERTIF Polyphase Filter
Bank in C�aSH

Rinse Wester a, Dimitrios Sarakiotis a, Eric Kooistra b and Jan Kuper a

a University of Twente, Department of Computer Science
Enschede, The Netherlands

b ASTRON, Dwingelo, The Netherlands

Abstract. C�aSH

Keywords. C�aSH, parallel specification, FPGA, filter bank

1. Blaaat

fir :: [Double] ! (State [Double]) ! Double ! (State [Double],Double)
fir cs (State us) inp = (State us , out)

where
us = inp +� us

ws = vzipWith (⇤) uscs
out = vfoldl (+) 0 ws

fir :: (Vector D16 S) ! (State (Vector D16 S)) ! S ! (State (Vector D16 S), S)
fir cs (State us) inp = (State us , out)

where
us = inp +� us

ws = vzipWith ‘fpmult ‘ uscs
out = vfoldl (+) 0 ws

fpmult :: S ! S ! S

fpmult a b = c

where
a

0 = resizeSigned a :: Signed D36

b

0 = resizeSigned b :: Signed D36

c

0 = a

0 ⇤ b 0
c = resizeSigned (c shiftR 17) :: Signed D18

Communicating Process Architectures 2012
P.H. Welch et al. (Eds.)
Draft, 2012
c� 2012 The authors. All rights reserved.

1

Specification of APERTIF Polyphase Filter
Bank in C�aSH

Rinse Wester a, Dimitrios Sarakiotis a, Eric Kooistra b and Jan Kuper a

a University of Twente, Department of Computer Science
Enschede, The Netherlands

b ASTRON, Dwingelo, The Netherlands

Abstract. C�aSH

Keywords. C�aSH, parallel specification, FPGA, filter bank

1. Blaaat

fir :: [Double] ! (State [Double]) ! Double ! (State [Double],Double)
fir cs (State us) inp = (State us , out)

where
us = inp +� us

ws = zipWith (⇤) uscs
out = foldl (+) 0 ws

fir :: (Vector D16 S) ! (State (Vector D16 S)) ! S ! (State (Vector D16 S), S)
fir cs (State us) inp = (State us , out)

where
us = inp +� us

ws = vzipWith ‘fpmult ‘ uscs
out = vfoldl (+) 0 ws

fpmult :: S ! S ! S

fpmult a b = c

where
a

0 = resizeSigned a :: Signed D36

b

0 = resizeSigned b :: Signed D36

c

0 = a

0 ⇤ b 0
c = resizeSigned (c shiftR 17) :: Signed D18

Describing the PFB FIR filter: Haskell → C!aSH

13

4 R. Wester et al. / Specification of APERTIF Polyphase Filter Bank in C�aSH

+
a

*
b

out

s's

Figure 2. Multiply Accumulate structure

The fir example of Listing 2 accepts an additional argument cs which contains a vector
of filter coefficients. The registers of the filter, the input and output are called us , in and out

respectively. The new state of the registers us 0 is the original state us with the input shifted in
one position using the +� operator. vzipWith is used in the second line to pairwise multiply
the coefficients cs with the contents of the registers us . Finally, the last line shows the use of
vfoldl which accepts + as functional argument and therefore adds all ws together. Note that
cs (the filter coefficients) are parameters for the fir function.

Listing 2 Higher order functions in a FIR filter described using C�aSH.

fir cs (State us) inp = (State us

0
, out)

where
us

0
= inp +� us

ws = vzipWith (⇤) us cs

out = vfoldl (+) 0 ws

Important to note is that the description in the where clause only expresses data depen-
dencies and no sequential ordering. Therefore, the description is implicitly parallel and there
is no need for special notation. Also, vzipWith is implicitly parallel, it applies a function
pairwise to the elements of the two lists us and cs . The schematic corresponding with Listing
2 is shown in Figure 3.

+

*

in

+

*

+

*
cN-1c0 c1

out0

u0 u1 uN-1

w0 w1 wN-1

Figure 3. FIR filter structure

2. Specification of APERTIF Polyphase Filter Bank

As explained in Section 1.1, the Polyphase Filter Bank consists of two parts: the Polyphase
Filter and the FFT pipeline. In the following two sections, we present the specification of the
Polyphase Filter and FFT pipeline. First, the specification is given in Haskell which is then
slightly changed such that it is accepted by the C�aSH compiler. These changes are necessary
since the C�aSH compiler does not support floating point numbers and a proper fixed point
representation for numbers is needed.

Monday, August 27, 12

Describing the PFB FFT pipeline

14

8 R. Wester et al. / Specification of APERTIF Polyphase Filter Bank in C�aSH

2.2. FFT pipeline

The FFT pipeline is built according to the same procedure followed for the Polyphase Filter,
accept that the FFT is only shown with parallelization factor P = 1. First, the basic building
blocks are built in Haskell and combined into a full pipeline. Secondly, parts of the code that
are not supported by C�aSH are changed such that hardware can be generated with C�aSH.

2.2.1. Haskell description

The FFT pipeline is based on [10] and utilizes a radix 2

2 algorithm which requires the same
number of multipliers as a radix 4 algorithm but has the same butterfly structure of a radix
2 algorithm. This pipeline uses two types of butterfly blocks and a complex multiplier as
depicted in Figure 6.

inp * out

8

BF2I

4

BF2II

ws

*

2

BF2I

1

BF2II

ws

Figure 6. FFT pipeline

The first butterfly operation BF2I has two modes: a stage where data is simply forwarded
to the memory located above and a stage where the butterfly operation is performed. All oper-
ations are performed on complex numbers which results in the schematic shown in Figure 7.

lst

+

-

cntr

lstinlstout

inp

out

Figure 7. BF2I butterfly structure

Specifying the architecture from Figure 7 in Haskell is easy since Haskell supports com-
plex numbers. As can be seen in Listing 8, the bf2i operation accepts a single input inp, has
a state consisting of a counter cnt and a list for memory lst and a single output out .

Also the second butterfly operation BF2II has a stage where data are stored and a stage
where the butterfly computation is performed. However, the butterfly operation in BF2II
comes in two variations: a butterfly operation as in BF2I and one with an additional multipli-
cation with the complex number �j. Figure 8 shows the structure of BF2II.

Implementing the architecture of Figure 8 in Haskell is now straightforward (Listing 9).
The last component to describe is the complex multiplier which multiplies every incom-

ing sample with a twiddle factor. The state of the complex multiplier only consist of a counter
cntr to select the correct twiddle factor w from the list of twiddle factors ws (first parameter).
Listing 10 shows the implementation as it is written in Haskell.

By combining the complex multiplier, BF2I and BF2II into a single function, a basic
building block for the FFT pipeline is formed. The states of all the building blocks are sim-
ply combined in a single tuple and the twiddle factors are given as an extra input (the first

Monday, August 27, 12

✤ FFT is implemented using pipeline

✤ Two types of butterflies and Complex multiplier

Describing the PFB FFT pipeline

14

8 R. Wester et al. / Specification of APERTIF Polyphase Filter Bank in C�aSH

2.2. FFT pipeline

The FFT pipeline is built according to the same procedure followed for the Polyphase Filter,
accept that the FFT is only shown with parallelization factor P = 1. First, the basic building
blocks are built in Haskell and combined into a full pipeline. Secondly, parts of the code that
are not supported by C�aSH are changed such that hardware can be generated with C�aSH.

2.2.1. Haskell description

The FFT pipeline is based on [10] and utilizes a radix 2

2 algorithm which requires the same
number of multipliers as a radix 4 algorithm but has the same butterfly structure of a radix
2 algorithm. This pipeline uses two types of butterfly blocks and a complex multiplier as
depicted in Figure 6.

inp * out

8

BF2I

4

BF2II

ws

*

2

BF2I

1

BF2II

ws

Figure 6. FFT pipeline

The first butterfly operation BF2I has two modes: a stage where data is simply forwarded
to the memory located above and a stage where the butterfly operation is performed. All oper-
ations are performed on complex numbers which results in the schematic shown in Figure 7.

lst

+

-

cntr

lstinlstout

inp

out

Figure 7. BF2I butterfly structure

Specifying the architecture from Figure 7 in Haskell is easy since Haskell supports com-
plex numbers. As can be seen in Listing 8, the bf2i operation accepts a single input inp, has
a state consisting of a counter cnt and a list for memory lst and a single output out .

Also the second butterfly operation BF2II has a stage where data are stored and a stage
where the butterfly computation is performed. However, the butterfly operation in BF2II
comes in two variations: a butterfly operation as in BF2I and one with an additional multipli-
cation with the complex number �j. Figure 8 shows the structure of BF2II.

Implementing the architecture of Figure 8 in Haskell is now straightforward (Listing 9).
The last component to describe is the complex multiplier which multiplies every incom-

ing sample with a twiddle factor. The state of the complex multiplier only consist of a counter
cntr to select the correct twiddle factor w from the list of twiddle factors ws (first parameter).
Listing 10 shows the implementation as it is written in Haskell.

By combining the complex multiplier, BF2I and BF2II into a single function, a basic
building block for the FFT pipeline is formed. The states of all the building blocks are sim-
ply combined in a single tuple and the twiddle factors are given as an extra input (the first

Monday, August 27, 12

Describing the PFB FFT pipeline

14

R. Wester et al. / Specification of APERTIF Polyphase Filter Bank in C�aSH 9

Listing 8 BF2I butterfly operation in Haskell

bf2i (cntr , lst) inp = ((cntr

0
, lst

0
), out)

where
n = length lst

cntr

0
= (cntr + 1) ‘mod ‘ n

lst

0
= lstin +� lst

(out , lstin) = if cntr > n

then (lstout + inp, lstout � inp)

else (lstout , inp)

lstout = last lst

lst

+

-

cntr

lstinlstout

inp

out

-j
a

Figure 8. BF2II butterfly structure

Listing 9 BF2II butterfly operation in Haskell

bf2ii (cntr , lst) inp = ((cntr

0
, lst

0
), out)

where
n = length lst

cntr

0
= (cntr + 1) mod n

lst

0
= lstin +� lst

(out , lstin) = if (n 6 cntr < 2 ⇤ n) _ (3 ⇤ n 6 cntr < 4 ⇤ n)
then (lstout + a, lstout � a)

else (lstout , a)

lstout = last lst

a = if cntr > 3 ⇤ n
then inp ⇤ (�j)

else inp

argument). Listing 11 shows how the aforementioned components are chained in the basic
building block.

The final step is to create a function that describes the full FFT chain. As is mentioned
in the previous sections, the FFT chain consists of a set of basic building blocks chained
together. This could be written down using recursion, however, the C�aSH compiler doesn’t
support recursion (yet). Furthermore, the length of the FFT is fixed M = 1024 for the ap-
plication. As can be seen in Figure 6, the size of the memory, used for intermediate results
in the butterfly, is different depending on the position in the chain. Although this is not a
problem for lists in Haskell, it will be for vectors in C�aSH since the length is encoded in
the type resulting in a different type depending on the position of the butterfly in the chain.
Therefore, we have chosen to describe the FFT chain in Haskell by separately defining each

8 R. Wester et al. / Specification of APERTIF Polyphase Filter Bank in C�aSH

2.2. FFT pipeline

The FFT pipeline is built according to the same procedure followed for the Polyphase Filter,
accept that the FFT is only shown with parallelization factor P = 1. First, the basic building
blocks are built in Haskell and combined into a full pipeline. Secondly, parts of the code that
are not supported by C�aSH are changed such that hardware can be generated with C�aSH.

2.2.1. Haskell description

The FFT pipeline is based on [10] and utilizes a radix 2

2 algorithm which requires the same
number of multipliers as a radix 4 algorithm but has the same butterfly structure of a radix
2 algorithm. This pipeline uses two types of butterfly blocks and a complex multiplier as
depicted in Figure 6.

inp * out

8

BF2I

4

BF2II

ws

*

2

BF2I

1

BF2II

ws

Figure 6. FFT pipeline

The first butterfly operation BF2I has two modes: a stage where data is simply forwarded
to the memory located above and a stage where the butterfly operation is performed. All oper-
ations are performed on complex numbers which results in the schematic shown in Figure 7.

lst

+

-

cntr

lstinlstout

inp

out

Figure 7. BF2I butterfly structure

Specifying the architecture from Figure 7 in Haskell is easy since Haskell supports com-
plex numbers. As can be seen in Listing 8, the bf2i operation accepts a single input inp, has
a state consisting of a counter cnt and a list for memory lst and a single output out .

Also the second butterfly operation BF2II has a stage where data are stored and a stage
where the butterfly computation is performed. However, the butterfly operation in BF2II
comes in two variations: a butterfly operation as in BF2I and one with an additional multipli-
cation with the complex number �j. Figure 8 shows the structure of BF2II.

Implementing the architecture of Figure 8 in Haskell is now straightforward (Listing 9).
The last component to describe is the complex multiplier which multiplies every incom-

ing sample with a twiddle factor. The state of the complex multiplier only consist of a counter
cntr to select the correct twiddle factor w from the list of twiddle factors ws (first parameter).
Listing 10 shows the implementation as it is written in Haskell.

By combining the complex multiplier, BF2I and BF2II into a single function, a basic
building block for the FFT pipeline is formed. The states of all the building blocks are sim-
ply combined in a single tuple and the twiddle factors are given as an extra input (the first

8 R. Wester et al. / Specification of APERTIF Polyphase Filter Bank in C�aSH

2.2. FFT pipeline

The FFT pipeline is built according to the same procedure followed for the Polyphase Filter,
accept that the FFT is only shown with parallelization factor P = 1. First, the basic building
blocks are built in Haskell and combined into a full pipeline. Secondly, parts of the code that
are not supported by C�aSH are changed such that hardware can be generated with C�aSH.

2.2.1. Haskell description

The FFT pipeline is based on [10] and utilizes a radix 2

2 algorithm which requires the same
number of multipliers as a radix 4 algorithm but has the same butterfly structure of a radix
2 algorithm. This pipeline uses two types of butterfly blocks and a complex multiplier as
depicted in Figure 6.

inp * out

8

BF2I

4

BF2II

ws

*

2

BF2I

1

BF2II

ws

Figure 6. FFT pipeline

The first butterfly operation BF2I has two modes: a stage where data is simply forwarded
to the memory located above and a stage where the butterfly operation is performed. All oper-
ations are performed on complex numbers which results in the schematic shown in Figure 7.

lst

+

-

cntr

lstinlstout

inp

out

Figure 7. BF2I butterfly structure

Specifying the architecture from Figure 7 in Haskell is easy since Haskell supports com-
plex numbers. As can be seen in Listing 8, the bf2i operation accepts a single input inp, has
a state consisting of a counter cnt and a list for memory lst and a single output out .

Also the second butterfly operation BF2II has a stage where data are stored and a stage
where the butterfly computation is performed. However, the butterfly operation in BF2II
comes in two variations: a butterfly operation as in BF2I and one with an additional multipli-
cation with the complex number �j. Figure 8 shows the structure of BF2II.

Implementing the architecture of Figure 8 in Haskell is now straightforward (Listing 9).
The last component to describe is the complex multiplier which multiplies every incom-

ing sample with a twiddle factor. The state of the complex multiplier only consist of a counter
cntr to select the correct twiddle factor w from the list of twiddle factors ws (first parameter).
Listing 10 shows the implementation as it is written in Haskell.

By combining the complex multiplier, BF2I and BF2II into a single function, a basic
building block for the FFT pipeline is formed. The states of all the building blocks are sim-
ply combined in a single tuple and the twiddle factors are given as an extra input (the first

Monday, August 27, 12

Describing the PFB FFT pipeline

14

10 R. Wester et al. / Specification of APERTIF Polyphase Filter Bank in C�aSH

Listing 10 Complex multiplier in Haskell

cmult ws cntr inp = (cntr

0
, out)

where
n = length ws

cntr

0
= (cntr + 1) ‘mod ‘ n

w = ws ! cntr

out = inp ⇤ w

Listing 11 Basic building block of the FFT

↵tbb ws (bf1state, bf2state, cmstate) inp = ((bf1state

0
, bf2state

0
, cmstate

0
), out)

where
(bf1state

0
, a) = bf2i bf1state inp

(bf2state

0
, b) = bf2ii bf2state a

(cmstate

0
, out) = cmult ws cmstate b

stage of the FFT in a single function such that the result resembles the eventual hardware
more accurately (avoiding this repetition of code still remains future work). Listing 12 shows
the Haskell description of this function.

Listing 12 Haskell code of FFT chain

↵tchain (ws1 ,ws2 , ...) (bb1state, bb2state, ...) inp = ((bb1state

0
, bb2state

0
, ...), out)

where
(bb1state

0
, d1) = ↵tbb ws1 bb1state inp

(bb2state

0
, d2) = ↵tbb ws2 bb2state d1

�
�

(bbNstate

0
, out) = ↵tbb wsN bbNstate d9

2.2.2. Translation to C�aSH

After having fully specified the FFT pipeline in Haskell, it is time to modify the code such that
it is accepted by the C�aSH compiler. As was the case for the Polyphase Filter, all lists have
to be replaced by vectors and all floating point numbers have to be replaced by an appropriate
fixed point implementation. Special care must be taken in the two butterfly functions (BF2I
and BF2II) in order to prevent any overflow. Therefore, data is first resized from 18 to 19-bits
before starting the butterfly computation. After the butterfly computation, the result is shifted
one position to the right to retain the same number of significant bits. Finally, the result is
resized back to 18 bits again before it is sent to the next component. To hide these low level
details, the + and � operators are overloaded by a function that performs the fixed point
operation (the (+) function in Listing 13). Listing 13 shows how the BF2I butterfly operation
is implemented in C�aSH.

The changes for the BF2II butterfly and complex multiplier are performed in the same
way and therefore not further elaborated. By combining both butterflies and the complex
multiplier, we create the basic building block for the FFT chain. This function ↵tbb, is the
first function in Listing 14 and accepts the list of twiddle factors ws as argument from outside
of the function. The FFT chain itself, is composed only of building blocks composed in a
single function ↵tchain clash.

8 R. Wester et al. / Specification of APERTIF Polyphase Filter Bank in C�aSH

2.2. FFT pipeline

The FFT pipeline is built according to the same procedure followed for the Polyphase Filter,
accept that the FFT is only shown with parallelization factor P = 1. First, the basic building
blocks are built in Haskell and combined into a full pipeline. Secondly, parts of the code that
are not supported by C�aSH are changed such that hardware can be generated with C�aSH.

2.2.1. Haskell description

The FFT pipeline is based on [10] and utilizes a radix 2

2 algorithm which requires the same
number of multipliers as a radix 4 algorithm but has the same butterfly structure of a radix
2 algorithm. This pipeline uses two types of butterfly blocks and a complex multiplier as
depicted in Figure 6.

inp * out

8

BF2I

4

BF2II

ws

*

2

BF2I

1

BF2II

ws

Figure 6. FFT pipeline

The first butterfly operation BF2I has two modes: a stage where data is simply forwarded
to the memory located above and a stage where the butterfly operation is performed. All oper-
ations are performed on complex numbers which results in the schematic shown in Figure 7.

lst

+

-

cntr

lstinlstout

inp

out

Figure 7. BF2I butterfly structure

Specifying the architecture from Figure 7 in Haskell is easy since Haskell supports com-
plex numbers. As can be seen in Listing 8, the bf2i operation accepts a single input inp, has
a state consisting of a counter cnt and a list for memory lst and a single output out .

Also the second butterfly operation BF2II has a stage where data are stored and a stage
where the butterfly computation is performed. However, the butterfly operation in BF2II
comes in two variations: a butterfly operation as in BF2I and one with an additional multipli-
cation with the complex number �j. Figure 8 shows the structure of BF2II.

Implementing the architecture of Figure 8 in Haskell is now straightforward (Listing 9).
The last component to describe is the complex multiplier which multiplies every incom-

ing sample with a twiddle factor. The state of the complex multiplier only consist of a counter
cntr to select the correct twiddle factor w from the list of twiddle factors ws (first parameter).
Listing 10 shows the implementation as it is written in Haskell.

By combining the complex multiplier, BF2I and BF2II into a single function, a basic
building block for the FFT pipeline is formed. The states of all the building blocks are sim-
ply combined in a single tuple and the twiddle factors are given as an extra input (the first

Monday, August 27, 12

Describing the PFB FFT pipeline

14

10 R. Wester et al. / Specification of APERTIF Polyphase Filter Bank in C�aSH

Listing 10 Complex multiplier in Haskell

cmult ws cntr inp = (cntr

0
, out)

where
n = length ws

cntr

0
= (cntr + 1) ‘mod ‘ n

w = ws ! cntr

out = inp ⇤ w

Listing 11 Basic building block of the FFT

↵tbb ws (bf1state, bf2state, cmstate) inp = ((bf1state

0
, bf2state

0
, cmstate

0
), out)

where
(bf1state

0
, a) = bf2i bf1state inp

(bf2state

0
, b) = bf2ii bf2state a

(cmstate

0
, out) = cmult ws cmstate b

stage of the FFT in a single function such that the result resembles the eventual hardware
more accurately (avoiding this repetition of code still remains future work). Listing 12 shows
the Haskell description of this function.

Listing 12 Haskell code of FFT chain

↵tchain (ws1 ,ws2 , ...) (bb1state, bb2state, ...) inp = ((bb1state

0
, bb2state

0
, ...), out)

where
(bb1state

0
, d1) = ↵tbb ws1 bb1state inp

(bb2state

0
, d2) = ↵tbb ws2 bb2state d1

�
�

(bbNstate

0
, out) = ↵tbb wsN bbNstate d9

2.2.2. Translation to C�aSH

After having fully specified the FFT pipeline in Haskell, it is time to modify the code such that
it is accepted by the C�aSH compiler. As was the case for the Polyphase Filter, all lists have
to be replaced by vectors and all floating point numbers have to be replaced by an appropriate
fixed point implementation. Special care must be taken in the two butterfly functions (BF2I
and BF2II) in order to prevent any overflow. Therefore, data is first resized from 18 to 19-bits
before starting the butterfly computation. After the butterfly computation, the result is shifted
one position to the right to retain the same number of significant bits. Finally, the result is
resized back to 18 bits again before it is sent to the next component. To hide these low level
details, the + and � operators are overloaded by a function that performs the fixed point
operation (the (+) function in Listing 13). Listing 13 shows how the BF2I butterfly operation
is implemented in C�aSH.

The changes for the BF2II butterfly and complex multiplier are performed in the same
way and therefore not further elaborated. By combining both butterflies and the complex
multiplier, we create the basic building block for the FFT chain. This function ↵tbb, is the
first function in Listing 14 and accepts the list of twiddle factors ws as argument from outside
of the function. The FFT chain itself, is composed only of building blocks composed in a
single function ↵tchain clash.

8 R. Wester et al. / Specification of APERTIF Polyphase Filter Bank in C�aSH

2.2. FFT pipeline

The FFT pipeline is built according to the same procedure followed for the Polyphase Filter,
accept that the FFT is only shown with parallelization factor P = 1. First, the basic building
blocks are built in Haskell and combined into a full pipeline. Secondly, parts of the code that
are not supported by C�aSH are changed such that hardware can be generated with C�aSH.

2.2.1. Haskell description

The FFT pipeline is based on [10] and utilizes a radix 2

2 algorithm which requires the same
number of multipliers as a radix 4 algorithm but has the same butterfly structure of a radix
2 algorithm. This pipeline uses two types of butterfly blocks and a complex multiplier as
depicted in Figure 6.

inp * out

8

BF2I

4

BF2II

ws

*

2

BF2I

1

BF2II

ws

Figure 6. FFT pipeline

The first butterfly operation BF2I has two modes: a stage where data is simply forwarded
to the memory located above and a stage where the butterfly operation is performed. All oper-
ations are performed on complex numbers which results in the schematic shown in Figure 7.

lst

+

-

cntr

lstinlstout

inp

out

Figure 7. BF2I butterfly structure

Specifying the architecture from Figure 7 in Haskell is easy since Haskell supports com-
plex numbers. As can be seen in Listing 8, the bf2i operation accepts a single input inp, has
a state consisting of a counter cnt and a list for memory lst and a single output out .

Also the second butterfly operation BF2II has a stage where data are stored and a stage
where the butterfly computation is performed. However, the butterfly operation in BF2II
comes in two variations: a butterfly operation as in BF2I and one with an additional multipli-
cation with the complex number �j. Figure 8 shows the structure of BF2II.

Implementing the architecture of Figure 8 in Haskell is now straightforward (Listing 9).
The last component to describe is the complex multiplier which multiplies every incom-

ing sample with a twiddle factor. The state of the complex multiplier only consist of a counter
cntr to select the correct twiddle factor w from the list of twiddle factors ws (first parameter).
Listing 10 shows the implementation as it is written in Haskell.

By combining the complex multiplier, BF2I and BF2II into a single function, a basic
building block for the FFT pipeline is formed. The states of all the building blocks are sim-
ply combined in a single tuple and the twiddle factors are given as an extra input (the first

Monday, August 27, 12

Describing the PFB FFT pipeline

14

10 R. Wester et al. / Specification of APERTIF Polyphase Filter Bank in C�aSH

Listing 10 Complex multiplier in Haskell

cmult ws cntr inp = (cntr

0
, out)

where
n = length ws

cntr

0
= (cntr + 1) ‘mod ‘ n

w = ws ! cntr

out = inp ⇤ w

Listing 11 Basic building block of the FFT

↵tbb ws (bf1state, bf2state, cmstate) inp = ((bf1state

0
, bf2state

0
, cmstate

0
), out)

where
(bf1state

0
, a) = bf2i bf1state inp

(bf2state

0
, b) = bf2ii bf2state a

(cmstate

0
, out) = cmult ws cmstate b

stage of the FFT in a single function such that the result resembles the eventual hardware
more accurately (avoiding this repetition of code still remains future work). Listing 12 shows
the Haskell description of this function.

Listing 12 Haskell code of FFT chain

↵tchain (ws1 ,ws2 , ...) (bb1state, bb2state, ...) inp = ((bb1state

0
, bb2state

0
, ...), out)

where
(bb1state

0
, d1) = ↵tbb ws1 bb1state inp

(bb2state

0
, d2) = ↵tbb ws2 bb2state d1

�
�

(bbNstate

0
, out) = ↵tbb wsN bbNstate d9

2.2.2. Translation to C�aSH

After having fully specified the FFT pipeline in Haskell, it is time to modify the code such that
it is accepted by the C�aSH compiler. As was the case for the Polyphase Filter, all lists have
to be replaced by vectors and all floating point numbers have to be replaced by an appropriate
fixed point implementation. Special care must be taken in the two butterfly functions (BF2I
and BF2II) in order to prevent any overflow. Therefore, data is first resized from 18 to 19-bits
before starting the butterfly computation. After the butterfly computation, the result is shifted
one position to the right to retain the same number of significant bits. Finally, the result is
resized back to 18 bits again before it is sent to the next component. To hide these low level
details, the + and � operators are overloaded by a function that performs the fixed point
operation (the (+) function in Listing 13). Listing 13 shows how the BF2I butterfly operation
is implemented in C�aSH.

The changes for the BF2II butterfly and complex multiplier are performed in the same
way and therefore not further elaborated. By combining both butterflies and the complex
multiplier, we create the basic building block for the FFT chain. This function ↵tbb, is the
first function in Listing 14 and accepts the list of twiddle factors ws as argument from outside
of the function. The FFT chain itself, is composed only of building blocks composed in a
single function ↵tchain clash.

8 R. Wester et al. / Specification of APERTIF Polyphase Filter Bank in C�aSH

2.2. FFT pipeline

The FFT pipeline is built according to the same procedure followed for the Polyphase Filter,
accept that the FFT is only shown with parallelization factor P = 1. First, the basic building
blocks are built in Haskell and combined into a full pipeline. Secondly, parts of the code that
are not supported by C�aSH are changed such that hardware can be generated with C�aSH.

2.2.1. Haskell description

The FFT pipeline is based on [10] and utilizes a radix 2

2 algorithm which requires the same
number of multipliers as a radix 4 algorithm but has the same butterfly structure of a radix
2 algorithm. This pipeline uses two types of butterfly blocks and a complex multiplier as
depicted in Figure 6.

inp * out

8

BF2I

4

BF2II

ws

*

2

BF2I

1

BF2II

ws

Figure 6. FFT pipeline

The first butterfly operation BF2I has two modes: a stage where data is simply forwarded
to the memory located above and a stage where the butterfly operation is performed. All oper-
ations are performed on complex numbers which results in the schematic shown in Figure 7.

lst

+

-

cntr

lstinlstout

inp

out

Figure 7. BF2I butterfly structure

Specifying the architecture from Figure 7 in Haskell is easy since Haskell supports com-
plex numbers. As can be seen in Listing 8, the bf2i operation accepts a single input inp, has
a state consisting of a counter cnt and a list for memory lst and a single output out .

Also the second butterfly operation BF2II has a stage where data are stored and a stage
where the butterfly computation is performed. However, the butterfly operation in BF2II
comes in two variations: a butterfly operation as in BF2I and one with an additional multipli-
cation with the complex number �j. Figure 8 shows the structure of BF2II.

Implementing the architecture of Figure 8 in Haskell is now straightforward (Listing 9).
The last component to describe is the complex multiplier which multiplies every incom-

ing sample with a twiddle factor. The state of the complex multiplier only consist of a counter
cntr to select the correct twiddle factor w from the list of twiddle factors ws (first parameter).
Listing 10 shows the implementation as it is written in Haskell.

By combining the complex multiplier, BF2I and BF2II into a single function, a basic
building block for the FFT pipeline is formed. The states of all the building blocks are sim-
ply combined in a single tuple and the twiddle factors are given as an extra input (the first

Monday, August 27, 12

Describing the PFB FFT BF2I: Haskell → C!aSH

15

R. Wester et al. / Specification of APERTIF Polyphase Filter Bank in C�aSH 9

Listing 8 BF2I butterfly operation in Haskell

bf2i (cntr , lst) inp = ((cntr

0
, lst

0
), out)

where
n = length lst

cntr

0
= (cntr + 1) ‘mod ‘ n

lst

0
= lstin +� lst

(out , lstin) = if cntr > n

then (lstout + inp, lstout � inp)

else (lstout , inp)

lstout = last lst

lst

+

-

cntr

lstinlstout

inp

out

-j
a

Figure 8. BF2II butterfly structure

Listing 9 BF2II butterfly operation in Haskell

bf2ii (cntr , lst) inp = ((cntr

0
, lst

0
), out)

where
n = length lst

cntr

0
= (cntr + 1) mod n

lst

0
= lstin +� lst

(out , lstin) = if (n 6 cntr < 2 ⇤ n) _ (3 ⇤ n 6 cntr < 4 ⇤ n)
then (lstout + a, lstout � a)

else (lstout , a)

lstout = last lst

a = if cntr > 3 ⇤ n
then inp ⇤ (�j)

else inp

argument). Listing 11 shows how the aforementioned components are chained in the basic
building block.

The final step is to create a function that describes the full FFT chain. As is mentioned
in the previous sections, the FFT chain consists of a set of basic building blocks chained
together. This could be written down using recursion, however, the C�aSH compiler doesn’t
support recursion (yet). Furthermore, the length of the FFT is fixed M = 1024 for the ap-
plication. As can be seen in Figure 6, the size of the memory, used for intermediate results
in the butterfly, is different depending on the position in the chain. Although this is not a
problem for lists in Haskell, it will be for vectors in C�aSH since the length is encoded in
the type resulting in a different type depending on the position of the butterfly in the chain.
Therefore, we have chosen to describe the FFT chain in Haskell by separately defining each

R. Wester et al. / Specification of APERTIF Polyphase Filter Bank in C�aSH 11

Listing 13 BF2I butterfly operation in C�aSH

bf2i clash (cntr , lst) inp = ((cntr

0
, lst

0
), out)

where
n = vlength lst

cntr

0
= cntr + 1

lst

0
= lstin +� lst

(out , lstin) = if cntr > n

then (lstout + inp, lstout � inp)

else (lstout , inp)

lstout = vlast lst

(+) a b = c

where
a

0
= resizeSigned a :: Signed D19

b

0
= resizeSigned b :: Signed D19

c = resizeSigned ((a + b) shiftR 1) :: Signed D18

Listing 14 Basic building block of the FFT and FFT chain function in C�aSH

↵tbb clash ws (bf1state, bf2state, cmstate) inp = ((bf1state

0
, bf2state

0
, cmstate

0
), out)

where
(bf1state

0
, a) = bf2iclash bf1state inp

(bf2state

0
, b) = bf2iiclash bf2state a

(cmstate, out) = cmult ws cmstate b

↵tchain clash (ws1 ,ws2 , ...) (bb1state, bb2state, ...) inp = ((bb1state

0
, bb2state

0
, ...), out)

where
(bb1state

0
, d1) = ↵tbb clash ws1 bb1state inp

(bb2state

0
, d2) = ↵tbb clash ws2 bb2state d1

�
�

(bbNstate

0
, out) = ↵tbb clash wsN bbNstate d9

3. Results

The full Polyphase Filter Bank of APERTIF has been implemented using and simulated us-
ing C�aSH. The resulting C�aSH description is concise and cycle accurate. Simulation is
performed using the builtin sim function. This function accepts two arguments: a function
representing the architecture to be simulated and a list of input values and produces a list of
tuples as an output [(states 0, outs)], where states

0 are the new states and outs are the actual
outputs of the simulated architecture. The specification presented in this paper has been sim-
ulated both in Haskell and C�aSH and verified for functional correctness using Matlab by
comparing it with the output of the standard functions ↵t and filter .

Besides simulation, C�aSH has also been used to generate hardware (although the M

had to be reduced to 256 for the Polyphase Filter to make the design fit in the FPGA). The
resulting VHDL code has been synthesized using Altera Quartus and the results are shown
in Table 1.

Monday, August 27, 12

Describing the PFB FFT BF2I: Haskell → C!aSH

15

R. Wester et al. / Specification of APERTIF Polyphase Filter Bank in C�aSH 9

Listing 8 BF2I butterfly operation in Haskell

bf2i (cntr , lst) inp = ((cntr

0
, lst

0
), out)

where
n = length lst

cntr

0
= (cntr + 1) ‘mod ‘ n

lst

0
= lstin +� lst

(out , lstin) = if cntr > n

then (lstout + inp, lstout � inp)

else (lstout , inp)

lstout = last lst

lst

+

-

cntr

lstinlstout

inp

out

-j
a

Figure 8. BF2II butterfly structure

Listing 9 BF2II butterfly operation in Haskell

bf2ii (cntr , lst) inp = ((cntr

0
, lst

0
), out)

where
n = length lst

cntr

0
= (cntr + 1) mod n

lst

0
= lstin +� lst

(out , lstin) = if (n 6 cntr < 2 ⇤ n) _ (3 ⇤ n 6 cntr < 4 ⇤ n)
then (lstout + a, lstout � a)

else (lstout , a)

lstout = last lst

a = if cntr > 3 ⇤ n
then inp ⇤ (�j)

else inp

argument). Listing 11 shows how the aforementioned components are chained in the basic
building block.

The final step is to create a function that describes the full FFT chain. As is mentioned
in the previous sections, the FFT chain consists of a set of basic building blocks chained
together. This could be written down using recursion, however, the C�aSH compiler doesn’t
support recursion (yet). Furthermore, the length of the FFT is fixed M = 1024 for the ap-
plication. As can be seen in Figure 6, the size of the memory, used for intermediate results
in the butterfly, is different depending on the position in the chain. Although this is not a
problem for lists in Haskell, it will be for vectors in C�aSH since the length is encoded in
the type resulting in a different type depending on the position of the butterfly in the chain.
Therefore, we have chosen to describe the FFT chain in Haskell by separately defining each

R. Wester et al. / Specification of APERTIF Polyphase Filter Bank in C�aSH 11

Listing 13 BF2I butterfly operation in C�aSH

bf2i clash (cntr , lst) inp = ((cntr

0
, lst

0
), out)

where
n = vlength lst

cntr

0
= cntr + 1

lst

0
= lstin +� lst

(out , lstin) = if cntr > n

then (lstout + inp, lstout � inp)

else (lstout , inp)

lstout = vlast lst

(+) a b = c

where
a

0
= resizeSigned a :: Signed D19

b

0
= resizeSigned b :: Signed D19

c = resizeSigned ((a + b) shiftR 1) :: Signed D18

Listing 14 Basic building block of the FFT and FFT chain function in C�aSH

↵tbb clash ws (bf1state, bf2state, cmstate) inp = ((bf1state

0
, bf2state

0
, cmstate

0
), out)

where
(bf1state

0
, a) = bf2iclash bf1state inp

(bf2state

0
, b) = bf2iiclash bf2state a

(cmstate, out) = cmult ws cmstate b

↵tchain clash (ws1 ,ws2 , ...) (bb1state, bb2state, ...) inp = ((bb1state

0
, bb2state

0
, ...), out)

where
(bb1state

0
, d1) = ↵tbb clash ws1 bb1state inp

(bb2state

0
, d2) = ↵tbb clash ws2 bb2state d1

�
�

(bbNstate

0
, out) = ↵tbb clash wsN bbNstate d9

3. Results

The full Polyphase Filter Bank of APERTIF has been implemented using and simulated us-
ing C�aSH. The resulting C�aSH description is concise and cycle accurate. Simulation is
performed using the builtin sim function. This function accepts two arguments: a function
representing the architecture to be simulated and a list of input values and produces a list of
tuples as an output [(states 0, outs)], where states

0 are the new states and outs are the actual
outputs of the simulated architecture. The specification presented in this paper has been sim-
ulated both in Haskell and C�aSH and verified for functional correctness using Matlab by
comparing it with the output of the standard functions ↵t and filter .

Besides simulation, C�aSH has also been used to generate hardware (although the M

had to be reduced to 256 for the Polyphase Filter to make the design fit in the FPGA). The
resulting VHDL code has been synthesized using Altera Quartus and the results are shown
in Table 1.

Monday, August 27, 12

Describing the PFB FFT BF2I: Haskell → C!aSH

15

R. Wester et al. / Specification of APERTIF Polyphase Filter Bank in C�aSH 9

Listing 8 BF2I butterfly operation in Haskell

bf2i (cntr , lst) inp = ((cntr

0
, lst

0
), out)

where
n = length lst

cntr

0
= (cntr + 1) ‘mod ‘ n

lst

0
= lstin +� lst

(out , lstin) = if cntr > n

then (lstout + inp, lstout � inp)

else (lstout , inp)

lstout = last lst

lst

+

-

cntr

lstinlstout

inp

out

-j
a

Figure 8. BF2II butterfly structure

Listing 9 BF2II butterfly operation in Haskell

bf2ii (cntr , lst) inp = ((cntr

0
, lst

0
), out)

where
n = length lst

cntr

0
= (cntr + 1) mod n

lst

0
= lstin +� lst

(out , lstin) = if (n 6 cntr < 2 ⇤ n) _ (3 ⇤ n 6 cntr < 4 ⇤ n)
then (lstout + a, lstout � a)

else (lstout , a)

lstout = last lst

a = if cntr > 3 ⇤ n
then inp ⇤ (�j)

else inp

argument). Listing 11 shows how the aforementioned components are chained in the basic
building block.

The final step is to create a function that describes the full FFT chain. As is mentioned
in the previous sections, the FFT chain consists of a set of basic building blocks chained
together. This could be written down using recursion, however, the C�aSH compiler doesn’t
support recursion (yet). Furthermore, the length of the FFT is fixed M = 1024 for the ap-
plication. As can be seen in Figure 6, the size of the memory, used for intermediate results
in the butterfly, is different depending on the position in the chain. Although this is not a
problem for lists in Haskell, it will be for vectors in C�aSH since the length is encoded in
the type resulting in a different type depending on the position of the butterfly in the chain.
Therefore, we have chosen to describe the FFT chain in Haskell by separately defining each

R. Wester et al. / Specification of APERTIF Polyphase Filter Bank in C�aSH 11

Listing 13 BF2I butterfly operation in C�aSH

bf2i clash (cntr , lst) inp = ((cntr

0
, lst

0
), out)

where
n = vlength lst

cntr

0
= cntr + 1

lst

0
= lstin +� lst

(out , lstin) = if cntr > n

then (lstout + inp, lstout � inp)

else (lstout , inp)

lstout = vlast lst

(+) a b = c

where
a

0
= resizeSigned a :: Signed D19

b

0
= resizeSigned b :: Signed D19

c = resizeSigned ((a + b) shiftR 1) :: Signed D18

Listing 14 Basic building block of the FFT and FFT chain function in C�aSH

↵tbb clash ws (bf1state, bf2state, cmstate) inp = ((bf1state

0
, bf2state

0
, cmstate

0
), out)

where
(bf1state

0
, a) = bf2iclash bf1state inp

(bf2state

0
, b) = bf2iiclash bf2state a

(cmstate, out) = cmult ws cmstate b

↵tchain clash (ws1 ,ws2 , ...) (bb1state, bb2state, ...) inp = ((bb1state

0
, bb2state

0
, ...), out)

where
(bb1state

0
, d1) = ↵tbb clash ws1 bb1state inp

(bb2state

0
, d2) = ↵tbb clash ws2 bb2state d1

�
�

(bbNstate

0
, out) = ↵tbb clash wsN bbNstate d9

3. Results

The full Polyphase Filter Bank of APERTIF has been implemented using and simulated us-
ing C�aSH. The resulting C�aSH description is concise and cycle accurate. Simulation is
performed using the builtin sim function. This function accepts two arguments: a function
representing the architecture to be simulated and a list of input values and produces a list of
tuples as an output [(states 0, outs)], where states

0 are the new states and outs are the actual
outputs of the simulated architecture. The specification presented in this paper has been sim-
ulated both in Haskell and C�aSH and verified for functional correctness using Matlab by
comparing it with the output of the standard functions ↵t and filter .

Besides simulation, C�aSH has also been used to generate hardware (although the M

had to be reduced to 256 for the Polyphase Filter to make the design fit in the FPGA). The
resulting VHDL code has been synthesized using Altera Quartus and the results are shown
in Table 1.

Monday, August 27, 12

Results

✤ Polyphase filter bank has been fully implemented using C𝝀aSH

✤ Simulation shows that the PFB operates correctly

✤ Synthesis revealed some limitations of the current compiler

16

Polyphase filter(256 elements) 1k-points FFT

Logic utilization 91% 6%

blockRAMS 0 0

DSP blocks 128 70

Max. Fclk 114 MHz 195 MHz

Monday, August 27, 12

Conclusions

✤ The complete Polyphase Filter Bank has been implemented

✤ Haskell code needs only small modifications before it is accepted by
the C𝝀aSH compiler

✤ The description is purely parallel (structural) and cycle accurate

✤ Shortcomings of C𝝀aSH compiler

✤ Large coefficient vectors not supported

✤ BlockRAM not supported, limiting Fclk

17

Monday, August 27, 12

Future Work

✤ Develop area vs time time trade off based on functional description

✤ Improvements for the C𝝀aSH compiler

✤ Support for blockRAMs on FPGA

✤ Support for memory initialization files for coefficient vectors

18

Monday, August 27, 12

Questions ?

19

Monday, August 27, 12

