
Designing a
Concurrent File

Server
James Whitehead II

University of Oxford

jim.whitehead@cs.ox.ac.uk

28 August 2012

Communicating Process Architectures 2012 — Copyright 2012, James Whitehead II. 1 / 22



Building CSP Style Concurrent Systems

• Disciplined model of concurrency
• Build applications

• Web server (CPA 2011)
• File system server

• Range of designs

Communicating Process Architectures 2012 — Copyright 2012, James Whitehead II. 2 / 22



Go Programming Language

• Robert Griesemer, Rob Pike, Ken Thompson
• Fast compilation
• Lightweight type system
• Garbage collected
• Concurrent

Communicating Process Architectures 2012 — Copyright 2012, James Whitehead II. 3 / 22



Concurrency in Go

• Can FORK goroutines using ‘go’ keyword
• No PAR/FORKING block
• Any-to-any channels
• ALT using ‘select’
• Cites CSP (but not occam)

“Don’t communicate by sharing memory,
share memory by communicating”

Communicating Process Architectures 2012 — Copyright 2012, James Whitehead II. 4 / 22



File servers

• Contention for resources
• Low-level I/O
• Shared data (disk)
• Shared memory
• Multiple users

Communicating Process Architectures 2012 — Copyright 2012, James Whitehead II. 5 / 22



File server concurrency

• Highly concurrent with explicit locks (UNIX, Linux)
• No concurrency (MINIX)

• “Simple” source code
• Embarrassingly sequential

MINIX provides a clean slate from which to derive the design of a
concurrent file system.

Communicating Process Architectures 2012 — Copyright 2012, James Whitehead II. 6 / 22



Existing architecture
proc

system call interface

proc proc

FS Server

inode table

block cache

syscall implementations

dev dev dev

message

procedure call

Communicating Process Architectures 2012 — Copyright 2012, James Whitehead II. 7 / 22



Opportunities for concurrency

• Files must be opened for I/O
• File descriptors
• Available until closed
• read, write, seek, etc.

An I/O operation concurrently with a normal system call.

Communicating Process Architectures 2012 — Copyright 2012, James Whitehead II. 8 / 22



A step in the right direction...
proc

system call interface

proc proc

dev dev dev

block cache

inode table

I/O server FS server

alloc table

• New I/O server
• Explicit dependencies
• All sequential processes

Not free from hazards...
• Size of a file
• Updated in write (I/O)
• Read in stat (FS)

Data hiding/segregation

Communicating Process Architectures 2012 — Copyright 2012, James Whitehead II. 9 / 22



Trickle-down concurrency

Reduced the complexity of atomic actions, introducing three new
bottlenecks.

• Block cache
• Inode table
• Alloc table

Communicating Process Architectures 2012 — Copyright 2012, James Whitehead II. 10 / 22



Block cache concurrency

• Cache-hit
• Return the block immediately

• Cache-miss
• Spawn new goroutine to load block
• Continue serving other requests
• Return block when ready

Slowly but surely..

Communicating Process Architectures 2012 — Copyright 2012, James Whitehead II. 11 / 22



Concurrent I/O Server

• Two open files are independent
• No shared blocks
• No shared inodes
• Allow CREW concurrency for each file

Shared file descriptors must be addressed..

Communicating Process Architectures 2012 — Copyright 2012, James Whitehead II. 12 / 22



A compromise...
proc

system call interface

proc proc

dev dev dev

block cache

inode table

FS server

alloc table

I/O Server

fd

fd

fd

file

file

Communicating Process Architectures 2012 — Copyright 2012, James Whitehead II. 13 / 22



Design

Overall:
• Process encapsulation
• Eliminate implicit sharing
• Connections and interaction
• Easy to reason about

Individual:
• Sequential is simple
• Concurrency applied carefully

Communicating Process Architectures 2012 — Copyright 2012, James Whitehead II. 14 / 22



A roadblock..

• Concurrent file I/O
• Sequential (other) system calls
• Inodes are shared (disk, memory)
• Standards (under) specification
• Need to ‘lock’ one or more inodes

Communicating Process Architectures 2012 — Copyright 2012, James Whitehead II. 15 / 22



Conclusions

• Compromise between sequential and highly concurrent
• Disciplined model of concurrency
• Iterative (and careful) introduction
• Techniques for addressing concurrency needs

Communicating Process Architectures 2012 — Copyright 2012, James Whitehead II. 16 / 22



A postlude on unit testing

Communicating Process Architectures 2012 — Copyright 2012, James Whitehead II. 17 / 22



Unit testing concurrency

Want to show that a slow/broken device doesn’t break the system,
unit testing the concurrency properties.

• Create a broken device
• Use channels to order operations
• Interfaces and concurrency

Communicating Process Architectures 2012 — Copyright 2012, James Whitehead II. 18 / 22



Setup

type BlockDevice interface {
Read(buf interface{}, pos int64) error
Write(buf interface{}, pos int64) error

}

type BlockingDevice struct {
BlockDevice
HasBlocked chan int64 // position argument
Unblock chan bool

}

func (dev *BlockingDevice) Read(buf interface{}, pos int64) error {
dev.HasBlocked <- pos
<-dev.Unblock
return dev.BlockDevice.Read(buf, pos)

}

Communicating Process Architectures 2012 — Copyright 2012, James Whitehead II. 19 / 22



Blocking a device

// create a block cache with test device, and a broken device
cache := createTestCache()
bdev := createBlockingDevice()
cache.MountDevice(1, bdev)

// to join the spawned goroutines (manual PAR)
done := make(chan bool)

go func() {
// do a read on the broken device (1)
cb := cache.GetBlock(1, SUPER_BLOCK)
cache.PutBlock(cb)
done <- true

}()

Communicating Process Architectures 2012 — Copyright 2012, James Whitehead II. 20 / 22



Testing the cache

go func() {
// wait for the device to be blocked
<-bdev.HasBlocked
// then request a read from the non-broken device
cb := cache.GetBlock(0, SUPER_BLOCK)

// now release the broken device so it cleanly shuts down
bdev.Unblock <- true
cache.PutBlock(cb)
done <- true

}()

// wait for both goroutines to finish
<-done
<-done

Communicating Process Architectures 2012 — Copyright 2012, James Whitehead II. 21 / 22



Questions? Comments?

Communicating Process Architectures 2012 — Copyright 2012, James Whitehead II. 22 / 22


