Designing a
Concurrent File
Server

James Whitehead |l

University of Oxford

jim.whitehead@©cs.ox.ac.uk

28 August 2012

Building CSP Style Concurrent Systems

= Disciplined model of concurrency
= Build applications

= Web server (CPA 2011)
= File system server

= Range of designs

Communicating Process Architectures 2012 — Copyright 2012, James Whitehead |1

Go Programming Language

Robert Griesemer, Rob Pike, Ken Thompson
Fast compilation

Lightweight type system

Garbage collected

Concurrent

ocess Architectures 2012 — Copyright 2012, James Whitehead II

Concurrency in Go

Can FORK goroutines using ‘go’ keyword
No PAR/FORKING block

Any-to-any channels

ALT using ‘select’

Cites CSP (but not occam)

“Don’t communicate by sharing memory,
share memory by communicating”

File servers

Contention for resources
Low-level 1/0O

Shared data (disk)
Shared memory

Multiple users

cess Architectures 2012 — Copyright 2012, James Whitehead |1

File server concurrency

= Highly concurrent with explicit locks (UNIX, Linux)
= No concurrency (MINIX)

= “Simple” source code
= Embarrassingly sequential

MINIX provides a clean slate from which to derive the design of a
concurrent file system.

Existing architecture

| proc | | proc | | proc |

2 v ¥
system call interface

\ 4
FS Server

syscall implementations

2

inode table

\ 4 v

block cache

Y

v v
| dev | | dev

| dev

Communicating Process Architectures 2012 — Copyright 2012, James Whitehead |1

>
>

--------- >

m

=)

procedure call

¢

Opportunities for concurrency

= Files must be opened for |/O
= File descriptors
= Available until closed

= read, write, seek, etc.

An 1/0O operation concurrently with a normal system call.

cess Architectures 2012 — Copyright 2012, James Whitehead |1

A step in the right direction...

‘ proc | proc | proc
y v ¥ = New I/O server
system call interface = Explicit dependencies
l l = All sequential processes
1/0 server €] FS server
Not free from hazards...
Y Y
inode table —> alloc table = Size of a file
= Updated in write (1/0)
v v v v = Read in stat (FS)

block cache

Data hiding/segregation

Y Y

dev dev dev

cess Architectures 2012 — Copyright 2012, James Whitehead |1

Trickle-down concurrency

Reduced the complexity of atomic actions, introducing three new
bottlenecks.

= Block cache

= Inode table

= Alloc table

ocess Architectures 2012 — Copyright 2012, James Whitehead II

Block cache concurrency

= Cache-hit
= Return the block immediately

= Cache-miss

= Spawn new goroutine to load block
= Continue serving other requests
= Return block when ready

Slowly but surely..

ating Process Architectures 2012 — Copyright 2012, James Whitehead |1

Concurrent 1/O Server

= Two open files are independent
= No shared blocks
= No shared inodes

= Allow CREW concurrency for each file

Shared file descriptors must be addressed..

Communicating Process Architectures 2012 — Copyright 2012, James Whitehead |1

A compromise...

| proc | | proc | | proc ‘

A A4 3
system call interface

1/0 Server

FS server

e]
A4 l \ 4

alloc table

A

inode table

Y
A

| I

block cache

v v v
|dev| |dev| |dev

Communicating Process Architectures 2012 — Copyright 2012, James Whitehead |1 13 / 22

Design

Overall:
= Process encapsulation
= Eliminate implicit sharing
= Connections and interaction

= Easy to reason about

Individual:
= Sequential is simple

= Concurrency applied carefully

A roadblock..

Concurrent file 1/0

Sequential (other) system calls
Inodes are shared (disk, memory)
Standards (under) specification

Need to ‘lock’ one or more inodes

Conclusions

Compromise between sequential and highly concurrent
Disciplined model of concurrency
Iterative (and careful) introduction

Techniques for addressing concurrency needs

A postlude on unit testing

Unit testing concurrency

Want to show that a slow/broken device doesn't break the system,
unit testing the concurrency properties.

= Create a broken device

= Use channels to order operations

= Interfaces and concurrency

Communicating Process Architectures 2012 — Copyright 2012, James Whitehead |1 18 / 22

Setup

type BlockDevice interface {
Read(buf interface{}, pos int64) error
Write(buf interface{}, pos int64) error

}

type BlockingDevice struct {
BlockDevice
HasBlocked chan int64 // position argument
Unblock chan bool

}

func (dev *BlockingDevice) Read(buf interface{}, pos int64) error {
dev.HasBlocked <- pos
<-dev.Unblock
return dev.BlockDevice.Read(buf, pos)

}

Communicating Process Architectures 2012 — Copyright 2012, James Whitehead |1

19 /22

Blocking a device

// create a block cache with test device, and a broken device
cache := createTestCache()

bdev := createBlockingDevice()

cache.MountDevice(1, bdev)

// to join the spawned goroutines (manual PAR)
done := make(chan bool)

go func() {
// do a read on the broken device (1)
cb := cache.GetBlock(1, SUPER_BLOCK)
cache.PutBlock(cb)
done <- true

10

Communicating Process Architectures 2012 — Copyright 2012, James Whitehead I 20 /22

Testing the cache

go func() {
// wait for the device to be blocked
<-bdev.HasBlocked
// then request a read from the non-broken device
cb := cache.GetBlock(0, SUPER_BLOCK)

// now release the broken device so it cleanly shuts down
bdev.Unblock <- true

cache.PutBlock(cb)

done <- true

10

// wait for both goroutines to finish
<-done
<-done

Communicating Process Architectures 2012 — Copyright 2012, James Whitehead I 21 /22

Questions? Comments?

Communicating Process Architectures 2012 — Copyright 2012, James Whitehead II.

