
Communicating Process Architectures 2012
P.H. Welch et al. (Eds.)
Open Channel Publishing Ltd., 2012
c© 2012 The authors and Open Channel Publishing Ltd. All rights reserved.

1

Designing a Concurrent File Server
James WHITEHEAD II

Department of Computer Science, University of Oxford,
Wolfson Building, Parks Road, Oxford, OX1 3QD, United Kingdom;

jim.whitehead@cs.ox.ac.uk

Abstract. In this paper we present a design and architecture for a concurrent file sys-
tem server. This architecture is a compromise between the fully concurrent V6 UNIX
implementation, and the simple sequential implementation in the MINIX operating
system. The design of the server is made easier through the use of a disciplined model
of concurrency, based on the CSP process algebra. By viewing the problem through
this restricted lens, without traditional explicit locking mechanisms, we can construct
the system as a process network of components with explicit connections and depen-
dencies. This provides us with insight into the problem domain, and allows us to anal-
yse the issues present in concurrent file system implementation.

Keywords. file system, Go, CSP, UNIX, MINIX.

Introduction

Modern operating systems allow multiple users and programs to share the computing re-
sources on a single machine. They also serve as an intermediary between programs and the
physical computing hardware, such as persistent storage devices. In the UNIX family of op-
erating systems, disk access is accomplished by interacting with files and directories through
a hierarchical file system, using system calls.

Managing access to the file system in a concurrent environment is a challenging problem.
An implementation must ensure that a program cannot corrupt the state of the file system, or
the data stored on disk. Two programs that are performing operations on different files should
not be able to interfere with each other. In addition, a file system implementation must be
fast; most programs require some form of disk access.

There are several possible approaches to implementing a shared file system. The UNIX
operating system (and its modern relatives Linux and the BSD family) provide a high degree
of concurrency, using explicit locking mechanisms. This elaborate system of semaphores,
spin locks, mutexes, and interrupt masking is complicated and difficult to understand. In
contrast, the MINIX operating system, designed primarily as an educational tool, eschews
concurrency in favour of simplicity and readability.

In this paper we investigate the application of process oriented design methodology to
the MINIX file server, which provides a well documented sequential reference implementa-
tion. Using sound concurrency principles based on the CSP [1] process algebra, we aim to ex-
plore a range of designs without the need to introduce explicit locking mechanisms. Through
the process of introducing concurrency to an existing file system, we hope to explore the
limitations of process oriented design in data-centric applications.

We present a file server architecture that enables file I/O to be performed concurrently
alongside the sequential handling of other file system operations. This architecture is based
on the MINIX file server, which provides a well documented clean slate from which to de-



2 J. Whitehead II / Designing a Concurrent File Server

rive this design. By decomposing the system into distinct interacting components, we have
made it easier to reason about the concurrent properties of (and the interactions between)
these components. The result is a file server that is more scalable, while still being easy to
understand.

We have created an implementation of this file server using Go[2,3]. Go is a statically
typed, garbage collected, compiled programming language that includes support for CSP
style concurrency. The language is uniquely placed to allow us to re-use many of the data
structures and algorithms from the existing C implementation, while augmenting it with na-
tively supported concurrency. More information about the suitability of Go for process ori-
ented development can be found in [4]. This file server is available as a package for Go called
minixfs [5]. It allows developers to run instances of the file server in order to interact with
MINIX file system disk images.

This paper is organised as follows: Section 1 provides a short introduction to the UNIX
file system model, along with a comparison between the UNIX and MINIX implementations.
The overall design of the file system architecture is presented in Section 2, as a series of
incremental abstractions. In Section 3, we present an implementation of a concurrent block
cache and discuss the scope and implications of internal concurrency. Our conclusions and
suggestions for future work can be found in Section 4.

1. Background

In this section we describe the UNIX file system model, which is used through this paper. Ad-
ditionally, we describe two different existing file system implementations: one that is highly
concurrent and uses explicit locking, and a sequential version that is designed to be simple to
understand.

The UNIX family of operating systems provide access to persistent storage devices
through a single hierarchical file system. Each directory can contain both files, which contain
raw data, and other directories. This hierarchy is often seen as a tree with a single root node,
called the root directory.

Each file comprises metadata, stored in a data structure called an inode, and the actual
content of the file. This metadata includes the owner of the file, the access permissions, the
size of the file, and other similar fields. More importantly, the inode contains a list of the
data blocks where the contents of the file may be found on the disk device. Although users
identify entries on the file system using path names, such as /var/log/system, the metadata
does not contain this name or any other identifier.

Instead, each directory contains a list of entries that map names to inode numbers, de-
scribing the child entries of the directory. In order to convert a path name into an actual inode,
the file system must perform a series of lookups for each directory in the path. For the path
given above, the root directory must be searched for an entry called var, then that directory
searched for an entry called log, and finally that directory searched for a file called syslog.

This method decouples the concept of a file system entry from the name used to access
it. The UNIX file system model takes advantage of this by allowing an inode to be accessible
by several different path names, simply by having the same inode as a child of multiple
directories. In order to track this, each inode contains a count of the number of directories
that link to it. This count is used to determine at what point a file is eligible to actually be
deleted— as long as the link count is greater than zero, the inode is still a child of some
directory and cannot be removed.

There are countless file system operations that are defined by the Single Unix Standard[6]
and the POSIX[7] specifications. In this paper we consider a subset of these operations,
shown in Table 1. This particular selection of system calls cover the majority of the func-



J. Whitehead II / Designing a Concurrent File Server 3

tionality present in UNIX file systems. The system calls are roughly grouped into hierarchy
altering operations, file open/close operations, inode operations, miscellaneous system calls,
and file I/O operations.

Table 1. A sampling of the UNIX file system calls

System call Description
mount(path, device) Attach a file system to an existing directory node
unmount(path) Detach a mounted file system
open(path, flags, mode) Open a file for reading/writing
creat(path, flags, mode) Create a new file
close(fd) Close an open file
stat(path) Get information about a file
chmod(path, mode) Change the mode of a file
link(path, newpath) Create a link to a file within a directory
unlink(path) Remove a link to a file from a directory
mkdir(path) Create a new directory
rmdir(path) Remove an existing empty directory
sync() Synchronize and commit file system
fork() Fork an existing process
chdir(path) Change working directory of a process
exit() Exit the calling process
read(fd, buf, len) Read the contents of an open file
write(fd, buf, len) Write contents to an open file
seek(fd, pos, whence) Move the position marker for an open file

Operating systems are necessarily complex; even a single-user system might have dozens
of programs open, with even more running unseen in the background. A file system is a shared
resource built on top of shared disk space, in a highly concurrent environment. Therefore,
special care must be taken to ensure that the file system cannot be corrupted by multiple
programs performing system calls, and that two programs operating on separate files do not
interfere with each other. In the next section, we introduce an implementation that allows for
a high degree of concurrency by making use of explicit locking mechanisms.

1.1. Highly Concurrent with Explicit Locking

The approach to concurrency in the early implementations of UNIX[8] was to use interrupt
masking and semaphores to define small “critical sections” of the program code. The goal of
this is to ensure that two processes that are accessing some data structure cannot both enter
the critical section at the same time, giving each exclusive access inside the section. This
ensures that two concurrent operations can proceed independently until they both attempt to
enter competing critical sections. Practically, this means that any number of processes can
perform file system operations concurrently and their execution will be serialized in some
manner.

Figure 1 shows a slightly simplified example of a critical section in the V6 UNIX
kernel[8]. This figure contains a portion of the free function, used to return a block to the free
block list, allowing it to be re-allocated. Updating this list requires exclusive access, so this
function tests a lock variable and suspends itself if the list is not available. At some point in
the future this process may be awakened by someone else releasing the lock, at which point
it attempts to acquire it again.

The sleep function, shown in Figure 2 allows a process to voluntarily yield control of
the processor until a corresponding wakeup call occurs for the specified parameter, the lock



4 J. Whitehead II / Designing a Concurrent File Server

variable in this case. However, it is possible for the execution of sleep to be pre-empted by
an interrupt handler that might try to suspend the same process for some other reason, such
as the scheduling quantum expiring. In order to prevent this, the procedure calls the spl6
function to change the priority level of the processor, inhibiting clock interrupts. Once the
critical changes to the lock are done, the priority level is restored.

free(dev, bnum) {
register *fp, *bp, *ip;

fp = getfs(dev);
while (fp->s_flock)

sleep(&fp->s_flock, PINOD);

fp->s_flock++;
bp = getblk(dev, bno);
ip = bp->b_addr;
*ip++ = fp->s_nfree;
bcopy(fp->s_free, ip, 100);
fp->s_nfree = 0;
bwrite(bp)
fp->s_flock = 0;
wakeup(&fp->s_flock);

}

Figure 1. A portion of the UNIX free function

sleep(chan, pri) {
register *rp, s

s = PS->integ;
rp = u.ui_procp;
if (pri >= 0) {

// Handle signals
} else {

spl6();
rp->p_wchan = chan;
rp->p_stat = SSLEEP;
rp->p_pri = pri;
spl0();
swtch();

}
PS->integ = s;
return;

}

Figure 2. A portion of the UNIX sleep function

Both the free and the sleep functions use critical sections to ensure mutual exclusion, al-
though the context of the function varies the style of protection that is needed. This scheme is
brilliant in its simplicity; the relative size of the UNIX kernel compared to modern computer
software is a testament to this. Unfortunately, it relies on specific details of the underlying
hardware, and this approach is not scalable on machines with multiple processors.

Modern day UNIX derivatives such as Linux and FreeBSD use the same strategy of
defining critical sections, but using a combination of semaphores, spin locks, and mutexes in-
stead of interrupt masking. These locking mechanisms are provided by the respective kernels,
and are implemented in a portable, efficient, and scalable way.

Figure 3 shows a portion of the unlazy_walk function, which is used in path name res-
olution in Linux. Eleven of the thirty lines shown are explicit lock and unlock operations on
five different data structures. In addition, the documentation for this function indicates that
it must be called from a specific context, where a set number of locks have already been
acquired. In fact, the Linux kernel is littered with comments and text documentation about
these locking conventions and mechanisms, which can vary substantially from subsystem to
subsystem.

There is no doubt that this strategy is practical and effective, given an efficient imple-
mentation. However, it should be clear from these examples that using and understanding this
style of locking is not straightforward. It is difficult to develop an intuition about how, why,
and where these critical sections are defined.

1.2. No Concurrency

The MINIX operating system was created as an educational tool for studying and experi-
menting with the internals of operating systems. As a result, the implementation often opts
for simplicity over features that would make the operating system more practically useful.
One such simplification is the sequential nature of the file server– only a single file system
call can be processed at a time.

Although MINIX is designed to be compatible with the UNIX system call interface,
the implementation is quite different. Rather than consisting of a single monolithic program



J. Whitehead II / Designing a Concurrent File Server 5

static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
{

if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
spin_lock(&fs->lock);
goto err_root;

}
spin_lock(&parent->d_lock);
if (!dentry) {

goto err_parent;
} else {

spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
parent->d_count++;
spin_unlock(&dentry->d_lock);

}
spin_unlock(&parent->d_lock);
if (want_root) {

path_get(&nd->root);
spin_unlock(&fs->lock);

}
mntget(nd->path.mnt);

rcu_read_unlock();
br_read_unlock(vfsmount_lock);
return 0;

err_child:
spin_unlock(&dentry->d_lock);

err_parent:
spin_unlock(&parent->d_lock);

err_root:
if (want_root)

spin_unlock(&fs->lock);
return -ECHILD;

}

Figure 3. An example of the locking mechanisms used in the Linux file system

that runs in privileged mode, MINIX is a collection of server processes that run on top of a
microkernel. This microkernel only provides a small amount of functionality: address space
management, process management and scheduling, and inter-process communication. Device
drivers, networking support, and the file system are all provided by server processes that run
in user mode. These servers communicate and co-operate with each other to provide the full
functionality of the operating system.

The file server consists of a single loop that receives a system call request, performs the
required work, and then sends a message with the results. MINIX does support suspending
certain types of requests and accepting others: e.g., waiting for keyboard input and operations
on pipes between processes. However, these are treated as a special case, and the main pattern
is to accept and service requests sequentially. This lack of concurrency helps to simplify the
implementation details, but has negative performance consequences.

Any file system request that needs to access a slow device, or consists of a large data
transfer may cause the file server to be unresponsive for the duration of that operation. This
can manifest itself as a pause that is observable by clients of the file system. For example,
if a second user were to attempt to change directory while the file server is handling such a
request, the system would appear to hang until the first operation was completed. In practice,
this matters little on a single user computer with reasonably fast I/O devices, although it was
frustrating on older machines when a background task brought the system to its knees by
accessing a diskette drive.

One advantage of the MINIX file server is that it was designed as a sequential system.
Our goal is to derive a range of designs that allow concurrency for file system operations. A
sequential system with no specific concurrency mechanisms in place provides a clean slate



6 J. Whitehead II / Designing a Concurrent File Server

from which to begin this exploration.

2. Design Overview

In this section, we introduce a middle-ground between the highly concurrent implementations
of UNIX, and the simple sequential file server in MINIX. Rather than the design being driven
by mutual exclusion for data structures, it consists of a collection of server processes that
are each responsible for some portion of the functionality of the file system. By connecting
these components together using synchronous message passing over explicit channels, we
can construct a functioning file system where the dependencies and relationships between
components are explicit.

2.1. A Starting Point

The MINIX file server provides an attractive starting point for our design. The file system
logic, data structures, and algorithms are already present, and free from explicit locks. This
architecture is depicted in Figure 4. This figure shows three processes interacting with the
file system by issuing system calls; the system call interface converts these requests into
inter-process communication messages to the file system server, or FS server.

Figure 4. The architecture of the existing MINIX file server

Internally, the FS server maintains two primary data structures: the inode table, and the
block cache. A system call request might require multiple accesses to each of these.

MINIX uses the block cache to improve the performance of the file system, by avoiding
the need to access the disk devices repeatedly for blocks that have been recently used. When a
block is first needed, the server sends a message to the appropriate device driver requesting it.
Future requests for the same block will return this cached copy rather than requiring another
disk access. When there are no available cache slots, the block that was least recently used
will be evicted from the cache and written out to the device. In order to prevent corruption in
the case of power loss, the file system also supports the sync system call, which will cause
any blocks that have been altered to be flushed to the device immediately.



J. Whitehead II / Designing a Concurrent File Server 7

The inode table fulfils a similar role for the inodes that are in use in the file system. When
an inode is requested, a copy of the data structure is loaded from the disk via the block cache
and kept in memory. This ensures that any inode that is currently being used for a system call
will continue to be available, without needing to fetch it from the block. The cache also serves
as a reference counting mechanism for inodes, keeping track of the number of times an inode
is “in-use” by some part of the file system. For example, the root and working directories
for each process must be marked as in-use, preventing them from being unlinked. Similarly,
when a file is opened for reading or writing, the file descriptor retains a reference to the inode.

This reference count is quite important in the UNIX file system model, as it determines
when a file is eligible for deletion. When a file or directory does not appear anywhere in the
hierarchy (i.e., the link count is zero), and is not in use by the file system (i.e., reference
count is zero), then it is no longer accessible and should be deleted. This means that a file
that has been opened by a process but no longer appears in any directory will continue to be
accessible by that process. Several programs use this technique in order to create temporary
files that are inaccessible by other processes, by unlinking a file immediately after it has been
created.

Both of these data structures exist as logical subcomponents in the existing implementa-
tion, being part of the same single program. Accordingly, they inherit the single-threaded na-
ture of the file system and do not address issues of concurrency or mutual exclusion, despite
their use of shared data structures.

2.2. Concurrent System Calls

The contents of a file can be accessed after it has been opened using the open or the creat
system calls. If the user has the appropriate permissions to access the file, this establishes a
link between the inode and the process, called a file descriptor. This file descriptor contains a
pointer to the inode, the permissions with which the file was opened, and the current position
within the file. This position normally starts at zero and is incremented during each read or
write operation, or can be set explicitly using the seek system call. A file descriptor acts like
a capability, granting the holder access to the file with a certain set of permissions.

The system calls to read, write, and seek to a position within a file all take a file descriptor
as a parameter, instead of a path. Once a file has been opened, these operations on that file can
be seen as almost independent from the rest of the file system. We can use this to introduce
concurrency, by allowing these operations to be handled by an additional server that sits
alongside the FS server.

This I/O server will need to interact with the block cache in order to obtain the data
from disk. Additionally, it will need to update the information stored in the inode table,
to ensure that any changes to the length or the set of data blocks used by the file will be
eventually committed. Since both of these caches are data structures in the FS server, this
would require the file I/O server to compete with other system call requests, limiting any
possible concurrency. In order for this to properly work these components must be accessible
as independent server processes.

It is acceptable for these new servers to be sequential, only allowing a single request to
be handled at a time. This would still be an improvement over the existing MINIX system,
where the smallest atomic operation is the system call. With an independent block cache
server, both the I/O and FS servers can process system calls concurrently, with block cache
requests being interleaved in some manner.

Another consequence of allowing I/O to occur alongside other system calls is a potential
conflict when allocating new inodes or data blocks. When the size of a file or directory is
extended, a new data block must be allocated. This is accomplished by fetching the bitmap
blocks from the front of the disk, and searching for a spare slot. Since both the file I/O server



8 J. Whitehead II / Designing a Concurrent File Server

and the FS server may need to perform these allocations, we need to ensure that they do
not both try to access the bitmap blocks at the same time. We can do this by introducing an
allocation server, which is solely responsible for this functionality.

Figure 5. File server that supports concurrent file I/O

Figure 5 shows a process diagram of this architecture, with each rectangle representing
an independent server. The arrows between these servers represent messages, with the direc-
tion of the arrow showing the initial communication. System call requests from programs are
converted by the system call interface into messages for either the I/O server or the FS server
as appropriate. In turn, each of these server might need to communicate with the block cache,
inode table, or the allocation server.

This figure also shows an additional line of communication from the FS server to the I/O
server. This channel is used when the FS server needs to get information about an open file,
as described in the following section.

2.3. Inode Data Races

Even if we assume that each of the servers in this design are single-threaded, it isn’t clear
that the server as a whole is free from race conditions. For example, an I/O system call might
make use of the same inode as a normal system call. If both of these servers attempt to access
the fields of the inode, we have introduced a classic race hazard. To prevent this, we segment
the data structure in such a way that no individual field can be accessed by both servers.

The majority of the operations on inodes are performed by the FS server, so we can
assume that it will need to access most of the fields. The I/O server, on the other hand, needs
access to the size counter, the list of data blocks, and the modification and access times (so
they can be updated). As long as these sets are disjoint, the two servers may access the inode
concurrently with a guarantee of mutual exclusion. However, the FS server is still responsible
for responding to the stat system call, used to obtain information about an inode, including its
current size. Instead of returning the value stored on disk or adding a lock for the size field,
the FS server can instead ask the I/O server. This separation seems rather natural: if a file is
opened and being modified, then only the I/O server would know how large the file is at any



J. Whitehead II / Designing a Concurrent File Server 9

time. The dependency between the stat system call and the write system call might not be
obvious in a lock-based solution, but the communication dependency in our process network
is explicit.

2.4. Concurrent File I/O

Once we have an intuition for our server architecture, including the scope of the different
components and the dependencies between them, we can look to introduce more concurrency.
A policy where the I/O server serialized all incoming requests would ensure there are no
conflicts, but would only provide a marginal performance gain. In MINIX, inodes and data
blocks cannot be shared between two different files. Therefore, two I/O operations on differ-
ent files should be safe to perform concurrently. For a single file, we can adopt a straightfor-
ward concurrency policy of allowing concurrent read operations, while requiring exclusive
access for any writes.

In our implementation, we accomplish this by spawning a new server process the
first time an inode is opened for reading or writing. This server enforces the concurrent
read/exclusive write policy, and continues to run as long as the file is opened by any process.

However, there is a slight complication due to the way that file positions can be shared
between processes in UNIX. If one process opens a file and then performs the fork system
call, the newly created process will have a copy of each of the file descriptors from the origi-
nal. When one of the processes moves the position in a file descriptor by seeking, reading, or
writing, this change should be reflected in the other process as well.

This introduces an additional constraint on our system: any two operations on the same
file descriptor must be serialized in order to maintain the semantics of the UNIX file sys-
tem. So although multiple file operations can be handled concurrently, any two that use the
same shared file descriptor cannot. One way to accomplish this is to introduce a new process
for each file descriptor to serialize incoming requests. Two separate file descriptors that are
connected to the same underlying inode will communicate with the same backend process.

Figure 6 shows a version of the file server where the I/O functionality is provided by
a cluster of file descriptor and open file servers. When a file is opened by a process, a file
descriptor server is spawned, and the input channel for that server is stored in the inode data
structure (in memory, not on disk). Since this field can only be altered when a file is opened
or closed, it is free from race hazards due to the sequential nature of the FS server. Now,
when the FS server needs to get updated information, it can contact the file descriptor server
(and through it the open file server) to obtain it.

The general notion of connecting a file descriptor server to a user process is the approach
taken in RMoX[9], an experimental operating system written in occam-π[10]. The technique
is used in both the network stack[11] and in several of the file system implementations. Each
of these drivers take a different approach to synchronizing between multiple file descriptors
that refer to the same file. For example, the ramdiskfs driver requires exclusive access to the
actual ramdisk device for all read or write operation, while the hostfs driver relies on the
blocking nature of the host operating system’s file operations in order to prevent conflicts.

We have chosen in our design to separate the concerns of the file descriptor from the
process that actually interacts with the block cache. This allows us to make the potential
concurrency of this “open file” server explicit, and different from that of the necessarily
sequential file descriptor. We believe that this architecture is sufficiently general for providing
access to resources through a standard POSIX interface.

2.5. Race Conditions in System Calls

The sequential behaviour of the FS server helps to prevent a class of software bugs, called
“time-of-check-to-time-of-update” (TOCTOU) race conditions. Although normally viewed



10 J. Whitehead II / Designing a Concurrent File Server

Figure 6. Concurrent I/O server

from a security context in the implementation of privileged user (setuid) programs, this is a
class of bugs where a condition is checked and then at some later time, action is taken based
upon that check. If the state of the system can change between the check and the update, this
could result in incorrect behaviour or worse. An example of this can be seen in the inode link
count, used to track the number of times a file is linked in directories on the file system.

The procedure for the link system call is as follows:

1. Fetch the inode of the file to be linked
2. Ensure the link count is not already the maximum value
3. Fetch the directory in which the new link will be created
4. Check to see if the target file name already exists
5. Attempt to add the link to the directory
6. If successful, update link count and flag the inode as dirty

The problem is with the second step, where the current value of the link count is checked
to ensure it is not already the maximum allowed value. If the file server allowed concurrent
system calls, then after this check is performed, another process could come along and add
a link to the same file. Afterwards, the original system call would proceed, causing the link
the count to overflow. Depending on the inode table implementation, this could result in the
file being removed from the file system entirely, and causing the file system to have invalid
entries.

One way to solve this sort of problem is to introduce some form of locking, so that the
original link system call can lock the inode for exclusive access. So long as all of the code
that potentially uses the same data structure obey the locking conventions for the object, it
is not possible for this race condition to occur. However, this quickly begins to approach the
fine-grained layered locking present in the Linux kernel.

A concurrent file system has several different instances of this type of conflict, where
some data structure needs to be locked in order to prevent its state from changing during an
operation. Although this style of locking can be implemented in a process oriented architec-
ture such as our file server, this introduces implicit channels of communications between the
different processes, reducing the clarity of the system.



J. Whitehead II / Designing a Concurrent File Server 11

3. Implementation

In this section we present as an example, an implementation of the block cache using the Go
programming language.

The file system can access block data that is already in memory several orders of mag-
nitude faster than from disk. This performance is important, as all file system operations in-
volve working with blocks. However, this reliance on the block cache causes the concurrency
properties of the cache to propagate upwards through the system. If the cache is only capable
of serving a single request at a time, then other requests will have to wait. On the other hand, a
concurrent cache would enable the file system to perform multiple operations efficiently. For
example, blocks could be fetched from different devices in parallel. Multiple requests could
be sent to the device in groups, allowing the disk controller to perform intelligent scheduling
or read-ahead.

The primary purpose of the block cache process is to regulate access to the underlying
cache data structures, ensuring that they can be updated correctly, free from race conditions.
If the block cache is managed by a sequential server process, this is trivial. The real difficulty
in making the block cache concurrent is the need to load (and write) blocks to the disk drives.
This process may take an extended period of time, during which the cache needs to continue
to respond to requests. Arranging for all of this to happen in a way that is correct and safe
can be accomplished in several ways; here we describe one possible approach.

Our block cache implementation has the following behaviour on receiving a block re-
quest:

• If the block is present in the cache, it should be returned.
• If the block is not present in the cache, it should loaded from disk into an available

cache buffer and returned.
• If there are no available cache buffers, a block should be evicted from the cache. This

may cause the block to be written out to the disk. When this is finished, the requested
block should be loaded from disk and returned.

• If a block is currently being loaded into the cache, the cache should arrange to return
the block to the caller when it has completed loading.

We can construct a server that can handle all of these cases appropriately, using channels
as the only synchronization and communication primitive. Clients send request messages to
the server’s input channel and then wait for a response on the output channel.

for req := range cache.in {
switch req := req.(type) {
case BlockGet:

resultChan := make(chan *Block)
cache.out <- resultChan
cache.get_block(devnum, blocknum, resultChan)
// other request types here..

}
}

This loop will repeatedly receive a request message from the input channel, and dispatch
the appropriate handler for the given request type. Since the loop is entirely sequential, it
might appear that only one request can be processed at a time, but this is not the case. Instead
of sending the block itself to the output channel, a new channel is created and sent back to
the client. This channel acts in a way that is similar to a promise[12] or future[13], as a place-
holder for a value that will be available at some point in the future. The client can perform a
receive on this channel, which will cause it to block until the value becomes available.

Once this temporary channel has been returned to the caller, the cache.get_block()
method is invoked in order to retrieve the block. Until this method returns, the server loop
will be unable to receive new incoming requests. The strategy here is to perform any manip-



12 J. Whitehead II / Designing a Concurrent File Server

ulation of the cache list data structure during this handling period, with the guarantee that the
method has exclusive access during this period.

For the block cache, this involves scanning the cache buffers to see if the desired block
is already present. A block that is present may be already loaded, or in the process of being
loaded in response to some other client’s request. This can be determined by examining the
wait list for the block: an empty wait list indicates that the block has already been loaded.

func (c *Cache) get_block(devnum int, blocknum int, resultChan chan *Block) {
bp := c.find_block(devnum, blocknum)
if bp != nil {

// the block is in the cache, but might still be loading
wlist := <-bp.wait
if wlist.empty() {

// no one is waiting, so the block is loaded
bp.wait <- wlist
resultChan <- bp
return

} else {
// block is loading, add resultChan to the wait list
wlist.append(resultChan)
bp.wait <- wlist
return

}

...

This snippet shows the initial part of the get_block method, which handles this case. If
the block is still being loaded, then the current result channel is added to the wait list and
control returns to the server loop.

The mutual exclusion for the wait list here is accomplished using a channel with a buffer
size of one. In Go, a send to a channel with space in the buffer is asynchronous, the same
as receiving from a channel with a non-empty buffer. So here, receiving from bp.wait is the
same as locking a mutex for the wait list, while sending the wait list back to the channel is the
same as unlocking the mutex. The mutual exclusion for the wait list is essential here, as we
will see in the next snippet. This could have been implemented using a server process with
channels, a mutex in the data structure, or in several other ways.

} else {
// the block is not in the cache, and so isn’t being loaded
bp := c.evict_block()
if bp == nil {

resultChan <- nil // no available cache slots
return

In this implementation, evicting a block from the cache might involve writing the altered
block back to the disk device. This operation is performed synchronously here in order to
simplify the example. There is a small chance that all of the cache buffer slots will be in use,
so there is nothing that can safely be evicted. In this case, the function just returns nil, to
indicate that the block could not be loaded successfully. This will eventually lead to a system
call failing with an error such as ENOMEM.

} else {
// set block parameters
bp.devnum = devnum
bp.blocknum = blocknum

// create a wait list including this resultChan
<-bp.wait
wlist := new_waitlist(resultChan)
bp.wait <- wlist

// load the block in the background
go func() {



J. Whitehead II / Designing a Concurrent File Server 13

load_block(bp)

// block is loaded, notify all waiting channels
wlist := <-bp.wait
for _, rchan := range wlist {

rchan <- bp
}
// release a cleared wait list
wlist.clear()
bp.wait <- wlist

}()
}

}
}

If the block is not in the cache, and a free cache slot can be obtained, then the process
should initiate an asynchronous disk transfer. Before the load is actually requested, the iden-
tity parameters (device and block numbers) are set and the result channel is added to the wait
list. It is at this stage that a subsequent call to find_block would actually locate this data struc-
ture, so it is important that this is done before a new incoming request is allowed. Finally,
before returning and allowing the server loop to continue, a new goroutine is spawned to load
the block from the device. The execution of this function closure will be performed in the
background, alongside all of the other goroutines in the program.

When the block load is complete, this worker goroutine acquires the wait list for the
block, which might have been updated since it was initially created. The loaded block is then
sent over each of the result channels that is present in the wait list. Finally, the list is cleared
and then sent back to the channel, unlocking it.

This is just one example implementation of a concurrent block cache. The main
server process provides a serialized interface, and arranges for work to be performed asyn-
chronously in order to introduce concurrency. For each component in this file server architec-
ture, there are several possible concurrency policies with varying potential implementations.

4. Conclusions and Future Work

In this paper we have introduced an architecture for a concurrent file server. This server al-
lows for a high level of concurrent file I/O, while serializing all other file system requests.
Beginning with the sequential MINIX file server implementation, concurrency is carefully
introduced in a controlled manner. Despite the inherently shared nature of file system data
structures, this is accomplished without the need for explicit locking mechanisms. Where
implicit locks are present, they have a very localized scope. By limiting ourselves to a disci-
plined model of concurrency, where processes communicate with each other using message
passing over explicit channels, we were free to explore a range of possible designs.

Our design represents a compromise between concurrency and tractability, enabling
more concurrency than a sequential implementation while making explicit the dependencies
between different parts of the system. The importance of the file system’s primary data struc-
tures, the inode table and the block cache, are underscored in our architecture simply by
virtue of these dependencies. This process-oriented style of system design allows us to de-
couple the concurrency properties of an individual component from the behaviour of the sys-
tem as a whole. So long as a component maintains the same interface to other components,
an implementation could provide any degree of internal concurrency.

This concurrent architecture uses several techniques in order to avoid race hazards, de-
spite the use of shared data structures. Each component in the system is responsible for its
internal consistency, which can be accomplished using any of a number of synchronization
techniques. Where data is shared between multiple parts of the server, data segmentation is
used to ensure mutual exclusion.



14 J. Whitehead II / Designing a Concurrent File Server

We have used the Go programming language as a vehicle to express several concurrency
idioms. Providing primitive support for lightweight goroutines and channels, it allows us to
explore a range of implementations of CSP-style concurrent systems.

Although our file system design should provide some performance gain on all systems,
it has the potential to shine when the workload consists mainly of file I/O. However, if path
lookups and inode operations are the dominant file system activity, our server might still
exhibit observable pauses in responsiveness. For example, despite being designed for parallel
operation, the XFS[14] journalled file system originally suffered poor performance in the
presence of repeated inode metadata operations. This was due to the way in which these
transactions were serialized to the log stored on disk. More recent versions of the file system
introduced a delayed logging system that avoided a layer of locking and moved much of the
logging to memory, massively improving the scalability of the file system[15]. It is therefore
natural to consider additional opportunities for introducing concurrency, by allowing non-I/O
operations to be handled concurrently.

However, the potential for conflicts and interactions between multiple system calls is
not entirely clear. We discussed one such conflict in Section 2.5 that occurs from the use
of shared inodes. Our experience in designing this file server indicates that there are several
instances where a shared data structure must be locked in order to prevent it from changing
during the processing of a system call. It would be interesting to example the nature of these
conflicts in order to determine opportunities for additional concurrency without resorting to
explicit locks.

References

[1] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, London, 1985. ISBN: 0-131-53271-
5.

[2] The Go Programming Language. http://golang.org/, March 2011.
[3] The Go Programming Language Specification. http://golang.org/doc/go_spec.html, March 2011.
[4] James Whitehead. Serving Web Content with Dynamic Process Networks in Go. In Peter H. Welch,

Adam T. Sampson, Jan Baekgaard Pedersen, Jon Kerridge, Jan F. Broenink, and Frederick R. M. Barnes,
editors, Communicating Process Architectures 2011, pages 209–226, jun 2011.

[5] Project minixfs download. http://www.cs.ox.ac.uk/people/jim.whitehead/go-minixfs-1.0.
tar.gz, July 2012.

[6] OPEN GROUP et al. The Single UNIX Specification, version 2. System Interface & Headers (XSH), (5),
1997.

[7] POSIX.1-2008. The Open Group Base Specifications. Also published as IEEE Std 1003.1-2008, July
2008.

[8] J. Lions. A commentary on the sixth edition UNIX operating system. Department of Computer Science,
The University of New South Wales, 1977.

[9] Christian L. Jacobsen, Frederick R. M. Barnes, and Brian Vinter. RMoX: A raw-metal occam Experiment.
In Jan F. Broenink and Gerald H. Hilderink, editors, Communicating Process Architectures 2003, pages
269–288, sep 2003.

[10] F.R.M. Barnes and P.H. Welch. occam-pi: blending the best of csp and the pi-calculus, 2006.
[11] A.T. Sampson. Process-Oriented Patterns for Concurrent Software Engineering. PhD thesis, PhD thesis,

University of Kent, 2010.
[12] D.P. Friedman and D.S. Wise. The Impact of Applicative Programming on Multiprocessing, pages 263–

272. Indiana University, Computer Science Department, 1976.
[13] H.C. Baker Jr and C. Hewitt. The incremental garbage collection of processes. ACM Sigplan Notices,

12(8):55–59, 1977.
[14] A. Sweeney, D. Doucette, W. Hu, C. Anderson, M. Nishimoto, and G. Peck. Scalability in the XFS file

system. In Proceedings of the USENIX 1996 Technical Conference, pages 1–14, 1996.
[15] XFS Delayed Logging Design. http://git.kernel.org/?p=linux/kernel/git/torvalds/

linux-2.6.git;a=blob;f=Documentation/filesystems/xfs-delayed-logging-design.txt,
2010.


