
Exploring GPGPU Acceleration of

Process-Oriented Simulations

Communicating Process Architectures 2013

Fred Barnes

School of Computing, University of Kent, Canterbury

F.R.M.Barnes@kent.ac.uk

http://www.cs.kent.ac.uk/~frmb/

Contents

Process-oriented programming.

The boids simulation (shop manual).

GPUs.

Boids with GPU.

Better boids, with and without the GPU.

Going even faster.

Exploring the results.

Conclusions and future work.

Process-orientation

Process-Oriented Programming

Building systems with concurrent processes as the bricks.

processes communicate and synchronise using channels and barriers
(the mortar).
communication is synchronised, unidirectional and unbuffered.

We use the occam-π language [1] for implementation.

based heavily on the semantics of CSP [2].
ideas of dynamics and mobility from the π-calculus [3].

Process-orientation

Process-Oriented Programming

Building systems with concurrent processes as the bricks.

processes communicate and synchronise using channels and barriers
(the mortar).
communication is synchronised, unidirectional and unbuffered.

We use the occam-π language [1] for implementation.

based heavily on the semantics of CSP [2].
ideas of dynamics and mobility from the π-calculus [3].

B C

A D

Process-orientation

Process-Oriented Programming

Building systems with concurrent processes as the bricks.

processes communicate and synchronise using channels and barriers
(the mortar).
communication is synchronised, unidirectional and unbuffered.

We use the occam-π language [1] for implementation.

based heavily on the semantics of CSP [2].
ideas of dynamics and mobility from the π-calculus [3].

B C

A D

Process-orientation

Process-Oriented Programming

Building systems with concurrent processes as the bricks.

processes communicate and synchronise using channels and barriers
(the mortar).
communication is synchronised, unidirectional and unbuffered.

We use the occam-π language [1] for implementation.

based heavily on the semantics of CSP [2].
ideas of dynamics and mobility from the π-calculus [3].

B C

A D

my.process

in?

out!

sync

Process-orientation

Process-Oriented Programming

Building systems with concurrent processes as the bricks.

processes communicate and synchronise using channels and barriers
(the mortar).
communication is synchronised, unidirectional and unbuffered.

We use the occam-π language [1] for implementation.

based heavily on the semantics of CSP [2].
ideas of dynamics and mobility from the π-calculus [3].

B C

A D

my.process

in?

out!

sync

Process-orientation

Process-Oriented Programming

Channels are first class types, so can have channels carrying
channels (or rather, channel ends).

enables networks of processes to reconfigure themselves dynamically.
can have shared channel-ends, whose mutually exclusive access is
protected by a fair-queueing semaphore.

Processes can alternate (select) between multiple channel inputs
and timeouts, with optional priority.

external choice in CSP, more or less.

Can build large systems (104 – 106 processes) using layered networks
of communicating processes, that grow, shrink and evolve at
run-time.

need to be aware of dangers such as deadlock, livelock and
starvation (good design).

Process-orientation

Process-Oriented Programming

Channels are first class types, so can have channels carrying
channels (or rather, channel ends).

enables networks of processes to reconfigure themselves dynamically.
can have shared channel-ends, whose mutually exclusive access is
protected by a fair-queueing semaphore.

Processes can alternate (select) between multiple channel inputs
and timeouts, with optional priority.

external choice in CSP, more or less.

Can build large systems (104 – 106 processes) using layered networks
of communicating processes, that grow, shrink and evolve at
run-time.

need to be aware of dangers such as deadlock, livelock and
starvation (good design).

Process-orientation

Process-Oriented Programming

Channels are first class types, so can have channels carrying
channels (or rather, channel ends).

enables networks of processes to reconfigure themselves dynamically.
can have shared channel-ends, whose mutually exclusive access is
protected by a fair-queueing semaphore.

Processes can alternate (select) between multiple channel inputs
and timeouts, with optional priority.

external choice in CSP, more or less.

Can build large systems (104 – 106 processes) using layered networks
of communicating processes, that grow, shrink and evolve at
run-time.

need to be aware of dangers such as deadlock, livelock and
starvation (good design).

Process-orientation

Not a Talk About occam-π

For the purpose of this talk, pictures are sufficient.

the graphical representation we have for process networks maps
cleanly to and from code.

Not entirely dissimilar languages Erlang (Sony Ericsson) and Go
(Google) do similar things — some intersection of features.

no assumption about sequential execution in occam-π: equal syntax
standing with concurrent execution (SEQ vs. PAR).

Perhaps more relevant is the tool-chain and the run-time system
(CCSP [4]).

compiled to native code for fast execution (though not optimal).
small overheads for channels (4 bytes) and processes (32 bytes
minimum).

Process-orientation

Not a Talk About occam-π

For the purpose of this talk, pictures are sufficient.

the graphical representation we have for process networks maps
cleanly to and from code.

Not entirely dissimilar languages Erlang (Sony Ericsson) and Go
(Google) do similar things — some intersection of features.

no assumption about sequential execution in occam-π: equal syntax
standing with concurrent execution (SEQ vs. PAR).

Perhaps more relevant is the tool-chain and the run-time system
(CCSP [4]).

compiled to native code for fast execution (though not optimal).
small overheads for channels (4 bytes) and processes (32 bytes
minimum).

Process-orientation

Not a Talk About occam-π

For the purpose of this talk, pictures are sufficient.

the graphical representation we have for process networks maps
cleanly to and from code.

Not entirely dissimilar languages Erlang (Sony Ericsson) and Go
(Google) do similar things — some intersection of features.

no assumption about sequential execution in occam-π: equal syntax
standing with concurrent execution (SEQ vs. PAR).

Perhaps more relevant is the tool-chain and the run-time system
(CCSP [4]).

compiled to native code for fast execution (though not optimal).
small overheads for channels (4 bytes) and processes (32 bytes
minimum).

Boids

The Boids Simulation

A good case study — it is not trivially parallelisable.

fractal generators and Conway’s game-of-life are trivially
parallelisable and give the expected speedups when running with the
GPU (×300 or more).

An n-body problem, but where n is kept manageable by partitioning
the world into a regular grid.

Produced originally as part of the CoSMoS project [5, 6].

based on Reynolds’ “boids” [7].

Boids

The Boids Simulation

A good case study — it is not trivially parallelisable.

fractal generators and Conway’s game-of-life are trivially
parallelisable and give the expected speedups when running with the
GPU (×300 or more).

An n-body problem, but where n is kept manageable by partitioning
the world into a regular grid.

Produced originally as part of the CoSMoS project [5, 6].

based on Reynolds’ “boids” [7].

Boids

The Boids Simulation

(grid of locations)

Boids

The Boids Simulation

(grid of locations)

Boids

The Boids Simulation

(grid of locations)

(viewers)

Boids

The Boids Simulation

(grid of locations)

(viewers)

(abstract agents)

Boids

The Boids Simulation

(grid of locations)

(viewers)

(abstract agents)

(boids)

Boids

The Boids Simulation

(grid of locations)

(viewers)

(abstract agents)

(boids)

(barrier)

Boids

The Boids Simulation

(grid of locations)

(viewers)

(abstract agents)

(boids)

(barrier)

updater

Boids

The Boids Simulation

(grid of locations)

(viewers)

(abstract agents)

(boids)

(barrier)

updater

Boids

The Boids Simulation

(grid of locations)

(viewers)

(abstract agents)

(boids)

(barrier)

updater

display (framebuffers)

Boids

The Boids Simulation

(grid of locations)

(viewers)

(abstract agents)

(boids)

updater

display (framebuffers)

(barrier)

(interactive agent)

Boids

Simulation Operation

World is defined using a grid of location processes.

each location has a viewer, and each viewer has an updater.

Boid processes do not interact with locations and viewers directly.

instead interacting with an abstract agent, that in turn handles
interaction with the world (and its particular geometry).

The barrier divides simulation execution into two phases.

Phase 1:

processes synchronise on the barrier.
via the abstract agent and viewer,
neighbour discovery.
compute new acceleration and velocity.

move if needed.

Phase 2:

processes synchronise on the barrier.

viewers update from locations.

Boids

Simulation Operation

World is defined using a grid of location processes.

each location has a viewer, and each viewer has an updater.

Boid processes do not interact with locations and viewers directly.

instead interacting with an abstract agent, that in turn handles
interaction with the world (and its particular geometry).

The barrier divides simulation execution into two phases.

Phase 1:

processes synchronise on the barrier.
via the abstract agent and viewer,
neighbour discovery.
compute new acceleration and velocity.

move if needed.

Phase 2:

processes synchronise on the barrier.

viewers update from locations.

Boids

Simulation Operation

World is defined using a grid of location processes.

each location has a viewer, and each viewer has an updater.

Boid processes do not interact with locations and viewers directly.

instead interacting with an abstract agent, that in turn handles
interaction with the world (and its particular geometry).

The barrier divides simulation execution into two phases.

Phase 1:

processes synchronise on the barrier.
via the abstract agent and viewer,
neighbour discovery.
compute new acceleration and velocity.

move if needed.

Phase 2:

processes synchronise on the barrier.

viewers update from locations.

Boids

Simulation Operation

World is defined using a grid of location processes.

each location has a viewer, and each viewer has an updater.

Boid processes do not interact with locations and viewers directly.

instead interacting with an abstract agent, that in turn handles
interaction with the world (and its particular geometry).

The barrier divides simulation execution into two phases.

updater

Phase 1:

processes synchronise on the barrier.
via the abstract agent and viewer,
neighbour discovery.
compute new acceleration and velocity.

move if needed.

Phase 2:

processes synchronise on the barrier.

viewers update from locations.

Boids

Simulation Operation

World is defined using a grid of location processes.

each location has a viewer, and each viewer has an updater.

Boid processes do not interact with locations and viewers directly.

instead interacting with an abstract agent, that in turn handles
interaction with the world (and its particular geometry).

The barrier divides simulation execution into two phases.

updater

Phase 1:

processes synchronise on the barrier.
via the abstract agent and viewer,
neighbour discovery.
compute new acceleration and velocity.

move if needed.

Phase 2:

processes synchronise on the barrier.

viewers update from locations.

Boids

Simulation Operation

World is defined using a grid of location processes.

each location has a viewer, and each viewer has an updater.

Boid processes do not interact with locations and viewers directly.

instead interacting with an abstract agent, that in turn handles
interaction with the world (and its particular geometry).

The barrier divides simulation execution into two phases.

updater

Phase 1:

processes synchronise on the barrier.
via the abstract agent and viewer,
neighbour discovery.
compute new acceleration and velocity.

move if needed.

Phase 2:

processes synchronise on the barrier.

viewers update from locations.

Boids

Simulation Operation

World is defined using a grid of location processes.

each location has a viewer, and each viewer has an updater.

Boid processes do not interact with locations and viewers directly.

instead interacting with an abstract agent, that in turn handles
interaction with the world (and its particular geometry).

The barrier divides simulation execution into two phases.

updater

Phase 1:

processes synchronise on the barrier.
via the abstract agent and viewer,
neighbour discovery.
compute new acceleration and velocity.

move if needed.

Phase 2:

processes synchronise on the barrier.

viewers update from locations.

Boids

Simulation Operation

World is defined using a grid of location processes.

each location has a viewer, and each viewer has an updater.

Boid processes do not interact with locations and viewers directly.

instead interacting with an abstract agent, that in turn handles
interaction with the world (and its particular geometry).

The barrier divides simulation execution into two phases.

updater

Phase 1:

processes synchronise on the barrier.
via the abstract agent and viewer,
neighbour discovery.
compute new acceleration and velocity.

move if needed.

Phase 2:

processes synchronise on the barrier.

viewers update from locations.

Boids

Simulation Operation

World is defined using a grid of location processes.

each location has a viewer, and each viewer has an updater.

Boid processes do not interact with locations and viewers directly.

instead interacting with an abstract agent, that in turn handles
interaction with the world (and its particular geometry).

The barrier divides simulation execution into two phases.

updater

Phase 1:

processes synchronise on the barrier.
via the abstract agent and viewer,
neighbour discovery.
compute new acceleration and velocity.

move if needed.

Phase 2:

processes synchronise on the barrier.

viewers update from locations.

Boids

Simulation Operation

World is defined using a grid of location processes.

each location has a viewer, and each viewer has an updater.

Boid processes do not interact with locations and viewers directly.

instead interacting with an abstract agent, that in turn handles
interaction with the world (and its particular geometry).

The barrier divides simulation execution into two phases.

updater

Phase 1:

processes synchronise on the barrier.
via the abstract agent and viewer,
neighbour discovery.
compute new acceleration and velocity.

move if needed.

Phase 2:

processes synchronise on the barrier.

viewers update from locations.

Boids

Simulation Operation

World is defined using a grid of location processes.

each location has a viewer, and each viewer has an updater.

Boid processes do not interact with locations and viewers directly.

instead interacting with an abstract agent, that in turn handles
interaction with the world (and its particular geometry).

The barrier divides simulation execution into two phases.

updater

Phase 1:

processes synchronise on the barrier.
via the abstract agent and viewer,
neighbour discovery.
compute new acceleration and velocity.

move if needed.

Phase 2:

processes synchronise on the barrier.

viewers update from locations.

Boids

Simulation Operation

World is defined using a grid of location processes.

each location has a viewer, and each viewer has an updater.

Boid processes do not interact with locations and viewers directly.

instead interacting with an abstract agent, that in turn handles
interaction with the world (and its particular geometry).

The barrier divides simulation execution into two phases.

updater

Phase 1:

processes synchronise on the barrier.
via the abstract agent and viewer,
neighbour discovery.
compute new acceleration and velocity.

move if needed.

Phase 2:

processes synchronise on the barrier.

viewers update from locations.

Boids

Simulation Operation

World is defined using a grid of location processes.

each location has a viewer, and each viewer has an updater.

Boid processes do not interact with locations and viewers directly.

instead interacting with an abstract agent, that in turn handles
interaction with the world (and its particular geometry).

The barrier divides simulation execution into two phases.

updater

Phase 1:

processes synchronise on the barrier.
via the abstract agent and viewer,
neighbour discovery.
compute new acceleration and velocity.

move if needed.

Phase 2:

processes synchronise on the barrier.

viewers update from locations.

Boids

From the Boids’ Perspective

1: procedure boid(space link , barrier t)
2: state me = initial state ()
3: while True do
4: sync t ⊲ enter observation phase
5: all = get viewable(link)
6: vis,obs = prune visible(all , me)
7: me = centre of mass(vis, me)
8: me = repulsion(vis, me)
9: me = mean velocity(vis, me)

10: me = obstacles(obs, me)
11: update(link , me)
12: sync t ⊲ enter update phase
13: end while
14: end procedure

Boids

Performance

For 2048 boids and 9 obstacles in an 8×6 grid.

test machine is an Intel Quad Core i7 (2600K) running at 3.4 GHz
(fixed); 4 real cores & 4 hyperthreads.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 100 200 300 400 500 600 700 800 900 1000

T
hr

ou
gh

pu
t (

k-
bo

id
s

/ s
ec

)

Iteration

1 core
2 cores
4 cores
8 cores

 0

 1

 2

 3

 4

 5

 1 2 3 4 5 6 7 8

S
pe

ed
up

Cores

128 boids
256 boids
512 boids

1024 boids
2048 boids

Performance drops as flocks start to form (n-body effect).

levels out to around 50 cycles/sec.

Boids

Visualisation

Some of the process plumbing is used for a display:

uses SDL to display 2D framebuffers on a
host display (and, separately, allows
capture to files).

in interactive mode, can adjust simulation
parameters and move an obstacle around.

This is about as good as the original version will manage.

could tweak it for more performance based on parameter values, but
not expecting substantial improvements.

Solution: use the GPU to speed things up!

Boids

Visualisation

Some of the process plumbing is used for a display:

uses SDL to display 2D framebuffers on a
host display (and, separately, allows
capture to files).

in interactive mode, can adjust simulation
parameters and move an obstacle around.

This is about as good as the original version will manage.

could tweak it for more performance based on parameter values, but
not expecting substantial improvements.

Solution: use the GPU to speed things up!

Boids

Visualisation

Some of the process plumbing is used for a display:

uses SDL to display 2D framebuffers on a
host display (and, separately, allows
capture to files).

in interactive mode, can adjust simulation
parameters and move an obstacle around.

This is about as good as the original version will manage.

could tweak it for more performance based on parameter values, but
not expecting substantial improvements.

Solution: use the GPU to speed things up!

History lesson

A Brief History of GPUs

Intel release the iSBX 275
multibus board, providing
accelerated drawing of lines, arcs,
rectangles and character bitmaps.

1983

History lesson

A Brief History of GPUs

Intel release the iSBX 275
multibus board, providing
accelerated drawing of lines, arcs,
rectangles and character bitmaps.

first personal computer graphics processor appears
in the Commodore Amiga: line drawing, area fill
and blitter. Included a graphics co-processor with
a primitive instruction set.

1983 1985

History lesson

A Brief History of GPUs

Intel release the iSBX 275
multibus board, providing
accelerated drawing of lines, arcs,
rectangles and character bitmaps.

first personal computer graphics processor appears
in the Commodore Amiga: line drawing, area fill
and blitter. Included a graphics co-processor with
a primitive instruction set.

IBM release the 8514/A for the
PS/2 (MCA bus): line drawing,
area fill and blitter.

1983 1985 1987

History lesson

A Brief History of GPUs

S3 Graphics introduce the S3
86C911, designed to accelerate
specific software. Responsible for
many similar (accelerator) cards.

1991

History lesson

A Brief History of GPUs

S3 Graphics introduce the S3
86C911, designed to accelerate
specific software. Responsible for
many similar (accelerator) cards.

SGI develop and publish OpenGL,
an API for graphics processing.

1991 1992

History lesson

A Brief History of GPUs

S3 Graphics introduce the S3
86C911, designed to accelerate
specific software. Responsible for
many similar (accelerator) cards.

SGI develop and publish OpenGL,
an API for graphics processing.

DirectX introduced with
the release of Windows
’95 and NT 4.0.

1991 1992 1995

History lesson

A Brief History of GPUs

S3 Graphics introduce the S3
86C911, designed to accelerate
specific software. Responsible for
many similar (accelerator) cards.

SGI develop and publish OpenGL,
an API for graphics processing.

DirectX introduced with
the release of Windows
’95 and NT 4.0.

NVIDIA popularise
the term Graphics
Processing Unit.

1991 1992 1995 1999

History lesson

A Brief History of GPUs

S3 Graphics introduce the S3
86C911, designed to accelerate
specific software. Responsible for
many similar (accelerator) cards.

SGI develop and publish OpenGL,
an API for graphics processing.

DirectX introduced with
the release of Windows
’95 and NT 4.0.

NVIDIA popularise
the term Graphics
Processing Unit.

NVIDIA releases the GeForce 3,
included a programmable shader.
Start of the GPGPU era.

1991 1992 1995 1999 2001

History lesson

A Brief History of GPUs

S3 Graphics introduce the S3
86C911, designed to accelerate
specific software. Responsible for
many similar (accelerator) cards.

SGI develop and publish OpenGL,
an API for graphics processing.

DirectX introduced with
the release of Windows
’95 and NT 4.0.

NVIDIA popularise
the term Graphics
Processing Unit.

NVIDIA releases the GeForce 3,
included a programmable shader.
Start of the GPGPU era.

ATI try and introduce Visual
Processing Unit (VPU) into the
lexicon, unsuccessfully.

1991 1992 1995 1999 2001 2002

History lesson

A Brief History of GPUs

S3 Graphics introduce the S3
86C911, designed to accelerate
specific software. Responsible for
many similar (accelerator) cards.

SGI develop and publish OpenGL,
an API for graphics processing.

DirectX introduced with
the release of Windows
’95 and NT 4.0.

NVIDIA popularise
the term Graphics
Processing Unit.

NVIDIA releases the GeForce 3,
included a programmable shader.
Start of the GPGPU era.

ATI try and introduce Visual
Processing Unit (VPU) into the
lexicon, unsuccessfully.

GPUs able to handle looping
and floating-point intensive
shader ‘mini-programs’.

1991 1992 1995 1999 2001 2002

History lesson

A Brief History of GPUs

Specific graphics co-processors existed in the 1980s and 1990s,
but not in the general consumer market.

fixed-feature hardware accelerators (DirectX) cheaper and faster.

Recent GPU cards offer significant computational ability, driven
largely by the HPC and gaming industries.

fundamentally still graphics processors, not high-performance
scientific calculators.

History lesson

A Brief History of GPUs

Specific graphics co-processors existed in the 1980s and 1990s,
but not in the general consumer market.

fixed-feature hardware accelerators (DirectX) cheaper and faster.

Recent GPU cards offer significant computational ability, driven
largely by the HPC and gaming industries.

fundamentally still graphics processors, not high-performance
scientific calculators.

GPUs

General GPU Structure

Bunch of different hardware units:

memory (VRAM) and host interfaces.
a large cache memory area.
thread scheduling logic.
a number of stream processors.

Logical interpretation is SIMD: data is fixed (in a large register-file)
and instructions are pumped through a number of processing cores.

NVIDIA Fermi [8] used in GF100 and GF110 GPUs.

available on cards such as the Tesla C2050 and GeForce GTX 580.
around 3 billion transistors in 512 CUDA cores.
more optimisations for double-precision arithmetic.

Resulting silicon on a 40nm process is about the size of a stamp.

hard to fabricate, but regular structure means that parts can be
disabled where defective.
e.g. GTX 570 has 1 of the 16 stream processors disabled.

GPUs

General GPU Structure

Bunch of different hardware units:

memory (VRAM) and host interfaces.
a large cache memory area.
thread scheduling logic.
a number of stream processors.

Logical interpretation is SIMD: data is fixed (in a large register-file)
and instructions are pumped through a number of processing cores.

NVIDIA Fermi [8] used in GF100 and GF110 GPUs.

available on cards such as the Tesla C2050 and GeForce GTX 580.
around 3 billion transistors in 512 CUDA cores.
more optimisations for double-precision arithmetic.

Resulting silicon on a 40nm process is about the size of a stamp.

hard to fabricate, but regular structure means that parts can be
disabled where defective.
e.g. GTX 570 has 1 of the 16 stream processors disabled.

GPUs

General GPU Structure

Bunch of different hardware units:

memory (VRAM) and host interfaces.
a large cache memory area.
thread scheduling logic.
a number of stream processors.

Logical interpretation is SIMD: data is fixed (in a large register-file)
and instructions are pumped through a number of processing cores.

NVIDIA Fermi [8] used in GF100 and GF110 GPUs.

available on cards such as the Tesla C2050 and GeForce GTX 580.
around 3 billion transistors in 512 CUDA cores.
more optimisations for double-precision arithmetic.

Resulting silicon on a 40nm process is about the size of a stamp.

hard to fabricate, but regular structure means that parts can be
disabled where defective.
e.g. GTX 570 has 1 of the 16 stream processors disabled.

GPUs

NVIDIA Fermi Architecture

GPUs

On GPU Programming

The GPU programming model, for CUDA [9] and OpenCL [10], is
somewhat abstracted from the real hardware.

CUDA used for these experiments: more mature and well
documented, but less portable.

Programmer writes a kernel — a piece of code that is executed in
parallel across the CUDA cores.

single threads organised into thread blocks (max. 512/1024).
blocks arranged into grids that can be huge (64k/2G × 2/3D).
threads scheduled in groups of 32 called warps, execution is
interleaved (based on available resources).

Arrangement of threads, blocks and grids can be tweaked for
performance.

balanced with register and cache memory use.
“better” GPUs can do shared memory and synchronisation within
thread blocks.

GPUs

On GPU Programming

The GPU programming model, for CUDA [9] and OpenCL [10], is
somewhat abstracted from the real hardware.

CUDA used for these experiments: more mature and well
documented, but less portable.

Programmer writes a kernel — a piece of code that is executed in
parallel across the CUDA cores.

single threads organised into thread blocks (max. 512/1024).
blocks arranged into grids that can be huge (64k/2G × 2/3D).
threads scheduled in groups of 32 called warps, execution is
interleaved (based on available resources).

Arrangement of threads, blocks and grids can be tweaked for
performance.

balanced with register and cache memory use.
“better” GPUs can do shared memory and synchronisation within
thread blocks.

GPUs

On GPU Programming

The GPU programming model, for CUDA [9] and OpenCL [10], is
somewhat abstracted from the real hardware.

CUDA used for these experiments: more mature and well
documented, but less portable.

Programmer writes a kernel — a piece of code that is executed in
parallel across the CUDA cores.

single threads organised into thread blocks (max. 512/1024).
blocks arranged into grids that can be huge (64k/2G × 2/3D).
threads scheduled in groups of 32 called warps, execution is
interleaved (based on available resources).

Arrangement of threads, blocks and grids can be tweaked for
performance.

balanced with register and cache memory use.
“better” GPUs can do shared memory and synchronisation within
thread blocks.

GPUs

GPU Programming

For doing typical scientific calculations (e.g. boid algorithms) over a
set of things (e.g. boid state) simplest to treat as a 1D problem:

GPUs

GPU Programming

For doing typical scientific calculations (e.g. boid algorithms) over a
set of things (e.g. boid state) simplest to treat as a 1D problem:

inputs: b b b0 1 2 3 4 n-1

kernel

outputs: b b b

GPUs

GPU Programming

For doing typical scientific calculations (e.g. boid algorithms) over a
set of things (e.g. boid state) simplest to treat as a 1D problem:

inputs: b b b0 1 2 3 4 n-1

kernel

outputs: b b b

GPUs

GPU Programming

For doing typical scientific calculations (e.g. boid algorithms) over a
set of things (e.g. boid state) simplest to treat as a 1D problem:

inputs: b b b0 1 2 3 4 n-1

kernel

outputs: b b b

typedef struct {
... stuff

} gpu in;

typedef struct {
... stuff

} gpu out;

global void my kernel (const gpu in *in,
gpu out *out, const int count)

{
int idx = (blockDim.x * blockIdx.x)

+ threadIdx.x;

if (idx < count) {
out[idx] = sums (in, idx);

}
}

GPUs

GPU Programming

For doing typical scientific calculations (e.g. boid algorithms) over a
set of things (e.g. boid state) simplest to treat as a 1D problem:

inputs: b b b0 1 2 3 4 n-1

kernel

outputs: b b b

typedef struct {
... stuff

} gpu in;

typedef struct {
... stuff

} gpu out;

global void my kernel (const gpu in *in,
gpu out *out, const int count)

{
int idx = (blockDim.x * blockIdx.x)

+ threadIdx.x;

if (idx < count) {
out[idx] = sums (in, idx);

}
}

... allocate device memory
while (busy) {

... copy data to GPU
my kernel <<< 512, blks >>> (args)
... copy results from GPU

}
... free device memory

GPU server

GPU Server Approach

As a starting point, a GPU server process is introduced.

clean abstraction: other processes send computation requests and
collect results.

server collects requests and
dispatches them in fixed-size
batches to the GPU.

only a few parts of the boid
algorithm to start with:

Despite the additional infrastructure, overheads are not too
significant.

but performance is not too great either.

GPU server

GPU Server Approach

As a starting point, a GPU server process is introduced.

clean abstraction: other processes send computation requests and
collect results.

(location and viewer processes)

server collects requests and
dispatches them in fixed-size
batches to the GPU.

only a few parts of the boid
algorithm to start with:

Despite the additional infrastructure, overheads are not too
significant.

but performance is not too great either.

GPU server

GPU Server Approach

As a starting point, a GPU server process is introduced.

clean abstraction: other processes send computation requests and
collect results.

(location and viewer processes)

gpu.server (CUDA library)

server collects requests and
dispatches them in fixed-size
batches to the GPU.

only a few parts of the boid
algorithm to start with:

Despite the additional infrastructure, overheads are not too
significant.

but performance is not too great either.

GPU server

GPU Server Approach

As a starting point, a GPU server process is introduced.

clean abstraction: other processes send computation requests and
collect results.

(location and viewer processes)

gpu.server (CUDA library)

server collects requests and
dispatches them in fixed-size
batches to the GPU.

only a few parts of the boid
algorithm to start with:

Despite the additional infrastructure, overheads are not too
significant.

but performance is not too great either.

GPU server

GPU Server Approach

As a starting point, a GPU server process is introduced.

clean abstraction: other processes send computation requests and
collect results.

(location and viewer processes)

gpu.server (CUDA library)

server collects requests and
dispatches them in fixed-size
batches to the GPU.

only a few parts of the boid
algorithm to start with:

Despite the additional infrastructure, overheads are not too
significant.

but performance is not too great either.

GPU server

GPU Server Approach

As a starting point, a GPU server process is introduced.

clean abstraction: other processes send computation requests and
collect results.

(location and viewer processes)

gpu.server (CUDA library)

server collects requests and
dispatches them in fixed-size
batches to the GPU.

only a few parts of the boid
algorithm to start with:

Despite the additional infrastructure, overheads are not too
significant.

but performance is not too great either.

GPU server

GPU Server Approach

As a starting point, a GPU server process is introduced.

clean abstraction: other processes send computation requests and
collect results.

(location and viewer processes)

gpu.server (CUDA library)

server collects requests and
dispatches them in fixed-size
batches to the GPU.

only a few parts of the boid
algorithm to start with:

Despite the additional infrastructure, overheads are not too
significant.

but performance is not too great either.

GPU server

GPU Server Approach

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 100 200 300 400 500 600 700 800 900 1000

T
hr

ou
gh

pu
t (

k-
bo

id
s

/ s
ec

)

Iteration

no server
256 requests

1024 requests
2048 requests

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 100 200 300 400 500 600 700 800 900 1000

T
hr

ou
gh

pu
t (

k-
bo

id
s

/ s
ec

)

Iteration

no server
256 requests

1024 requests
2048 requests

serialised CPU performance GPU performance

Original choice of which parts of the algorithm to implement on the
GPU not brilliant:

most computationally expensive part is the splitting of viewable
agents into visible boids and obstacles.

GPU server

GPU Server Approach

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 100 200 300 400 500 600 700 800 900 1000

T
hr

ou
gh

pu
t (

k-
bo

id
s

/ s
ec

)

Iteration

no server
256 requests

1024 requests
2048 requests

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 100 200 300 400 500 600 700 800 900 1000

T
hr

ou
gh

pu
t (

k-
bo

id
s

/ s
ec

)

Iteration

no server
256 requests

1024 requests
2048 requests

serialised CPU performance GPU performance

Original choice of which parts of the algorithm to implement on the
GPU not brilliant:

most computationally expensive part is the splitting of viewable
agents into visible boids and obstacles.

GPU server

GPU Server Approach: More GPU

Putting more of the boid algorithm onto the GPU, does not help:

Significant increase in the
amount of data (all) copied
to the GPU.

for typical parameter sets, the number of visible agents (vis) is
around 3–5% of those viewable (all) — circa 13MB for 2048 boids.

GPU server

GPU Server Approach: More GPU

Putting more of the boid algorithm onto the GPU, does not help:

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 100 200 300 400 500 600 700 800 900 1000
T

hr
ou

gh
pu

t (
k-

bo
id

s
/ s

ec
)

Iteration

no server
CPU, 128 requests
GPU, 128 requests

GPU, 2048 requests

Significant increase in the
amount of data (all) copied
to the GPU.

for typical parameter sets, the number of visible agents (vis) is
around 3–5% of those viewable (all) — circa 13MB for 2048 boids.

GPU server

GPU Server Approach: More GPU

Putting more of the boid algorithm onto the GPU, does not help:

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 100 200 300 400 500 600 700 800 900 1000
T

hr
ou

gh
pu

t (
k-

bo
id

s
/ s

ec
)

Iteration

no server
CPU, 128 requests
GPU, 128 requests

GPU, 2048 requests

Significant increase in the
amount of data (all) copied
to the GPU.

for typical parameter sets, the number of visible agents (vis) is
around 3–5% of those viewable (all) — circa 13MB for 2048 boids.

GPU server

GPU Server Approach: More GPU

Putting more of the boid algorithm onto the GPU, does not help:

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 100 200 300 400 500 600 700 800 900 1000
T

hr
ou

gh
pu

t (
k-

bo
id

s
/ s

ec
)

Iteration

no server
CPU, 128 requests
GPU, 128 requests

GPU, 2048 requests

Significant increase in the
amount of data (all) copied
to the GPU.

for typical parameter sets, the number of visible agents (vis) is
around 3–5% of those viewable (all) — circa 13MB for 2048 boids.

GPU server

GPU Server Approach: More Optimisations

Various attempts to further optimise the system (without changing
anything too substantially) did not produce anything better than the
CPU-only version.

limited by the memory bandwidth between host and GPU — might
improve with host-stolen video-RAM.
strategies included page locked memory on the host (directly
sharable over the PCIe bus) and the use of streams on the device to
overlap memory copies with kernel execution.

Shared data

Refactoring: Shared Data

As a moderate change, introduce some shared data to the system.

in principle, means the actual boid (and other agent) state only
needs to be copied to the GPU once each cycle.
barrier phases can be used to coordinate access to this shared state
safely (CREW).

Requires some less subtle changes in the system:

mostly absolute positioning and agent IDs not state.

Phase 1: boids read global state and
compute new (local) velocity.

Phase 2: boids update global state
and move.

Phase 3: updates to viewable states
occur (as before).

Shared data

Refactoring: Shared Data

As a moderate change, introduce some shared data to the system.

in principle, means the actual boid (and other agent) state only
needs to be copied to the GPU once each cycle.
barrier phases can be used to coordinate access to this shared state
safely (CREW).

Requires some less subtle changes in the system:

mostly absolute positioning and agent IDs not state.

Phase 1: boids read global state and
compute new (local) velocity.

Phase 2: boids update global state
and move.

Phase 3: updates to viewable states
occur (as before).

Shared data

Refactoring: Shared Data

As a moderate change, introduce some shared data to the system.

in principle, means the actual boid (and other agent) state only
needs to be copied to the GPU once each cycle.
barrier phases can be used to coordinate access to this shared state
safely (CREW).

Requires some less subtle changes in the system:

mostly absolute positioning and agent IDs not state.

Phase 1: boids read global state and
compute new (local) velocity.

Phase 2: boids update global state
and move.

Phase 3: updates to viewable states
occur (as before).

Shared data

Refactoring: Shared Data

As a moderate change, introduce some shared data to the system.

in principle, means the actual boid (and other agent) state only
needs to be copied to the GPU once each cycle.
barrier phases can be used to coordinate access to this shared state
safely (CREW).

Requires some less subtle changes in the system:

mostly absolute positioning and agent IDs not state.

(location and viewer processes)

Phase 1: boids read global state and
compute new (local) velocity.

Phase 2: boids update global state
and move.

Phase 3: updates to viewable states
occur (as before).

Shared data

Refactoring: Shared Data

As a moderate change, introduce some shared data to the system.

in principle, means the actual boid (and other agent) state only
needs to be copied to the GPU once each cycle.
barrier phases can be used to coordinate access to this shared state
safely (CREW).

Requires some less subtle changes in the system:

mostly absolute positioning and agent IDs not state.

(location and viewer processes)

b b b

Phase 1: boids read global state and
compute new (local) velocity.

Phase 2: boids update global state
and move.

Phase 3: updates to viewable states
occur (as before).

Shared data

Refactoring: Shared Data

As a moderate change, introduce some shared data to the system.

in principle, means the actual boid (and other agent) state only
needs to be copied to the GPU once each cycle.
barrier phases can be used to coordinate access to this shared state
safely (CREW).

Requires some less subtle changes in the system:

mostly absolute positioning and agent IDs not state.

(location and viewer processes)

b b b

Phase 1: boids read global state and
compute new (local) velocity.

Phase 2: boids update global state
and move.

Phase 3: updates to viewable states
occur (as before).

Shared data

Refactoring: Shared Data

As a moderate change, introduce some shared data to the system.

in principle, means the actual boid (and other agent) state only
needs to be copied to the GPU once each cycle.
barrier phases can be used to coordinate access to this shared state
safely (CREW).

Requires some less subtle changes in the system:

mostly absolute positioning and agent IDs not state.

(location and viewer processes)

b b b

Phase 1: boids read global state and
compute new (local) velocity.

Phase 2: boids update global state
and move.

Phase 3: updates to viewable states
occur (as before).

Shared data

Refactoring: Shared Data

As a moderate change, introduce some shared data to the system.

in principle, means the actual boid (and other agent) state only
needs to be copied to the GPU once each cycle.
barrier phases can be used to coordinate access to this shared state
safely (CREW).

Requires some less subtle changes in the system:

mostly absolute positioning and agent IDs not state.

(location and viewer processes)

b b b

Phase 1: boids read global state and
compute new (local) velocity.

Phase 2: boids update global state
and move.

Phase 3: updates to viewable states
occur (as before).

Shared data

Shared Data: Performance

Considering a CPU-only version to start with (based on the original),
performance is significantly improved.

downside is our existing GPU results now look even worse...

 0

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500 600 700 800 900 1000

T
hr

ou
gh

pu
t (

k-
bo

id
s

/ s
ec

)

Iteration

original, 1 core, 2048 boids
original, 8 cores, 2048 boids

shared-data, 1 core, 2048 boids
shared-data, 8 cores, 2048 boids

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1 2 3 4 5 6 7 8

S
pe

ed
up

CPU cores

original, 1024 boids
shared-data, 1024 boids

original, 4096 boids
shared-data, 4096 boids

Shared data

Shared Data: Reintroducing the GPU

Next, add a GPU-server process, operating on shared agent data.

still copying around arrays of viewable agents, but only integers now.

(location and viewer processes)

b b b

at the start of the GPU cycle (for
a given batch size), all agent
state copied over.

results collected locally and global
state (on the host) updated before
the second phase.

Shared data

Shared Data: Reintroducing the GPU

Next, add a GPU-server process, operating on shared agent data.

still copying around arrays of viewable agents, but only integers now.

(location and viewer processes)

b b b

gpu.server (CUDA library)

at the start of the GPU cycle (for
a given batch size), all agent
state copied over.

results collected locally and global
state (on the host) updated before
the second phase.

Shared data

Shared Data: Reintroducing the GPU

Next, add a GPU-server process, operating on shared agent data.

still copying around arrays of viewable agents, but only integers now.

(location and viewer processes)

b b b

gpu.server (CUDA library)

at the start of the GPU cycle (for
a given batch size), all agent
state copied over.

results collected locally and global
state (on the host) updated before
the second phase.

Shared data

Shared Data: Reintroducing the GPU

Next, add a GPU-server process, operating on shared agent data.

still copying around arrays of viewable agents, but only integers now.

(location and viewer processes)

b b b

gpu.server (CUDA library)

at the start of the GPU cycle (for
a given batch size), all agent
state copied over.

results collected locally and global
state (on the host) updated before
the second phase.

Shared data

Reintroducing the GPU: Performance

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 100 200 300 400 500 600 700 800 900 1000

T
hr

ou
gh

pu
t (

k-
bo

id
s

/ s
ec

)

Iteration

cpu-1024
cpu-4096
gpu-1024
gpu-4096

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 100 200 300 400 500 600 700 800 900 1000

T
hr

ou
gh

pu
t (

k-
bo

id
s

/ s
ec

)

Iteration

cpu-2048
cpu-4096
gpu-2048
gpu-4096

Batches of 512 jobs Batches of 2048 jobs

Performance is unimpressive.

worse than the shared-data CPU-only version in all cases.

Still a lot of viewable state manipulation.

Shared data

Reintroducing the GPU: Performance

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 100 200 300 400 500 600 700 800 900 1000

T
hr

ou
gh

pu
t (

k-
bo

id
s

/ s
ec

)

Iteration

cpu-1024
cpu-4096
gpu-1024
gpu-4096

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 100 200 300 400 500 600 700 800 900 1000

T
hr

ou
gh

pu
t (

k-
bo

id
s

/ s
ec

)

Iteration

cpu-2048
cpu-4096
gpu-2048
gpu-4096

Batches of 512 jobs Batches of 2048 jobs

Performance is unimpressive.

worse than the shared-data CPU-only version in all cases.

Still a lot of viewable state manipulation.

More shared data

Sharing the Viewable State

Sharing the viewable state (in each viewer) requires some changes
in the boid algorithm.

a single pass over the viewable agents, instead of sorting into visible
boids and obstacles.

just as functional, but the boid
algorithm is a little harder to
follow.

mostly just reducing the amount
of data copied around.

contents updated during the
update phase.

More shared data

Sharing the Viewable State

Sharing the viewable state (in each viewer) requires some changes
in the boid algorithm.

a single pass over the viewable agents, instead of sorting into visible
boids and obstacles.
b b b

gpu.server (CUDA library)

updater

just as functional, but the boid
algorithm is a little harder to
follow.

mostly just reducing the amount
of data copied around.

contents updated during the
update phase.

More shared data

Sharing the Viewable State

Sharing the viewable state (in each viewer) requires some changes
in the boid algorithm.

a single pass over the viewable agents, instead of sorting into visible
boids and obstacles.
b b b

gpu.server (CUDA library)

updater

just as functional, but the boid
algorithm is a little harder to
follow.

mostly just reducing the amount
of data copied around.

contents updated during the
update phase.

More shared data

Sharing the Viewable State

Sharing the viewable state (in each viewer) requires some changes
in the boid algorithm.

a single pass over the viewable agents, instead of sorting into visible
boids and obstacles.
b b b

gpu.server (CUDA library)

updater

just as functional, but the boid
algorithm is a little harder to
follow.

mostly just reducing the amount
of data copied around.

contents updated during the
update phase.

More shared data

Sharing the Viewable State

Sharing the viewable state (in each viewer) requires some changes
in the boid algorithm.

a single pass over the viewable agents, instead of sorting into visible
boids and obstacles.
b b b

gpu.server (CUDA library)

updater

just as functional, but the boid
algorithm is a little harder to
follow.

mostly just reducing the amount
of data copied around.

contents updated during the
update phase.

More shared data

Sharing the Viewable State: Performance

 0

 50

 100

 150

 200

 250

 0 100 200 300 400 500 600 700 800 900 1000

T
hr

ou
gh

pu
t (

k-
bo

id
s

/ s
ec

)

Iteration

cpu-1024
cpu-4096
gpu-1024
gpu-4096

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 100 200 300 400 500 600 700 800 900 1000

T
hr

ou
gh

pu
t (

k-
bo

id
s

/ s
ec

)

Iteration

cpu-2048
cpu-4096
gpu-2048
gpu-4096

Batches of 512 jobs Batches of 2048 jobs

For batches of 2048 jobs, start seeing some performance gain for
the first time!

slow-down for 4096 boids is partially due to increased density (still in
an 8×6 grid).

More shared data

Parallel GPU Servers

An obvious (and fairly straightforward) next step is to parallelise
the GPU server.

to take advantage of multiple GPUs.
or allow a mix of GPU and CPU execution.

 0

 200

 400

 600

 800

 1000

 1 2 4 8

T
hr

ou
gh

pu
t (

k-
bo

id
s

/ s
ec

)

GPU server processes

no farmer, 2048 boids
gpu, 2048/1024
cpu, 2048/1024

no farmer, 4096 boids
gpu, 4096/1024

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500 600 700 800 900 1000

T
hr

ou
gh

pu
t (

k-
bo

id
s

/ s
ec

)

Iteration

no farmer, 2048 boids
no farmer, 4096 boids
2 servers, 2048/1024
2 servers, 4096/1024

Average throughput at t = 500 Throughput for multiple GPUs

Improvement in throughput for 4096 boids is significant.

so worth doing when multiple GPUs are present.

More shared data

Parallel GPU Servers

An obvious (and fairly straightforward) next step is to parallelise
the GPU server.

to take advantage of multiple GPUs.
or allow a mix of GPU and CPU execution.

 0

 200

 400

 600

 800

 1000

 1 2 4 8

T
hr

ou
gh

pu
t (

k-
bo

id
s

/ s
ec

)

GPU server processes

no farmer, 2048 boids
gpu, 2048/1024
cpu, 2048/1024

no farmer, 4096 boids
gpu, 4096/1024

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500 600 700 800 900 1000

T
hr

ou
gh

pu
t (

k-
bo

id
s

/ s
ec

)

Iteration

no farmer, 2048 boids
no farmer, 4096 boids
2 servers, 2048/1024
2 servers, 4096/1024

Average throughput at t = 500 Throughput for multiple GPUs

Improvement in throughput for 4096 boids is significant.

so worth doing when multiple GPUs are present.

Further optimisation

Further Optimisation: Less Channel I/O

Each cycle, the viewer processes update their viewable arrays from
the contents of the 9 connected locations.

means agent IDs are duplicated 8 times (although that’s not a huge
overhead).

Each boid goes through a sequence of communications with the
GPU server process.

when dealing with large numbers of boids, this creates significant
overheads (for something that is largely straightforward).

Solutions to these damage the clarity of the system.

largely by breaking the abstractions of delegated computation (the
GPU server process) and viewable state (in the viewer processes).

Further optimisation

Further Optimisation: Less Channel I/O

Each cycle, the viewer processes update their viewable arrays from
the contents of the 9 connected locations.

means agent IDs are duplicated 8 times (although that’s not a huge
overhead).

Each boid goes through a sequence of communications with the
GPU server process.

when dealing with large numbers of boids, this creates significant
overheads (for something that is largely straightforward).

Solutions to these damage the clarity of the system.

largely by breaking the abstractions of delegated computation (the
GPU server process) and viewable state (in the viewer processes).

Further optimisation

Further Optimisation: Less Channel I/O

Each cycle, the viewer processes update their viewable arrays from
the contents of the 9 connected locations.

means agent IDs are duplicated 8 times (although that’s not a huge
overhead).

Each boid goes through a sequence of communications with the
GPU server process.

when dealing with large numbers of boids, this creates significant
overheads (for something that is largely straightforward).

Solutions to these damage the clarity of the system.

largely by breaking the abstractions of delegated computation (the
GPU server process) and viewable state (in the viewer processes).

Further optimisation

Further Optimisation: Less Channel I/O

b b b(agent state)

gpu.engine (CUDA library)

updater

(viewable IDs)

(neighbourhood map)

Three phases of execution:

state copied to GPU, computations performed, results collected and
written back.
boids initiate movement, moving if needed.
global viewable state updated.

Further optimisation

Further Optimisation: Less Channel I/O

b b b(agent state)

gpu.engine (CUDA library)

updater

(viewable IDs)

(neighbourhood map)

Three phases of execution:

state copied to GPU, computations performed, results collected and
written back.
boids initiate movement, moving if needed.
global viewable state updated.

Further optimisation

Further Optimisation: Less Channel I/O

b b b(agent state)

gpu.engine (CUDA library)

updater

(viewable IDs)

(neighbourhood map)

Three phases of execution:

state copied to GPU, computations performed, results collected and
written back.
boids initiate movement, moving if needed.
global viewable state updated.

Further optimisation

Further Optimisation: Less Channel I/O

b b b(agent state)

gpu.engine (CUDA library)

updater

(viewable IDs)

(neighbourhood map)

Three phases of execution:

state copied to GPU, computations performed, results collected and
written back.
boids initiate movement, moving if needed.
global viewable state updated.

Further optimisation

Further Optimisation: Less Channel I/O

b b b(agent state)

gpu.engine (CUDA library)

updater

(viewable IDs)

(neighbourhood map)

Three phases of execution:

state copied to GPU, computations performed, results collected and
written back.
boids initiate movement, moving if needed.
global viewable state updated.

Further optimisation

Further Optimisation: Less Channel I/O

b b b(agent state)

gpu.engine (CUDA library)

updater

(viewable IDs)

(neighbourhood map)

Three phases of execution:

state copied to GPU, computations performed, results collected and
written back.
boids initiate movement, moving if needed.
global viewable state updated.

Further optimisation

Less Channel I/O: Performance

Improvement in performance is substantial.

for 16384 boids, vary the density and execution mode.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 100 200 300 400 500 600 700 800 900 1000

T
hr

ou
gh

pu
t (

k-
bo

id
s

/ s
ec

)

Iteration

in-boid
8x cpu
1x gpu
2x gpu

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 20 40 60 80 100 120
A

vg
. t

hr
ou

gh
pu

t (
k-

bo
id

s
/ s

ec
)

Density (boids / location)

in-boid
8x cpu
1x gpu
2x gpu

Average throughput at 38 boids/location Throughput for varying densities

16384
50×38 = 9 16384

26×20 = 32 16384
20×14 = 59 16384

16×12 = 85 16384
12×9 = 152

Further optimisation

Centralising Movement

Boid processes still (and only) initiate the move between locations.

centralising this makes the boid processes, locations and updaters
redundant.

We keep the locations for interaction, however.

and double-buffer the agent state for performance.

Further optimisation

Centralising Movement

Boid processes still (and only) initiate the move between locations.

centralising this makes the boid processes, locations and updaters
redundant.

We keep the locations for interaction, however.

and double-buffer the agent state for performance.

Further optimisation

Centralising Movement

Boid processes still (and only) initiate the move between locations.

centralising this makes the boid processes, locations and updaters
redundant.

We keep the locations for interaction, however.

and double-buffer the agent state for performance.

(viewable IDs)

render

(framebuffers)

gpu.engine move.engine interact.agent
(GUI events)

(barrier)

(agent state arrays)

Further optimisation

Centralising Movement

Boid processes still (and only) initiate the move between locations.

centralising this makes the boid processes, locations and updaters
redundant.

We keep the locations for interaction, however.

and double-buffer the agent state for performance.

(viewable IDs)

render

(framebuffers)

gpu.engine move.engine interact.agent
(GUI events)

(barrier)

(agent state arrays)

phase 1 read/write

Further optimisation

Centralising Movement

Boid processes still (and only) initiate the move between locations.

centralising this makes the boid processes, locations and updaters
redundant.

We keep the locations for interaction, however.

and double-buffer the agent state for performance.

(viewable IDs)

render

(framebuffers)

gpu.engine move.engine interact.agent
(GUI events)

(barrier)

(agent state arrays)

phase 2 read/write

Further optimisation

Centralising Movement: Performance

Squeeze a little more performance out of the GPU(s).

 0

 500

 1000

 1500

 2000

 2500

 0 5000 10000 15000 20000 25000 30000 35000

A
vg

. t
hr

ou
gh

pu
t (

k-
bo

id
s

/ s
ec

)

Boids

1x gpu
2x gpu

 0

 500

 1000

 1500

 2000

 2500

 0 100 200 300 400 500 600 700 800 900 1000
T

hr
ou

gh
pu

t (
k-

bo
id

s
/ s

ec
)

Iteration

1x gpu
2x gpu

Fixed density (40), varying number of boids Throughput for 30720 boids, 32×24 grid

Could manage more in theory, but
visualisation creates overheads.

from about 60 cycles/sec without
visualisation, to 25 cycles/sec with
(synchronised display).

Experimenting

Experimenting with Different Parameters

Boid algorithm uses a number of different parameters internally.

repulsion radius and fraction, viewing angle and distance,
centre-of-mass fraction, mean-velocity fraction.
and a few other things.

Playing around produces substantially different behaviours.

previously difficult to explore with large numbers of agents.

Experimenting

Experimenting with Different Parameters

Boid algorithm uses a number of different parameters internally.

repulsion radius and fraction, viewing angle and distance,
centre-of-mass fraction, mean-velocity fraction.
and a few other things.

Playing around produces substantially different behaviours.

previously difficult to explore with large numbers of agents.

Conclusions

Conclusions

Have gone from a basic occam-π only implementation (managing
around 110,000 boid-cycles per second) to a hybrid CPU/GPU
implementation with good performance (2,000,000 boid-cycles per
second).

could still improve though (future work).

A process of step-by-step change, not a new implementation.

unlikely to have come up with this design from a fresh start.

Despite the differences from the original, still retains nice high-level
features:

can have other agents (e.g. the interactive one) in the system too —
executing on the CPU, GPU or something else.
distribution still possible: use of locations (even if just data).

Conclusions

Conclusions

Have gone from a basic occam-π only implementation (managing
around 110,000 boid-cycles per second) to a hybrid CPU/GPU
implementation with good performance (2,000,000 boid-cycles per
second).

could still improve though (future work).

A process of step-by-step change, not a new implementation.

unlikely to have come up with this design from a fresh start.

Despite the differences from the original, still retains nice high-level
features:

can have other agents (e.g. the interactive one) in the system too —
executing on the CPU, GPU or something else.
distribution still possible: use of locations (even if just data).

Conclusions

Conclusions

Have gone from a basic occam-π only implementation (managing
around 110,000 boid-cycles per second) to a hybrid CPU/GPU
implementation with good performance (2,000,000 boid-cycles per
second).

could still improve though (future work).

A process of step-by-step change, not a new implementation.

unlikely to have come up with this design from a fresh start.

Despite the differences from the original, still retains nice high-level
features:

can have other agents (e.g. the interactive one) in the system too —
executing on the CPU, GPU or something else.
distribution still possible: use of locations (even if just data).

Conclusions

Future Work

Now that we can have large numbers of boids, a 3D version.

and perhaps an opportunity to do something interesting with the
haptics interface.

Absolutely no attempt (because of lack of time) has been made to
optimise the code that runs on the GPU, other than getting it to
work.

expect to squeeze a bit of performance out.
have not even experimented with different threads-per-block and
similar.

A total GPU implementation, to give a “best case” benchmark.

if not already; handling the moves on the GPU is non-trivial.

Conclusions

Acknowledgements

Hardware:

NVIDIA GTX-570, GTX-590 and ATI Radeon 7970 funded by the
Faculty of Sciences (REF fund 2012/2013, Tranche 1).
fast desktop (quad-core 2600K) funded by the School of Computing.

Early experiments with occam-π and CUDA/OpenCL done by Tom
Pressnell and Brendan Le Foll (graduated).

Images, in no particular order:

Intel Corporation, Kaiiv (de.wikipedia), Editing by Pixel8, IBM
Corporation, pcmag.com, IXBT Labs, anandtech.com, NVIDIA
Corporation.

Additional history/etc.: Wikipedia.

Conclusions

Questions?

References

References

[1] P.H. Welch and F.R.M. Barnes.
Communicating mobile processes: introducing occam-pi.
In 25 Years of CSP, volume 3525 of LNCS. Springer, 2005.

[2] C.A.R. Hoare.
Communicating Sequential Processes.
Prentice-Hall, London, 1985.
ISBN: 0-13-153271-5.

[3] R. Milner.
Communicating and Mobile Systems: the Pi-Calculus.
Cambridge University Press, 1999.
ISBN: 0-52165-869-1.

[4] C.G. Ritson, A.T. Sampson, and F.R.M. Barnes.
Multicore scheduling for lightweight communicating processes.
Science of Computer Programming, 77(6):727–740, June 2012.

[5] Fiona A.C. Polack, Tim Hoverd, Adam T. Sampson, Susan Stepney, and Jon Timmis.
Complex systems models: engineering simulations.
In S. Bullock, J. Noble, R. Watson, and M. A. Bedau, editors, Artificial Life XI: Proceedings of the Eleventh International
Conference on the Simulation and Synthesis of Living Systems, pages 482–489. MIT Press, Cambridge, MA, 2008.

[6] Adam T. Sampson, John Markus Bjørndalen, and Paul S. Andrews.
Birds on the wall: Distributing a process-oriented simulation.
In 2009 IEEE Congress on Evolutionary Computation (CEC 2009), pages 225–231. IEEE Press, 2009.

[7] Craig W. Reynolds.
Flocks, herds and schools: A distributed behavioral model.
SIGGRAPH Comput. Graph., 21(4):25–34, August 1987.

[8] NVIDIA Corporation.
Whitepaper: NVIDIA’s Next Generation CUDA Compute Architecture: Fermi, 2009.

[9] NVIDIA.
CUDA C programming guide 4.2, April 2012.
http://www.nvidia.com/content/cuda/cuda-developer-resources.html.

[10] Khronos OpenCL Working Group.
The OpenCL specification 1.2, November 2011.
http://www.khronos.org/registry/cl/.

http://www.nvidia.com/content/cuda/cuda-developer-resources.html
http://www.khronos.org/registry/cl/

	Process-orientation
	Boids
	History lesson
	GPUs
	GPU server
	Shared data
	More shared data
	Further optimisation
	Experimenting
	Conclusions
	References

