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Process-orientation

Process-Oriented Programming

Building systems with concurrent processes as the bricks.

processes communicate and synchronise using channels and barriers
(the mortar).
communication is synchronised, unidirectional and unbuffered.

We use the occam-π language [1] for implementation.

based heavily on the semantics of CSP [2].
ideas of dynamics and mobility from the π-calculus [3].
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Process-orientation

Process-Oriented Programming

Channels are first class types, so can have channels carrying
channels (or rather, channel ends).

enables networks of processes to reconfigure themselves dynamically.
can have shared channel-ends, whose mutually exclusive access is
protected by a fair-queueing semaphore.

Processes can alternate (select) between multiple channel inputs
and timeouts, with optional priority.

external choice in CSP, more or less.

Can build large systems (104 – 106 processes) using layered networks
of communicating processes, that grow, shrink and evolve at
run-time.

need to be aware of dangers such as deadlock, livelock and
starvation (good design).
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Process-orientation

Not a Talk About occam-π

For the purpose of this talk, pictures are sufficient.

the graphical representation we have for process networks maps
cleanly to and from code.

Not entirely dissimilar languages Erlang (Sony Ericsson) and Go
(Google) do similar things — some intersection of features.

no assumption about sequential execution in occam-π: equal syntax
standing with concurrent execution (SEQ vs. PAR).

Perhaps more relevant is the tool-chain and the run-time system
(CCSP [4]).

compiled to native code for fast execution (though not optimal).
small overheads for channels (4 bytes) and processes (32 bytes
minimum).
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Boids

The Boids Simulation

A good case study — it is not trivially parallelisable.

fractal generators and Conway’s game-of-life are trivially
parallelisable and give the expected speedups when running with the
GPU (×300 or more).

An n-body problem, but where n is kept manageable by partitioning
the world into a regular grid.

Produced originally as part of the CoSMoS project [5, 6].

based on Reynolds’ “boids” [7].
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Boids

Simulation Operation

World is defined using a grid of location processes.

each location has a viewer, and each viewer has an updater.

Boid processes do not interact with locations and viewers directly.

instead interacting with an abstract agent, that in turn handles
interaction with the world (and its particular geometry).

The barrier divides simulation execution into two phases.

Phase 1:

processes synchronise on the barrier.
via the abstract agent and viewer,
neighbour discovery.
compute new acceleration and velocity.

move if needed.

Phase 2:

processes synchronise on the barrier.

viewers update from locations.
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Boids

From the Boids’ Perspective

1: procedure boid(space link , barrier t)
2: state me = initial state ()
3: while True do
4: sync t ⊲ enter observation phase
5: all = get viewable(link)
6: vis,obs = prune visible(all , me)
7: me = centre of mass(vis, me)
8: me = repulsion(vis, me)
9: me = mean velocity(vis, me)

10: me = obstacles(obs, me)
11: update(link , me)
12: sync t ⊲ enter update phase
13: end while
14: end procedure



Boids

Performance

For 2048 boids and 9 obstacles in an 8×6 grid.

test machine is an Intel Quad Core i7 (2600K) running at 3.4 GHz
(fixed); 4 real cores & 4 hyperthreads.
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Boids

Visualisation

Some of the process plumbing is used for a display:

uses SDL to display 2D framebuffers on a
host display (and, separately, allows
capture to files).

in interactive mode, can adjust simulation
parameters and move an obstacle around.

This is about as good as the original version will manage.

could tweak it for more performance based on parameter values, but
not expecting substantial improvements.

Solution: use the GPU to speed things up!
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NVIDIA releases the GeForce 3,
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ATI try and introduce Visual
Processing Unit (VPU) into the
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and floating-point intensive
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History lesson

A Brief History of GPUs

Specific graphics co-processors existed in the 1980s and 1990s,
but not in the general consumer market.

fixed-feature hardware accelerators (DirectX) cheaper and faster.

Recent GPU cards offer significant computational ability, driven
largely by the HPC and gaming industries.

fundamentally still graphics processors, not high-performance
scientific calculators.
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GPUs

General GPU Structure

Bunch of different hardware units:

memory (VRAM) and host interfaces.
a large cache memory area.
thread scheduling logic.
a number of stream processors.

Logical interpretation is SIMD: data is fixed (in a large register-file)
and instructions are pumped through a number of processing cores.

NVIDIA Fermi [8] used in GF100 and GF110 GPUs.

available on cards such as the Tesla C2050 and GeForce GTX 580.
around 3 billion transistors in 512 CUDA cores.
more optimisations for double-precision arithmetic.

Resulting silicon on a 40nm process is about the size of a stamp.

hard to fabricate, but regular structure means that parts can be
disabled where defective.
e.g. GTX 570 has 1 of the 16 stream processors disabled.
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NVIDIA Fermi Architecture



GPUs

On GPU Programming

The GPU programming model, for CUDA [9] and OpenCL [10], is
somewhat abstracted from the real hardware.

CUDA used for these experiments: more mature and well
documented, but less portable.

Programmer writes a kernel — a piece of code that is executed in
parallel across the CUDA cores.

single threads organised into thread blocks (max. 512/1024).
blocks arranged into grids that can be huge (64k/2G × 2/3D).
threads scheduled in groups of 32 called warps, execution is
interleaved (based on available resources).

Arrangement of threads, blocks and grids can be tweaked for
performance.

balanced with register and cache memory use.
“better” GPUs can do shared memory and synchronisation within
thread blocks.
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... stuff

} gpu in;
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} gpu out;

global void my kernel (const gpu in *in,
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{
int idx = (blockDim.x * blockIdx.x)

+ threadIdx.x;

if (idx < count) {
out[idx] = sums (in, idx);

}
}
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GPU Programming

For doing typical scientific calculations (e.g. boid algorithms) over a
set of things (e.g. boid state) simplest to treat as a 1D problem:

inputs: b b b0 1 2 3 4 n-1

kernel

outputs: b b b

typedef struct {
... stuff

} gpu in;

typedef struct {
... stuff

} gpu out;

global void my kernel (const gpu in *in,
gpu out *out, const int count)

{
int idx = (blockDim.x * blockIdx.x)

+ threadIdx.x;

if (idx < count) {
out[idx] = sums (in, idx);

}
}

... allocate device memory
while (busy) {

... copy data to GPU
my kernel <<< 512, blks >>> (args)
... copy results from GPU

}
... free device memory



GPU server

GPU Server Approach

As a starting point, a GPU server process is introduced.

clean abstraction: other processes send computation requests and
collect results.

server collects requests and
dispatches them in fixed-size
batches to the GPU.

only a few parts of the boid
algorithm to start with:

Despite the additional infrastructure, overheads are not too
significant.

but performance is not too great either.
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GPU server

GPU Server Approach: More GPU

Putting more of the boid algorithm onto the GPU, does not help:

Significant increase in the
amount of data (all) copied
to the GPU.

for typical parameter sets, the number of visible agents (vis) is
around 3–5% of those viewable (all) — circa 13MB for 2048 boids.
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GPU server

GPU Server Approach: More Optimisations

Various attempts to further optimise the system (without changing
anything too substantially) did not produce anything better than the
CPU-only version.

limited by the memory bandwidth between host and GPU — might
improve with host-stolen video-RAM.
strategies included page locked memory on the host (directly
sharable over the PCIe bus) and the use of streams on the device to
overlap memory copies with kernel execution.



Shared data

Refactoring: Shared Data

As a moderate change, introduce some shared data to the system.

in principle, means the actual boid (and other agent) state only
needs to be copied to the GPU once each cycle.
barrier phases can be used to coordinate access to this shared state
safely (CREW).

Requires some less subtle changes in the system:

mostly absolute positioning and agent IDs not state.

Phase 1: boids read global state and
compute new (local) velocity.

Phase 2: boids update global state
and move.

Phase 3: updates to viewable states
occur (as before).
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Shared data

Shared Data: Performance

Considering a CPU-only version to start with (based on the original),
performance is significantly improved.

downside is our existing GPU results now look even worse...
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Shared data

Shared Data: Reintroducing the GPU

Next, add a GPU-server process, operating on shared agent data.

still copying around arrays of viewable agents, but only integers now.

(location and viewer processes)

b b b

at the start of the GPU cycle (for
a given batch size), all agent
state copied over.

results collected locally and global
state (on the host) updated before
the second phase.
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Still a lot of viewable state manipulation.



Shared data

Reintroducing the GPU: Performance

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  100  200  300  400  500  600  700  800  900 1000

T
hr

ou
gh

pu
t (

k-
bo

id
s 

/ s
ec

)

Iteration

cpu-1024
cpu-4096
gpu-1024
gpu-4096

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  100  200  300  400  500  600  700  800  900 1000

T
hr

ou
gh

pu
t (

k-
bo

id
s 

/ s
ec

)

Iteration

cpu-2048
cpu-4096
gpu-2048
gpu-4096

Batches of 512 jobs Batches of 2048 jobs

Performance is unimpressive.

worse than the shared-data CPU-only version in all cases.

Still a lot of viewable state manipulation.



More shared data

Sharing the Viewable State

Sharing the viewable state (in each viewer) requires some changes
in the boid algorithm.

a single pass over the viewable agents, instead of sorting into visible
boids and obstacles.

just as functional, but the boid
algorithm is a little harder to
follow.

mostly just reducing the amount
of data copied around.

contents updated during the
update phase.
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Sharing the Viewable State: Performance
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More shared data

Parallel GPU Servers

An obvious (and fairly straightforward) next step is to parallelise
the GPU server.

to take advantage of multiple GPUs.
or allow a mix of GPU and CPU execution.
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Further optimisation

Further Optimisation: Less Channel I/O

Each cycle, the viewer processes update their viewable arrays from
the contents of the 9 connected locations.

means agent IDs are duplicated 8 times (although that’s not a huge
overhead).

Each boid goes through a sequence of communications with the
GPU server process.

when dealing with large numbers of boids, this creates significant
overheads (for something that is largely straightforward).

Solutions to these damage the clarity of the system.

largely by breaking the abstractions of delegated computation (the
GPU server process) and viewable state (in the viewer processes).
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b b b(agent state)

gpu.engine (CUDA library)

updater

(viewable IDs)

(neighbourhood map)

Three phases of execution:

state copied to GPU, computations performed, results collected and
written back.
boids initiate movement, moving if needed.
global viewable state updated.



Further optimisation

Further Optimisation: Less Channel I/O

b b b(agent state)

gpu.engine (CUDA library)

updater

(viewable IDs)

(neighbourhood map)

Three phases of execution:

state copied to GPU, computations performed, results collected and
written back.
boids initiate movement, moving if needed.
global viewable state updated.



Further optimisation

Further Optimisation: Less Channel I/O

b b b(agent state)

gpu.engine (CUDA library)

updater

(viewable IDs)

(neighbourhood map)

Three phases of execution:

state copied to GPU, computations performed, results collected and
written back.
boids initiate movement, moving if needed.
global viewable state updated.



Further optimisation

Further Optimisation: Less Channel I/O

b b b(agent state)

gpu.engine (CUDA library)

updater

(viewable IDs)

(neighbourhood map)

Three phases of execution:

state copied to GPU, computations performed, results collected and
written back.
boids initiate movement, moving if needed.
global viewable state updated.



Further optimisation

Further Optimisation: Less Channel I/O

b b b(agent state)

gpu.engine (CUDA library)

updater

(viewable IDs)

(neighbourhood map)

Three phases of execution:

state copied to GPU, computations performed, results collected and
written back.
boids initiate movement, moving if needed.
global viewable state updated.



Further optimisation

Further Optimisation: Less Channel I/O

b b b(agent state)

gpu.engine (CUDA library)

updater

(viewable IDs)

(neighbourhood map)

Three phases of execution:

state copied to GPU, computations performed, results collected and
written back.
boids initiate movement, moving if needed.
global viewable state updated.



Further optimisation

Less Channel I/O: Performance

Improvement in performance is substantial.

for 16384 boids, vary the density and execution mode.
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Further optimisation

Centralising Movement

Boid processes still (and only) initiate the move between locations.

centralising this makes the boid processes, locations and updaters
redundant.

We keep the locations for interaction, however.

and double-buffer the agent state for performance.
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Further optimisation

Centralising Movement: Performance

Squeeze a little more performance out of the GPU(s).
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Fixed density (40), varying number of boids Throughput for 30720 boids, 32×24 grid

Could manage more in theory, but
visualisation creates overheads.

from about 60 cycles/sec without
visualisation, to 25 cycles/sec with
(synchronised display).



Experimenting

Experimenting with Different Parameters

Boid algorithm uses a number of different parameters internally.

repulsion radius and fraction, viewing angle and distance,
centre-of-mass fraction, mean-velocity fraction.
and a few other things.

Playing around produces substantially different behaviours.

previously difficult to explore with large numbers of agents.
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Conclusions

Conclusions

Have gone from a basic occam-π only implementation (managing
around 110,000 boid-cycles per second) to a hybrid CPU/GPU
implementation with good performance (2,000,000 boid-cycles per
second).

could still improve though (future work).

A process of step-by-step change, not a new implementation.

unlikely to have come up with this design from a fresh start.

Despite the differences from the original, still retains nice high-level
features:

can have other agents (e.g. the interactive one) in the system too —
executing on the CPU, GPU or something else.
distribution still possible: use of locations (even if just data).
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Conclusions

Future Work

Now that we can have large numbers of boids, a 3D version.

and perhaps an opportunity to do something interesting with the
haptics interface.

Absolutely no attempt (because of lack of time) has been made to
optimise the code that runs on the GPU, other than getting it to
work.

expect to squeeze a bit of performance out.
have not even experimented with different threads-per-block and
similar.

A total GPU implementation, to give a “best case” benchmark.

if not already; handling the moves on the GPU is non-trivial.
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