
The Guppy Language: An Update

CPA-2013 Fringe

Fred Barnes

School of Computing, University of Kent, Canterbury

F.R.M.Barnes@kent.ac.uk

http://www.cs.kent.ac.uk/~frmb/



Previously

Last Time ...

... at CPA-2011.

I talked about a possible successor language to occam-pi: Guppy.
we’re still trying to think up a better name...!

We’re still using occam-pi, of course.

adding new things and fixing bugs as we go.

Why..?

occam-pi is a bolt-on (kind of) to occam: and built into the existing

occam compiler (circa 1990s).
hard to add new things.
perception issues with the name, too. :-(



Previously

Last Time ...

... at CPA-2011.

I talked about a possible successor language to occam-pi: Guppy.
we’re still trying to think up a better name...!

We’re still using occam-pi, of course.

adding new things and fixing bugs as we go.

Why..?

occam-pi is a bolt-on (kind of) to occam: and built into the existing

occam compiler (circa 1990s).
hard to add new things.
perception issues with the name, too. :-(



Previously

Last Time ...

... at CPA-2011.

I talked about a possible successor language to occam-pi: Guppy.
we’re still trying to think up a better name...!

We’re still using occam-pi, of course.

adding new things and fixing bugs as we go.

Why..?

occam-pi is a bolt-on (kind of) to occam: and built into the existing

occam compiler (circa 1990s).
hard to add new things.
perception issues with the name, too. :-(



Previously

What We Need ... (last time)

Preserving the useful features of occam/occam-pi:

embodiment of CSP based concurrency (though may not restrict to
that alone) in the language itself.
strict parallel usage checks: zero aliasing.

Preserving the fast execution of the resulting code:

no heavy run-time checks (e.g. expensive run-time typing, complex
garbage collection).
using existing CCSP.

Targetable at just about any architecture in existence:

by compiling (ultimately) to LLVM (low-level virtual machine).



Previously

What We Would Like ... (last time)

A language that other people would be happy to (and may even
want to) use:

successes of Python and Go suggest indentation-based layout and
concurrency are not distasteful.

Rapid development – nothing overly cumbersome to program with
respect to other languages:

need some genericity/flexibility in the type system
automatic ‘SEQ’ behaviour (static checks can spot likely errors)
may need to sacrifice some of the purity of occam to make this work..

Automatic mobility (largely a compiler thing), with a couple of
language hints thrown in to help the compiler when automatic static
analysis gets too complex (or wrong).

A proper ‘string’ type with Unicode support.



Now

Current State

Have implemented some of the language.

in the NOCC compiler framework (which also grew an AVR
assembler recently).

Currently generating C code from Guppy sources:

a known quantity when it comes to debugging, etc.
interfaces with the existing run-time system (CCSP [1]) using CIF [2].

Recently, managed to compile and run the commstime benchmark!

... insert live demonstration ...



Now

Current State

Have implemented some of the language.

in the NOCC compiler framework (which also grew an AVR
assembler recently).

Currently generating C code from Guppy sources:

a known quantity when it comes to debugging, etc.
interfaces with the existing run-time system (CCSP [1]) using CIF [2].

Recently, managed to compile and run the commstime benchmark!

... insert live demonstration ...



Now

Current State

Have implemented some of the language.

in the NOCC compiler framework (which also grew an AVR
assembler recently).

Currently generating C code from Guppy sources:

a known quantity when it comes to debugging, etc.
interfaces with the existing run-time system (CCSP [1]) using CIF [2].

Recently, managed to compile and run the commstime benchmark!

... insert live demonstration ...



Now

Comparison with occam-pi

Not as efficient, but close.

run-time kernel calls impose some overhead: optimised for occam-pi.
more memory required, e.g. commstime: 132 words for occam-pi,
434 for Guppy.
commstime is perhaps not a good benchmark, but not got enough
compiler support for hard-core computational code yet!

Because we go via CIF into the run-time, can (in principle) co-exist
with occam-pi processes.

useful in various ways.

Get it here:
http://github.com/concurrency/kroc

http://github.com/concurrency/nocc

(and then you have to figure out how to make it fly, ...)



Now

Questions?



References

References

[1] C.G. Ritson, A.T. Sampson, and F.R.M. Barnes.
Multicore scheduling for lightweight communicating processes.
Science of Computer Programming, 77(6):727–740, June 2012.

[2] F.R.M. Barnes.
Interfacing C and occam-pi.
In J.F. Broenink, H.W. Roebbers, J.P.E. Sunter, P.H. Welch, and D.C. Wood, editors, Proceedings of Communicating Process

Architectures 2005. IOS Press, September 2005.


	Previously
	Now
	References

