
Verifying the CPA
Networking Stack using

SPIN/Promela
Kevin Chalmers and Jon Kerridge

Edinburgh Napier University

Breakdown

• Introduction and Motivation

• CPA Networking Stack
• Architecture

• Operation

• SPIN Model of the CPA Networking
• Processes

• Architecture

• Results

• Conclusions and Future Work

Motivation

• CPA Networking Stack developed from JCSP
Networking
• net2 package

• Original JCSP Networking had poor error handling
• Errors in the stack not sent to application layer

• Verify CPA Networking Stack operates under certain
conditions
• Bufferring

• Network failure

SPIN/Promela

• SPIN (Simple Promela INterpreter) provides state space
checking
• Assertion checking
• Deadlock
• Liveness

• Language to build SPIN models is Promela (PROcess
MEta LAnguage)

• Similar semantics to CSP
• Components as processes
• Processes communicate via channels
• Choice between events

• Provides channel mobility (CPA Networking Stack
currently relies on channel mobility internally)

CPA Networking Stack

• CPA Networking Stack developed from JCSP
Networking

• Goal is to provide a method to allow multiple
platform / framework communication in a
transparent CPA manner
• Networked channels
• Networked barriers

• Development of standard components and protocol

• Take two views
• Layered architecture
• High-level component architecture

Layered Architecture

• Application layer
• User level processes

• Event layer
• Networked

synchronization primitives

• Link layer
• Connections to other

nodes

• Communication layer
• Underlying I/O

mechanism

Application

Event

Communication

Link

Event Interfaces

Channel & Link Connection

Connection Stream

Communicat ion Specific

Messaging

Virtual Numbering

Node Addressing

Communicat ion Specific

Addressing

Runtime Data Types

CPA Networking Protocol

Raw Data

High Level Architecture

• Link
• LinkTx for outgoing

messages
• LinkRx for incoming

messages – protocol
implemented here

• Networked channels
• Output provides a writing

end
• Input provides a reading

end

• Other components for
management, barriers

Link

Net Channel
Input

Net Channel
Output

LinkTxLinkRx

Application
Process

Application
Process

Protocol

• Message defined by a triple (with possible data
load)
• (<type>, <attr1>, <attr2>, [<data>])

• Basic channel messages
• (SEND, <dest>, <source>, <data>)

• (ACK, <dest>, null)

• (REJECT_CHANNEL, <dest>, null)

• (POISON, <dest>, <strength>)

• (LINK_LOST, <null>, <null>)

• (ASYNC_SEND, <dest>, <source>, <data>)

SEND/ACK Operation

Application
Process

Net Channel
Output (45)

LinkTx LinkRx

Net Channel
Input (97)

Application
Process

LinkTxLinkRx

1. write

2. SEND|97|45|[data] 3. bytes 4. SEND|97|45|[data]

5. read

6. [data]

7. ACK|45|-18. bytes9. ACK|45|-1

10. end write

SEND/REJECT Operation

Application
Process

Net Channel
Output (45)

LinkTx LinkRx

LinkTxLinkRx

1. write

2. SEND|97|45|[data] 3. bytes

5. bytes6. REJECT_CHANNEL|45|-1

7. exception

4. REJECT_CHANNEL|45|-1

SEND/LINK_LOST

• One of the biggest issues in JCSP Networking

• Link failure caused resources to remain and
messages to disappear

• LINK_LOST message now informs all outgoing
channels of link failure

• Two possibilities
• Prior to a write, link goes down. SEND message

immediately replied with LINK_LOST

• Mid-write link goes down. All output channels
connected to link are sent LINK_LOST

Building a SPIN Model of CPA
Networking
• Only five messages of interest from protocol

• ASYNC_SEND cannot be checked as sender waits for no
ACK – infinite state space

• Promela uses mtype to define message types

mtype = { SEND , ACK , REJECT_CHANNEL , POISON , LINK_LOST };

Channel States

• INACTIVE

• OK_INPUT

• OK_OUTPUT

• POISONED

• DESTROYED

• BROKEN

typedef CHANNEL_DATA

{

 byte vcn ;

 byte state = INACTIVE ;

 chan toChannel ;

};

INACTIVE OK_OUTPUTOK_INPUT BROKEN

POISONED

DESTROYED

create()create()

POISON or
poison()

destroy()destroy()

REJECT_CHANNEL or
LINK_LOST

POISON or
poison()

NetChannelOutput

• Use channels to
simulate method calls

• Three operations
• Write
• Poison
• Destroy

• NetChannelOutput
connected to a LinkTx

• Incoming
acknowledgement
channel

NetChannelOutput

write

poison

destroy

callReturn

toLinkTx

ackChannel

NetChannelInput

• Five operations
• Read

• Start Read and End
Read
• Extended rendezvous

• Poison

• Destroy

• NetChannelInput has
an incoming channel
for messages

NetChannelInput

read

startRead

endRead

poison

destroy

callReturn

fromLink

Link Process

• Link contains two sub-
processes
• LinkTx

• LinkRx – see paper for
full Promela code

• Incoming link from
event processes

• Connection to the
network

Link
toLinkTx

toNetwork

fromNetwork

InputNode

InputNode

Link NetChannelInput Receiver

OutputNode

OutputNode

Sender NetChannelOutput Link

Network Process

• Network process simply forward messages from
the InputNode to the OutputNode and vice-versa

• To simulate failure, the Network process can non-
deterministically fail
• See paper for Network process code

• Sending and receiving modelled as atomic – the
underlying communication mechanism is assumed
to deal with incomplete messages
• Exceptional behaviour

SPIN Model of CPA Networking

• Model has one
OutputNode connected
to one InputNode

• The OutputNode can
have multiple output
channels

• InputNode channel has
a buffer
• Discussed later

• Flag used to determine
link failure

OutputNode Network InputNode

Initial Findings

• Single NetChannelOutput connected to a single
NetChannelInput with single space buffer
successful
• Basic assumption
• Link informing NetChannelOutputs of link failure solves

link failure problems

• Original JCSP Networking did not lock state of a
networked channel
• Never experienced but would lead to a failed channel

being sent a message and no error raised

• State of a channel is now locked – no race hazard!

Verifying the Model -
Assumptions
• CPA Networking works on the premise that for

every connected network output to a network
input, one space is required in the input channel
buffer
• For implementation purposes, a channel has an

“infinite” buffer

• To check this, we need to examine the relationship
between the number of connected outputs to a
network input and the buffer size

Results

NUMBER_OUTPUTS 1 2 3 4

BUFFER_SIZE

0 FAIL FAIL FAIL FAIL

1 𝟑. 𝟎𝟔 × 𝟏𝟎𝟓 𝒔𝒕𝒂𝒕𝒆𝒔
𝟑𝟓𝟏 𝒅𝒆𝒑𝒕𝒉

FAIL FAIL FAIL

2 𝟐. 𝟕𝟖 × 𝟏𝟎𝟓𝒔𝒕𝒂𝒕𝒆𝒔
𝟑𝟓𝟏 𝒅𝒆𝒑𝒕𝒉

𝟑. 𝟕𝟏 × 𝟏𝟎𝟕 𝒔𝒕𝒂𝒕𝒆𝒔
𝟑𝟐𝟔𝟒 𝒅𝒆𝒑𝒕𝒉

FAIL FAIL

3 𝟐. 𝟕𝟖 × 𝟏𝟎𝟓𝒔𝒕𝒂𝒕𝒆𝒔
𝟑𝟓𝟏 𝒅𝒆𝒑𝒕𝒉

𝟑. 𝟕𝟏 × 𝟏𝟎𝟕 𝒔𝒕𝒂𝒕𝒆𝒔
𝟑𝟐𝟔𝟒 𝒅𝒆𝒑𝒕𝒉

PASS* FAIL

4 𝟐. 𝟕𝟖 × 𝟏𝟎𝟓𝒔𝒕𝒂𝒕𝒆𝒔
𝟑𝟓𝟏 𝒅𝒆𝒑𝒕𝒉

𝟑. 𝟕𝟏 × 𝟏𝟎𝟕 𝒔𝒕𝒂𝒕𝒆𝒔
𝟑𝟐𝟔𝟒 𝒅𝒆𝒑𝒕𝒉

PASS* PASS*

Conclusions

• CPA Networking Stack is deadlock free even under
network failure

• Removed the lack of state protection in the original
JCSP implementation

• Buffer size has a relation to number of incoming
networked outputs
• Infinite buffer should ensure deadlock freedom

Future Work

• Really need to show that the networked channel
behaves as a standard channel
• Refinement check

• SPIN doesn’t support refinement checks
• Temporal logic capabilities
• Simplify the model and check – but would remove most

behaviour

• Current plan is to move to a networking stack that
can sit atop MPI
• Reengineering and further verification would be

required

Questions?

