Veritying the CPA
Networking Stack using
SPIN/Promela

Kevin Chalmers and Jon Kerridge

Edinburgh Napier University

Breakdown

* Introduction and Motivation
* CPA Networking Stack

e Architecture
* Operation

* SPIN Model of the CPA Networking

* Processes
e Architecture

e Results
e Conclusions and Future Work

Motivation

* CPA Networking Stack developed from JCSP
Networking

* net2 package
* Original JCSP Networking had poor error handling

* Errors in the stack not sent to application layer

 Verify CPA Networking Stack operates under certain
conditions
e Bufferring
* Network failure

SPIN/Promela

* SPIN (Simple Promela INterpreter) provides state space
checking

* Assertion checking
* Deadlock
* Liveness

* Language to build SPIN models is Promela (PROcess
MEta LAnguage)

e Similar semantics to CSP
 Components as processes
* Processes communicate via channels
* Choice between events

* Provides channel mobility (CPA Networking Stack
currently relies on channel mobility internally)

CPA Networking Stack

* CPA Networking Stack developed from JCSP
Networking

* Goal is to provide a method to allow multiple
platform / framework communication in a
transparent CPA manner

e Networked channels
 Networked barriers

* Development of standard components and protocol

* Take two views
* Layered architecture
* High-level component architecture

Layered Architecture

* Application layer
* User level processes

Application

Bvent Interfaces Runtime Data Types

* Event layer
* Networked

Virtual Numbering Bvent

i]] . Channel & Link Gonnection CPA Networking Protocol
synch ronization prim Itives
Node Addressing Link
¢ I—I N k I aye r Connection Sream Rew Data
e Connections to other Commricaton Specic Communication
nodes Communication Sedfic
Messaging

 Communication layer

e Underlying I/O
mechanism

High Level Architecture

Application Application
Process Process

* Link
* LinkTx for outgoing
messages

* LinkRx for incoming
messages — protocol
implemented here

 Networked channels

e Output provides a writing
end

* Input provides a reading
end

* Other components for
management, barriers

Net Channel
Input

Net Channel
Output

A

ink

LinkRx

A 4

@

Communication Mechanism

Protocol

* Message defined by a triple (with possible data
load)

* (<type>, <attrl>, <attr2>, [<data>])

* Basic channel messages
* (SEND, <dest>, <source>, <data>)
* (ACK, <dest>, null)
* (REJECT_CHANNEL, <dest>, null)
* (POISON, <dest>, <strength>)
e (LINK_LOST, <null>, <null>)
* (ASYNC_SEND, <dest>, <source>, <data>)

SEND/ACK Operation

2. SEND |97 |45 |[data]

1. write

3. bytes 4. SEND|97|45| [data]

Application
Process

Net Channel
Output (45)

10. end write

LinkTx

[
P

A 4

Net Channel
Input (97)

9. ACK|45]|-1

LinkRx

8. bytes 7. ACK|45]-1

5. read

Application
Process

6. [data]

SEND/REJECT Operation

2. SEND|9745 | [data]
> LinkTx LinkRx

1. write

Net Channel
Output (45)

Application
Process

4. REJECT_CHANNEL|45]-1

7. exception 1

LinkRx LinkTx

6. REJECT_CHANNEL|45]-1

SEND/LINK LOST

* One of the biggest issues in JCSP Networking

* Link failure caused resources to remain and
messages to disappear

* LINK_LOST message now informs all outgoing
channels of link failure

* Two possibilities
* Prior to a write, link goes down. SEND message
immediately replied with LINK_LOST

* Mid-write link goes down. All output channels
connected to link are sent LINK_LOST

Building a SPIN Model of CPA
Networking

* Only five messages of interest from protocol

 ASYNC_SEND cannot be checked as sender waits for no
ACK — infinite state space

* Promela uses mtype to define message types

mtype = { SEND, ACK, REJECT_CHANNEL, POISON, LINK_LOST };

Channel States

* INACTIVE
« OK_INPUT
« OK_OUTPUT
* POISONED
« DESTROYED
* BROKEN

typedef CHANNEL DATA
{

byte vcn ;
byte state = INACTIVE ;
chan toChannel ;

POISONED

POISON or
poison()

POISON or
poison()

REJECT_CHANNEL or
LINK_LOST

create()
BROKEN

destroy() destroy()

DESTROYED

NetChannelOutput

e Use channels to
simulate method calls

* Three operations
* Write
* Poison
* Destroy

* NetChannelOutput
connected to a LinkTx

* Incoming
acknowledgement
channel

write

poison

L

destroy

>

-

callReturn

>

NetChannelOutput

toLinkTx

>

<t

ackChannel

NetChannellnput

* Five operations

 Read read
-
e Start Read and End
startRead
Read >
 Extended rendezvous endRead |
. fromLink
e Poison poison NetChannellnput -
-
* Destroy destroy _
* NetChannellnput has
. . callReturn
an incoming channel -

for messages

Link Process

e Link contains two sub-

Processes
* LinkTx
* LinkRx — see paper for toNetworE
full Promela code tolinkTx | .
. . n fromNetwork
* Incoming link from ~

event processes

e Connection to the
network

InputNode

InputNode

Link

NetChannellnput

Receiver

OutputNode

OutputNode
- >
— :
Sender .| NetChannelOutput Link
-]

Network Process

* Network process simply forward messages from
the InputNode to the OutputNode and vice-versa

* To simulate failure, the Network process can non-
deterministically fail

e See paper for Network process code

* Sending and receiving modelled as atomic — the
underlying communication mechanism is assumed
to deal with incomplete messages

* Exceptional behaviour

SPIN Model of CPA Networking

* Model has one
OutputNode connected
to one InputNode

* The OutputNode can
have multiple output
channels

* InputNode channel has
a buffer

e Discussed later

* Flag used to determine
link failure

OutputNode

Y

A

etwor

Y

A

InputNode

Initial Findings

* Single NetChannelOutput connected to a single
NetChannellnput with single space buffer
successful

* Basic assumption

* Link informing NetChannelOutputs of link failure solves
link failure problems

* Original JCSP Networking did not lock state of a
networked channel

* Never experienced but would lead to a failed channel
being sent a message and no error raised

e State of a channel is now locked — no race hazard!

Verifying the Model -
Assumptions

* CPA Networking works on the premise that for
every connected network output to a network
input, one space is required in the input channel
buffer

* For implementation purposes, a channel has an
“infinite” buffer

* To check this, we need to examine the relationship
between the number of connected outputs to a
network input and the buffer size

Results

NUMBER_OUTPUTS 1 3 4

BUFFER_SIZE

0 FAIL FAIL FAIL FAIL

1 3.06 x 10° states FAIL FAIL FAIL
351 depth

2 2.78 X 10°states 3.71 x 107 states FAIL FAIL
351 depth 3264 depth

3 2.78 x 10°states 3.71 x 107 states PASS* FAIL
351 depth 3264 depth

4 2.78 X 10°states 3.71 x 107 states PASS* PASS*
351 depth 3264 depth

Conclusions

* CPA Networking Stack is deadlock free even under
network failure

* Removed the lack of state protection in the original
JCSP implementation

* Buffer size has a relation to number of incoming
networked outputs
* Infinite buffer should ensure deadlock freedom

Future Work

* Really need to show that the networked channel
behaves as a standard channel

e Refinement check

* SPIN doesn’t support refinement checks
* Temporal logic capabilities

e Simplify the model and check — but would remove most
behaviour

* Current plan is to move to a networking stack that
can sit atop MPI

* Reengineering and further verification would be
required

Questions?

