Communicating Process Architectures 2013 39
P.H. Welch et al. (Eds.)

Open Channel Publishing Ltd., 2013

© 2013 The authors and Open Channel Publishing Ltd. All rights reserved.

Verifying the CPA Networking Stack
using SPIN/Promela

Kevin CHALMERS and Jon KERRIDGE

Institute for Informatics & Digital Innovation, Edinburgh Napier University, UK
{K.Chalmers, J.Kerridge}@napier.ac.uk

Abstract. This paper presents a verification of the CPA Networking Stack, using the
SPIN Model Checker. Our work shows that the system developed for general network-
ing within CPA applications works under the conditions defined for it. The model it-
self focuses on ensuring deadlock freedom, and work still needs to be undertaken to
verify expected behaviour of the architecture.

Keywords. distributed systems, model checking

Introduction

The net2 package of JCSP [1] introduced a general protocol and architecture that enables
communication between CPA runtimes. For example, JCSP has been shown to interact with
CSP .NET [2]. In this paper, a model of the general protocol and architecture is verified using
the SPIN Model Checker [3]. By doing this work, it can be shown that the CPA Networking
Stack is deadlock free, even under communication failure.

The rest of this paper is as follows. In Section 1 the motivation for this model is pre-
sented. In Section 2 a brief introduction to the SPIN Model Checker is given. Section 3
presents the architecture and operation of the CPA Networking Stack. Section 4 describes the
model of the CPA Networking Stack built in SPIN and in Section 5 the results of checking
this model is presented. Finally, in Section 6 conclusions and future work is discussed.

1. Motivation

One problem of the original networking implementation was poor error handling. Output net
channels can fail due to link failure when exceptions are not passed to the application level.
In the second networking implementation, output net channels are registered with the out-
going link. If the connection fails, the link signals each registered channel in turn. To deter-
mine if registering with the link avoids output channels hanging, a model of the architecture
and protocol was developed with the SPIN Model Checker [3]. The model allows general
verification of the architecture to check deadlock freedom and other properties of interest.

The CPA Networking stack itself was inspired in part by the T9000 virtual channel
processor [4] which has been model checked in the past [S]. However, the CPA Networking
Stack has fundamental differences (the use of channel mobility and a new protocol). Other
developed CPA networking implementations, for example pony [6] and C++CSP Networked
[7] have not been model checked at present.

40 K. Chalmers and J. Kerridge / Verifying CPA Networking

2. SPIN/Promela

SPIN (Simple Promela INterpreter) [3] is a state space model checker allowing verification
of a number of correctness requirements including assertion, deadlock, fairness and liveness
checking of a model. The language of SPIN is Promela (PROcess MEta LAnguage) which
has similar semantics to CSP (e.g. channels, processes, choice). The similarity enables com-
position of models from JCSP / NET CSP source code into a SPIN model for verification.

To verify a model, SPIN converts Promela into C which is then compiled. The compiled
application attempts to verify the model by exploring the state space which can involve the
correctness requirements mentioned.

2.1. Using SPIN/Promela to Verify CPA Networking

Traditionally, CSP models are verified using FDR [8], or more recently PAT [9]. Although
enabling refinement checking of the networking model would be advantageous, FDR does
not currently support channel mobility.

Although it is possible to overcome this limitation [10], Promela permits channel mobil-
ity by passing channels as parameters in a message. The Promela channel is therefore similar
to a channel in JCSP [11]/.NET CSP [12], although Promela does permit guarded operations
on shared channels.

Because of the mobility of Promela channels the produced model is very similar to the
implementation code. The processes in Section 3 that are also implemented in Section 4 are
almost identical in JCSP and Promela code. Other processes described in Section 4 (e.g.
InputNode, OutputNode, Network) are only necessary to verify the model.

3. CPA Networking Stack

In this section, an overview of the architecture and operation of the CPA Networking Stack
will be provided. The information presented is important when the SPIN model is described
in Section 4.

3.1. Architecture

Two architectural views of the networking stack are presented. The first provides a layered
model allowing separation of functionality. The second examines the internal components of
the layers, describing how they interact together to support the underlying distributed channel
mechanism.

3.1.1. Layered Architecture

A layered view of CPA networking consists of four layers as represented in Figure 1:

Application Layer user level processes.

Event Layer networked synchronization primitives. Interfaces are provided to application
layer processes, and the communication functionality of the components encapsulated.

Link Layer connections to other nodes, including receive (RX), transmit (TX), server, and
manager processes.

Communication Layer the underlying communication mechanism that the CPA Network-
ing stack sits upon.

On the left of Figure 1 the addressing mechanism is given, on the right the message types
are given, and down the centre the interfaces between the layers is given. The interfaces are:

K. Chalmers and J. Kerridge / Verifying CPA Networking 41

Application

Event Interfaces Runtime Data Types

Virtual Numbering Event
Channel & Link Connection CPA Networking Protocol
Node Addressing Link
Connection Stream Raw Data

Communication Specific

Addressing Communication

Communication Specific
Messaging

Figure 1. Layered Architecture of CPA Networking Stack.

Event Interfaces Interfaces with networked functionality added.

Channel & Link Connection Channels The crossbar allowing multiple links to communi-
cate to multiple channel ends and multiple channel ends to communicate to multiple
links. The crossbar is implemented using Any-2-One channels in both directions.

Connection Stream Links communicate with the communication mechanism using streams.
These streams are communication specific.

Communication Specific Messaging The communication layer’s messaging protocol (e.g.
TCP/IP).

Addressing mechanisms between each layer are:

Virtual Numbering Number allocated for addressing and lookup purposes.

Node Addressing Each Node is uniquely identifiable to allow inter-Node connections. Link
management relies on addressing to ensure that only one Link to a remote Node exists.
An address takes the form (Protocol)\ (Address). Protocol identifies the underlying
communication mechanism (e.g. tcpip) and Address is the unique address of the Node
based on the addressing mechanism of the communication mechanism.

Communication Specific Addressing Addressing mechanism enforced by the communica-
tion mechanism, for example (IP_Address) : (Port).

Each layer only understands certain message types. These are:

Runtime Data Types The Application Layer operates on data types dependent on the run-
time used.

CPA Network Protocol The responsibility of the Event Layer is to convert outgoing mes-
sages into Network Protocol messages for communication via the Link Layer, and con-
version of incoming Network Protocol messages from the Link Layer to communicate
with the Application Layer. This protocol will be discussed further in Section 3.2

Raw Data Data leaving a Node is sent as bytes, which aids other platforms to interpret the
incoming message. In particular protocol messages are transmitted as primitive data.

3.1.2. High Level Architecture

The individual components and how they are connected is presented in Figure 2.

42 K. Chalmers and J. Kerridge / Verifying CPA Networking

Application Application
Process Process

Net Channel Net Channel
Input Output
y X
ink \ 4
LinkRx LinkTx

Communication Mechanism

Figure 2. High-Level Architecture of CPA Networking Stack.

Link The Link component is responsible for connecting a node (a single running CPA ap-
plication) to another node. The Link and its relevant subcomponents are designed to
allow operation upon any communication mechanism if the necessary addressing and
connection functionality is developed. The Link component has two sub-components
which provide input and output operations between Nodes:

LinkTx The LinkTx process is responsible for transmitting messages to a remote node.

LinkRx The LinkRx process is responsible for receiving messages from a remote
node. LinkRx interprets incoming messages and acts on the message type, ac-
cessing the destination channel if required.

Net Channel Output The networked output channel component provides the interface to
the writing end of a networked channel, and hides the underlying interactions with the
Link. The channel receiving messages from the Link is infinitely buffered.

Net Channel Input The networked input channel component provides the interface to the
reading end of a networked channel.

3.2. Protocol

The primary goal of the CPA Networking protocol is that messages should be platform inde-
pendent by using simple data primitives helps to achieve this goal.

3.2.1. Protocol Definition

The protocol is based on the original JCSP Networking implementation [13], the pony Frame-
work [6] and C++CSP Networked [7]. The key feature is a virtual channel across a commu-
nication medium. Sent messages have a destination, and to permit synchronisation the mes-
sage must be acknowledged, and therefore messages also have a source. Thus there are two
attributes for a basic send message. The type of the message must also be included, providing

K. Chalmers and J. Kerridge / Verifying CPA Networking 43

a message triple. All required messages can be defined with a triple. There is also the optional
data segment for data messages, providing the following message signature:

((type), (attrl), (attr2), [(data)])

Inclusion of data depends on (type), data size being sent as a header.
The basic channel message types are:

SEND Basic send message, requiring a source, destination, and data segment.
(SEND, (dest), (source), (data))

ACK SEND acknowledgement notifying the sender that a message has been read. Only the
destination of the acknowledgement is required.
(ACK, (dest), null)

REJECT_CHANNEL Response to a SEND to a non-existent or destroyed channel. Only a
destination is required.
(REJECT_CHANNEL, (dest), null)

POISON A POISON message requires a destination and a poison strength.
(POISON, (destination), (strength))

LINK_LOST When a Link fails, connected channels must be informed. LINK_LOST mes-
sages will never be transmitted between Nodes, but by a Link to local components. No
extra information is required within the message.

(LINK_LOST, null, null)

ASYNC_SEND Unacknowledged SEND message. Asynchronous messages are used by
server processes to allow typical distributed application request-respond interactions
without blocking. ASYNC_SEND takes the same form as SEND.

(ASYNC_SEND, (dest), (source), (data))

3.3. Operation
In this section, the basic operations of CPA Networking are outlined. The methods to capture
Link failure and data conversion are also covered. First a brief description of the new virtual

channel is presented.

3.3.1. Virtual Channel

Figure 3 illustrates how components interact to form a networked channel. Messages between
components illustrate the data that is being communicated.

2.SEND|97]45|[data] . 3-bytes. 4. SEND| 97|45 | [data]

1. write v 5.read

Application Net Channel Net Channel Application
Process Output (45) Input (97) Process
10. end write 1 - - 6. [data]
9. ACK|45]-1 8. bytes 7.ACK|45]-1

Figure 3. Virtual Networked Channel.

44

K. Chalmers and J. Kerridge / Verifying CPA Networking

3.3.2. Basic SEND / ACK Operation

Figure 3 illustrates a standard read-write operation. A description of the steps involved is:

1.
2.

10.

Application process writes to a networked output channel.

The networked output channel constructs a network message, setting the type as
SEND, attrl as the destination value (97) and attr2 as the source value (45). The sent
data is attached to the network message and sent to the LinkTx. The networked output
channel does not complete the write until the acknowledgement is received.

. The LinkTx reads in the network message and writes the type (1) and two attributes

(97 and 45) to the stream. The LinkTx examines the type of message, and as it is
SEND there is a data portion. The LinkTx writes the size of the data and the bytes to
the stream.

. The receiving Node’s LinkRx reads in the type attributes. The LinkRx process exam-

ines the message type, which is SEND and thus contains data. The size is read from
the stream and used to read the required number of bytes. The LinkRx then retrieves
the destination channel end from the channel index and checks its state. If the channel
is in an OK_INPUT state the channel connecting to the partner LinkTx is added to the
message, and the message sent to the networked input channel.

Application process reads the incoming message.

The networked input channel reads in the network message and checks the message
type. As the type is SEND the message is to be delivered. The data is returned to the
application process.

. During step 6, a network message is created with the type ACK. attrl is set to attr2

of the incoming message (the original source) and attr2 is set to -1. This message is
written on the channel contained in the original message; the channel to the LinkTx
process connected to the sending Node.

. The LinkTx process reads the network message and writes the type (2) and the two

attributes (45 and -1) to the stream. The LinkTx examines the type of the message,
and as the type is ACK there is no data.

The original sending Node’s LinkRx reads in the type and two attributes creating a
network message from them. The LinkRx then examines the message type, and as
it is a type that contains no data there is no need to read data from the stream. The
LinkRx retrieves the channel from the channel manager and checks its state. If the
channel is in an OK_OUTPUT state the network message is written to the networked
output channel.

The networked output channel reads in the network message and checks the message
type. As the type is ACK the write operation completes normally, freeing the applica-
tion process.

The steps provided describe the operation under normal conditions. If the networked
output channel is connected locally to a networked input channel, the same operations occur
although at step 2 the message is sent directly to the local networked input channel com-
ponent with the acknowledge channel of the networked output channel attached for direct
acknowledgement.

As the architecture utilises I/O there is the possibility that erroneous behaviour can occur.
The following sub-sections illustrate how this is handled.

3.3.3. SEND / REJECT operation

It is possible that erroneous message delivery can occur due to channel destruction or 1/0
operations. Message rejection is therefore implemented within the Link Layer. Figure 4 il-
lustrates the component interactions that occur. The sequence of operations is:

K. Chalmers and J. Kerridge / Verifying CPA Networking 45

2. SEND|97|45|[data] @ 3. bytes H

Net Channel
Output (45)

1. write

Application
Process

4. REJECT_CHANNEL|45]-1

7. exception

6. REJECT_CHANNEL|45]-1 5. bytes

Figure 4. Reject Operation.

As normal operation

As normal operation

As normal operation

Initially this operation occurs as before. When the LinkRx attempts to retrieve chan-

nel 97 from the channel manager, the channel may not exist or its state may not be

OK_INPUT. In either case, the LinkRx generates a network message and assigns the

type REJECT _CHANNEL. attr] is set to attr2 of the original message (45), and attr2 is

not required. The network message is sent to the partner LinkTx.

5. As normal operation step 8, the LinkTx writes the message to the stream. There is no
data segment.

6. The LinkRx reads in the type and two attributes. As the type contains no data segment,
no data is read from the stream. The LinkRx then retrieves the necessary channel from
the channel manager and checks the channel’s state. If the channel is 0K_OUTPUT the
message is sent to the networked output channel.

7. The networked output channel reads in the message and checks the message type.

As the message type is REJECT_CHANNEL, it is determined that the previous send

was rejected. The networked output channel changes its state to BROKEN and removes

itself from the channel manager. An exception is raised and causes the application
process to continue but with an exception.

el NS

3.3.4. SEND / LINK_LOST

Another form of erroneous behaviour occurs when the connection to the node where the
networked input channel resides fails. To overcome this, a networked output channel registers
itself with a Link when it is created. As a networked output channel will only connect to
one networked input channel, a Link can retain a set of all connected output channels. If
the connection to the remote node is lost, the Link can inform all its registered channels
by sending them a LINK_LOST message. Link failure may occur at any stage and therefore
cannot easily be mapped into operational steps. There are two possibilities:

* Prior to a write operation, the Link to the remote node hosting the networked in-
put channel fails, causing a LINK_LOST message to be sent to the networked output
channel on its acknowledgement channel. When write is called on the networked out-
put channel, the acknowledgement channel is first checked for pending messages. As
LINK_LOST will be present, the networked output channel can behave as if a message
was rejected.

» After performing a write, but prior to receiving the ACK, the Link to the networked
input channel fails. The Link informs all registered channel ends with a LINK_LOST
message on their acknowledgement channels. The networked output channel will read

46 K. Chalmers and J. Kerridge / Verifying CPA Networking

in this message, discover it is a LINK_LOST message and act as if the message was
rejected.

By having all networked output channels register with Links, link failure can be trans-
mitted as required. Networked input channels do not have this requirement as they may ser-
vice multiple incoming connections. To avoid deadlock, the LinkTx remains active to black
hole any outgoing messages. This is a current limitation of the CPA Networking Stack im-
plementation - LinkTx processes do not die and remain active.

4. Building a Model of CPA Networking in Spin/Promela
4.1. Protocol Definition

SPIN uses the mtype keyword to define message types. From the discussion presented in
Section 5.2, six message types within the protocol are relevant to channels. The ASYNC_SEND
operation cannot be modelled as it can occur at any point during execution and requires no
synchronisation between communicating components. This would increase the state space of
the model beyond the capabilities of the model checker. An argument on its verification shall
be presented in Section 5.

Discounting the ASYNC_SEND message, mtype is defined as follows:

mtype = {SEND, ACK, REJECT_CHANNEL, POISON, LINK_LOST};

4.2. Channel

A networked channel has a number of required definitions: the possible channel states, the
data structure representing a channel, and the processes that represent networked input and
output channels.

4.2.1. Channel States

Previous operational descriptions have mentioned channel states to determine how the Link
Layer and Event Layer should behave. These state objects are shared between separate pro-
cesses. The individual channel states are as follows:

INACTIVE initial channel state.

OK_INPUT a networked input channel willing to receive incoming messages.
OK_OUTPUT a networked output channel willing to send outgoing messages.
DESTROYED the channel end has been destroyed by an Application Layer process.

BROKEN a networked channel output end that has become broken due to some form of
erroneous behaviour.

POISONED a channel end that has become poisoned, either by receiving a POISON message
or by an Application Layer process invoking poison.

Figure 5 illustrates the transitions that occur between states within the channel.

4.2.2. Channel Data Structure

Each channel is provided with a data structure that contains the Virtual Channel Number
(VCN), the state and the channel that the Link uses to communicate with the channel object.
This is defined as follows:

K. Chalmers and J. Kerridge / Verifying CPA Networking 47

POISONED

POISON or
poison()

POISON or
poison()

REJECT_CHANNEL or
LINK_LOST

create()
BROKEN

destroy() destroy()

DESTROYED

Figure 5. Channel States.

typedef CHANNEL_DATA
{

byte vcn; byte state = INACTIVE; chan toChannel;
};

4.2.3. Channel Process

SPIN uses processes to represent components. A net channel process is given a CHANNEL_DATA
structure to represent the channel, and an interface of channels that represent the possible
calls that can be made on the channel. There are two channel types, NetChannellnput and
NetChannelOutput. Figure 6 presents the NetChannelOutput process.

write _
poison _ toLinkTx
destroy _ NetChannelOutput ackChannel
‘ callReturn

Figure 6. NetChannelOutput.

On the left of Figure 6 the interface channels are provided. Each channel represents the
calling of a method on NetChannelOutput, except callReturn which is read to simulate the
end of a call on the process.

On the right of Figure 6 are the channels connecting the channel process to the Link
process. toLinkTx is a fixed channel that connects to the LinkTx where the input end of the
virtual channel is connected. ackChannel is the channel coming from the Link, and is the
channel defined in the CHANNEL_DATA type.

The Promela definition of the NetChannelOutput interface is as follows:

typedef OUTPUT_CHANNEL_INTERFACE

{
chan write = [0] of { bool };
chan poison = [0] of { bool };
chan destroy = [0] of { bool };
chan callReturn = [0] of { bit };

48 K. Chalmers and J. Kerridge / Verifying CPA Networking

read
— >

startRead
EEE—

endRead

» fromLink

poison NetChannellnput -

—>

destroy
—>

callReturn
D ———

Figure 7. NetChannellnput.

Figure 7 presents the NetChannellnput process. The method interface is on the left, and
includes extended rendezvous and poison operations. For completeness these operations are
added to the SPIN model.

The NetChannellnput process has only one connection to the Link processes, the from-
Link channel. This channel is as declared in the CHANNEL_DATA type. When a Link sends the
NetChannellnput a message, it also sends the channel to send the response back to the Link.
This is where channel mobility is required.

The Promela definition of the NetChannellnput interface is as follows:

typedef INPUT_CHANNEL_INTERFACE

{
chan read = [0] of { bool };
chan startRead = [0] of { bool };
chan endRead = [0] of { bool };
chan poison = [0] of { bool };
chan destroy = [0] of { bool };
chan callReturn = [0] of { bit };

4.3. Link Process

Link contains two processes: LinkTx and LinkRx. LinkTx receives messages from the chan-
nel processes and sends them to the remote LinkRx. It has two channels (one in and one out).
input receives messages from the channel processes. txStream represents the connection to
the remote LinkRx process.

LinkRx receives messages from a remote LinkTx and sends them to the correct channel.
It also has two channels. rxStream represents the incoming stream from the remote LinkTx.
toLinkTx connects to the complement LinkTx, and is used to send messages directly to the
LinkTx and to attach to incoming messages to allow a subsequent acknowledgement to be
sent directly to the LinkTx.

A Link represents a connection to another node, and is composed of a LinkTx and a
LinkRx. Figure 8 represents the Link process.

As the LinkRx contains the protocol behaviour, the full Promela code listing is provided
in Appendix A. The majority of the networking stack behaviour is contained in this process.

K. Chalmers and J. Kerridge / Verifying CPA Networking 49

toNetwork
) L >
toLinkTx
—> 1
Link fromNetwork
D

Figure 8. Link Process.

4.4. Application Processes

There are two types of application process: an outputting application and an inputting ap-
plication. These processes operate on the complement end interface channels that con-
nect to a NetChannellnput or NetChannelOutput. The application process chooses non-
deterministically to write to one of the method call channels and then reads from the callRe-
turn channel, thus waiting for the operation to complete. callReturn returns either O or 1 to
represent either an EXCEPTION or an OK return message. If an EXCEPTION is returned, then
the application process terminates.

4.5. Node Process

Within the model, two node types are defined: InputNode and OutputNode. An InputNode
starts a number of Receiver processes with relevant NetChannellnput processes. An Out-
putNode starts a number of Sender processes and relevant NetChannelOutput processes. Fig-
ure 9 presents the InputNode process. The connection between the Link process(es) and the
NetChannellnput process(es) is shown, although this is dynamic.

InputNode

A

A

Link NetChannellnput Receiver

AAAAA

\ A
Y

\

Figure 9. InputNode.

Figure 10 illustrates the OutputNode process. In this circumstance, the connection be-
tween the NetChannelOutput and Link is static.

OutputNode

\

Yvy

Sender NetChannelOutput Link

A
A
A

Figure 10. OutputNode.

For both Nodes, the toNetwork and fromNetwork channels represent the txStream and
rxStream across the network connecting the two remote Nodes. A process is also added that
allows simulation of the network connection itself.

50 K. Chalmers and J. Kerridge / Verifying CPA Networking
4.6. Network Process

To simulate network failure, a simple process to represent the network is added to the model.
The process non-deterministically chooses to either send a message from the OutputNode to
the InputNode, from the InputNode to the OutputNode, or fail and break the connection. In
the latter case, a LINK_LOST signal is sent to the two corresponding LinkRx processes, and
a flag is set which the LinkTx processes check to determine if they should fail. In reality the
latter occurrence is detected when the LinkTx process tries to write to a closed stream. The
setting of a flag achieves the same outcome.

Although I/O can fail in different manners, the CPA Networking Stack expects the un-
derlying I/O mechanism to handle this and simply inform the Link processes of a closed con-
nection. As such, the model does not need to check behaviour of a partial communication
being recieved - either the whole message is available or it is not.

\
\

OutputNode Network InputNode

A
A

Figure 11. SPIN Model of CPA Networking.

Figure 11 presents the overall SPIN model developed for CPA Networking. The two
nodes are connected via the Network process.
The Promela definition of the Network process is as follows:

proctype Network(chan inO; chan inl; chan outO; chan outl)
{

mtype type;

byte attri;

byte attr2;
end_network:

do
:: atomic
{
in0 ? type, attrl, attr2 -> outl ! type, attrl, attr2
}
atomic
{
inl ? type, attrl, attr2 -> outO ! type, attrl, attr2
}
/* Non determistically choose to break link */
atomic
{
linkLost = true ->
out0O ! LINK_LOST(-1, -1);
outl ! LINK_LOST(-1, -1);
}
break;
od

4.7. Global Values

There are a number of global values within the model, and these are summarised below:

NUMBER _INPUTS the total number of input channels within the model.

K. Chalmers and J. Kerridge / Verifying CPA Networking 51

NUMBER _OUTPUTS the number of output channels connected to a single input channel

TOTAL_OUTPUTS the total number of output channels NUMBER _OUTPUTS * NUM-
BER_INPUTS

BUFFER SIZE the size of the buffer to the channel processes. This is used to simu-
late the infinite buffer within the actual application. For the application to operate,
BUFFER _SIZE should equal NUMBER_OUTPUTS. This value is manipulated to ver-
ify this assumption

CHANNEL_ARRAY a type declaration for the array of channel ends on a particular node
CHANNEL _DATA channels[TOTAL_OUTPUTS]. SPIN does not permit arrays to be
passed as parameters into processes, therefore this must be declared globally. For chan-
nels above NUMBER _INPUTS on the InputNode, the channel state is set to INAC-
TIVE.

chans all the channels within the model. As CHANNEL_ARRAY cannot be passed as a
parameter to an individual process, this is declared globally.

linkLost the flag used to indicate Link failure. This is initially set to false.

byte linkLost = false;

typedef CHANNEL_ARRAY
{

CHANNEL_DATA channels [TOTAL_OUTPUTS];
};

CHANNEL_ARRAY chans [2];

S. Results
5.1. Basic Verification

Simple verification can be carried on a model comprising of a single NetChannelOutput
connected to a NetChannellnput with BUFFER _SIZE = 1. This is the default assumption that
for every connected output channel end to an input channel end, there is required a single
place in the buffer to avoid deadlock. This assumption is required for the worst case scenario
- the input end does not read while all output channels attempt to write, and therefore require
a buffer space for their message to be stored. When checked with SPIN, the model is verified
with no deadlock errors. This is enough to reasonably assume that having the Link processes
inform the relevant output channels of connection failure overcomes the deadlock problem
in the original JCSP Networking implementation.

The model also allows some indication of other problems in the original JCSP Network-
ing implementation. In the new implementation, the LinkRx process retrieves a channel from
the channel manager and locks the state object of the channel before checking said state.
Thereby, LinkRx is the only process acting on the channel state at any one time. This allows
various behaviours to occur based on the state of the channel object. This feature was added
to the implementation of JCSP Networking when the model originally pointed out deadlock
due to this occurrence not being taken into consideration. As the channel object can change
state based on certain calls (poison, destroy), this would have caused inconsistent behaviour
within the implementation. The original implementation used no such state variable, and
LinkRx would send a message to a channel object based purely on availability within the
channel manager. The channel manager would only return the connecting output channel to
the networked channel object. When a channel object was destroyed, it was removed from

52 K. Chalmers and J. Kerridge / Verifying CPA Networking

the channel manager prior to any clean up operations (rejection of pending messages). There-
fore, a channel either existed within the channel manager or it did not. There were no other
possible states as no common protected state value was exposed. This meant that much of the
behaviour required for more advanced functionality (poison, mobility, barriers) was not pos-
sible as there was no method to expose these states without reimplementation of the underly-
ing mechanisms of JCSP Networking. As the new implementation exposes these properties,
this problem has been overcome.

5.2. Advanced Verification

The simple verified model does not allow analysis of the assumption that the a networked in-
put channel NetChannellnput requires exactly one buffer space for each connected NetChan-
nelOutput. With manipulation of the BUFFER _SIZE value, this can be analysed to provide a
stronger insight into this assumption. Table 1 presents results from different verification sce-
narios. To enable verification of the model, the option within SPIN to use minimal automata
to search is activated.

Table 1. SPIN Verification Results.

NUMBER_OUTPUTS 1 2 3 4
BUFFER SIZE

FAIL FAIL FAIL FAIL
PASS FAIL FAIL FAIL
PASS PASS FAIL FAIL
PASS PASS PASS FAIL
PASS PASS PASS PASS

RN = O

Table 1 illustrates that a NetChannellnput requires one buffer space for each connected
NetChannelOutput for connected NetChannelOutputs less than four. The number of states
does not increase when the buffer size is increased beyond the required buffer size, except
when a single NetChannelOutput to NetChannellnput has the buffer increased from 1 to 2,
although search depth does not increase. The reason for the reduction in state space could be
the usage of the minimal automata search option within SPIN, or that the NetChannelOutput
requires less state space in conjunction with the Link processes at BUFFER _SIZE = 2. The
NetChannelOutput also utilises the same size buffer as the NetChannellnput in the model,
and this could have an effect in total required states.

6. Conclusions and Future Work

This paper has shown that the CPA Networking Stack is deadlock free even under network
failure, a major issue in the original JCSP Networking implementation. The work has pro-
vided an overview of the model built using SPIN, and shown the relation between connected
networked output channels and the size of buffer required to service them.

Future work required in the formal verification of the CPA Networking Stack involves
refinement checking to determine if the general behaviour of the CPA Networking Stack
is correct. The model will have to show that a virtual networked communication behaves
similarly to a standard channel communication.

References

[1] Kevin Chalmers, Jon Kerridge, and Imed Romdhani. A Critique of JCSP Networking. In Peter H. Welch,
S. Stepney, F.A.C Polack, Frederick R. M. Barnes, Alistair A. McEwan, G. S. Stiles, Jan F. Broenink, and
Adam T. Sampson, editors, Communicating Process Architectures 2008, pages 271-291, sep 2008.

K. Chalmers and J. Kerridge / Verifying CPA Networking 53

[2] Kevin Chalmers. Performance of the Distributed CPA Protocol and Architecture on Traditional Networks.
In Peter H. Welch, Adam T. Sampson, Jan Baekgaard Pedersen, Jon Kerridge, Jan F. Broenink, and Fred-
erick R. M. Barnes, editors, Communicating Process Architectures 2011, pages 227-242, jun 2011.

[3] G.J. Holzmann. The model checker SPIN. Software Engineering, IEEE Transactions on, 23(5):279-295,
1997.

[4] D. May, R. Shepherd, and P. Thompson. The T9000 transputer. In Computer Design: VLSI in Computers
and Processors, 1992. ICCD ’92. Proceedings, IEEE 1992 International Conference on, pages 209-212,
1992.

[5] Geoff Barrett. Model checking in practice: the T9000 virtual channel processor. Software Engineering,
IEEE Transactions on, 21(2):69-78, 1995.

[6] Mario Schweigler and Adam T. Sampson. pony - The occam-pi Network Environment. In Peter H. Welch,
Jon Kerridge, and Frederick R. M. Barnes, editors, Communicating Process Architectures 2006, pages
77-108, sep 2006

[7] Neil C.C. Brown. C++CSP Networked. In Ian R. East, David Duce, Mark Green, Jeremy M. R. Martin,
and Peter H. Welch, editors, Communicating Process Architectures 2004, pages 185-200, sep 2004.

[8] Formal Systems (Europe) Ltd. FDR: User Manuel and Tutorial, version 2.82, 2005.

[9] Jun Sun, Yang Liu, Jin Song Dong, and Jun Pang. PAT: Towards flexible verification under fairness.
volume 5643 of Lecture Notes in Computer Science, pages 709—714. Springer, 2009

[10] Peter H. Welch and Frederick R. M. Barnes. A CSP Model for Mobile Channels. In Peter H. Welch,
S. Stepney, F.A.C Polack, Frederick R. M. Barnes, Alistair A. McEwan, G. S. Stiles, Jan F. Broenink, and
Adam T. Sampson, editors, Communicating Process Architectures 2008, pages 17-33, sep 2008.

[11] P. H. Welch. Process oriented design for Java: concurrency for all. pages 51-57. CSREA Press, 2000.
[12] Kevin Chalmers and Sarah Clayton. CSP for .NET Based on JCSP. In Peter H. Welch, Jon Kerridge, and
Frederick R. M. Barnes, editors, Communicating Process Architectures 2006, pages 59-76, sep 2006.

[13] Peter H. Welch, Jo R. Aldous, and Jon Foster. CSP networking for Java (JCSP.net). In Proceedings of the
International Conference on Computational Science-Part II, ICCS 02, pages 695-708, London, UK, UK,
2002. Springer-Verlag.

A. Promela Code for LinkRx

proctype LinkRx(chan toTxProcess; chan rxStream; bit nodeNumber)
{

/* Attributes read in with incoming message */

byte attri;

byte attr2;

/* This process reads an incoming message from the message and
processes it. Generally the message
is forwarded onto the correct destination, although erroneous
behaviour must be dealt with */
/* Valid end state. Waiting for input from the network */
end_1lrx:
do
/* SEND received. */
atomic
{
rxStream 7 SEND(attrl, attr2) ->
/* First check if the message is going to a valid channel

*/

if

/* Destination channel is outside range. Reject message
*/

(attrl > TOTAL_OUTPUTS) -> toTxProcess ! REJECT_CHANNEL

(attr2, -1)

else ->

/* Message is for a valid channel. Check channel
state and deal with accordingly */

54 K. Chalmers and J. Kerridge / Verifying CPA Networking

if
:: (chans[nodeNumber].channels[attrl].state ==
OK_INPUT) ->
/* Channel is 0K to receive messages. Forward the
message onto the channel process */
chans [nodeNumber].channels[attrl].toChannel ! SEND
(attr2, toTxProcess)
(chans [nodeNumber].channels[attrl].state ==
POISONED) ->
/* Channel has been poisoned. Propogate the
poison back to the writer x*/
toTxProcess ! POISON(attr2, 0)
(chans[nodeNumber].channels[attrl].state ==
DESTROYED) ->
/* Channel has been destroyed. Reject the message
*/
toTxProcess ! REJECT_CHANNEL (attr2, O0)
(chans [nodeNumber].channels[attrl].state == BROKEN)
->
/* Channel is broken. This should only happen
during Link failure, but just in case reject */
toTxProcess ! REJECT_CHANNEL (attr2, O)
else ->
/* Channel is in some other state. This could be
a channel trying to send to an output
or some other problem. We reject the message
in this instance and continue */
toTxProcess ! REJECT_CHANNEL Cattr2, O0)
fi
fi
}
/* Acknowledgement operation */
atomic
{
rxStream ? ACK(attrl, attr2) ->
/* First check if the message is going to a valid channel
*/
if
/* Destination channel is outside range. Ignore message
*/
(attrl > TOTAL_OUTPUTS) -> skip
else ->
/* Message is for a valid channel. Check channel
state and deal with accordingly */
if
:: (chans[nodeNumber].channels[attrl].state ==
0K_O0UTPUT) ->
/* ACK being sent to an output channel. Forward
the message onto the channel process x*/
chans [nodeNumber].channels[attrl].toChannel ! ACK
/* In all other cases, we drop the message. The
message has been sent to a channel that was
not in a state to accept it. */
:: else -> skip
fi
fi
}

/* Reject channel message received x*/
atomic

K. Chalmers and J. Kerridge / Verifying CPA Networking 55

{
rxStream 7 REJECT_CHANNEL (attrl, attr2) ->
/* First check if the message is going to a valid channel
*/
if
/* Destination channel is outside range. No point in
rejecting (we could end up with a continuous
cycle of rejects). Simply ignore the message. */
(attrl > TOTAL_OUTPUTS) -> skip
else ->
/* Message is for a valid Channel. Check channel
state and deal with accordingly */
if
:: (chans[nodeNumber].channels[attrl].state ==
0K_QUTPUT) ->
/* Channel can accept the reject message. Pass
onto the channel process */
chans [nodeNumber].channels [attrl].toChannel !
REJECT_CHANNEL
/* In all other cases ignore the message. The channel
is in no state to receive it */
:: else -> skip
fi
fi
}
/* Poison message received */
atomic
{

rxStream 7 POISON(attrl, attr2) ->
/* First check if the message is going to a valid channel
*/
if
/* Destination channel is outside range. No point in
rejecting (we could end up with a continuous
cycle of rejects). Simply ignore the message. */
(attrl > TOTAL_OUTPUTS) -> skip
else ->
/* Message is for a valid Channel. Check channel
state and deal with accordingly */
if
:: (chans[nodeNumber].channels[attrl].state ==
0K_QUTPUT) ->
/* Channel is an output. Simply send POISON to it
*/
chans [nodeNumber].channels[attrl].toChannel !
POISON
(chans [nodeNumber].channels[attrl].state ==
OK_INPUT) ->
/* Channel is an input. Simply send POISON to it
*/
chans [nodeNumber].channels[attrl].toChannel !
POISON(attrl, attr2)
/* In all other cases we ignore the poison. Either
the channel is poisoned, and in the model
nothing else needs to be done (in the
implementation we increase the poison strength
if
necessary), or it is destroyed or broken, which is
considered to be greater than poison */

56 K. Chalmers and J. Kerridge / Verifying CPA Networking

else -> skip
fi
fi
}
/* Link lost received */
rxStream ? LINK_LOST(attrl, attr2) ->
atomic

{
/* Inform all output ends */
byte idx = O0;

do
(idx < TOTAL_QUTPUTS) ->
if
(chans[nodeNumber].channels[idx].state == 0K_OUTPUT
) >
chans [nodeNumber].channels[idx].toChannel !
LINK_LOST
else -> skip
fi;
idx = idx + 1;
else -> break
od;
+
break;

od;

