
 1

Scaling PyCSP

Rune Møllegaard Friborg, John Markus Bjørndalen and Brian Vinter

CPA 2013, Edinburgh
August 25, 2013

 2

Python for eScience Applications

● Flexible

● Can interface with most programming languages

● Many scientists already know Python

● Faster development cycle

● Compute-intensive parts written in compilable languages are
easily integrated

● Forces programmers to write readable code

 3

CSP for eScience!

● Synchronized constructs for running a set of processes

– In parallel

– In sequence
● Synchronized communication through message passing

– One-way channels
● Complete Process Isolation

– No shared data-structures

– No side-effects from processes

– Compositional structure

– Reuse of processes
● The data flow in scientific applications is often simple to model

in CSP.

 4

Introduction to PyCSP

● 2007 - PyCSP is presented. The synchronization model for
channel communications is based on JCSP.

● 2009 - A PyCSP with a new synchronization model is
presented. It is using the two-phase locking protocol to allow
any-to-any channels supporting both input and output guards.

● 2011-2012 - A distributed version of the synchronization model
is presented and later implemented in PyCSP

 5

We want to run anywhere!

● The user of PyCSP does not need to know
anything about the location of the hardware any
process might run on

● All channel ends are mobile

 6

Basic PyCSP Features

 7

Single Any-to-Any Channel

A = Channel(“A”)

 8

Buffered

A = Channel(“A”, buffer=10)

 9

Termination through Poisoning /
Retiring

Cin = A.reader()

Cin.poison() # propagate pill right
now!

Cin.retire() # propagate pill, when
all readers on A have invoked retire

 10

External Choice

Does not guarantee priority

AltSelect(InputGuard(cin), OutputGuard(cout, msg))

 11

External Choice

Guarantees priority, by adding a wait for an
acknowledgement

PriSelect(InputGuard(cin), OutputGuard(cout, msg))

 12

External Choice

Uses PriSelect to perform a fair choice through
reordering of guards, based on past selections

FairSelect(InputGuard(cin), OutputGuard(cout, msg))

 13

Declaring Processes

An OS thread
@process
def Increment(cin, cout):
 cout(cin() + 1)

 14

Declaring Processes

An OS process
@multiprocess
def Increment(cin, cout):
 cout(cin() + 1)

 15

Starting Processes

Blocking PAR - Natural number generator
Parallel(
 Prefix(C.reader(), A.writer(), 1),
 Increment(A.reader(), B.writer(),
 Delta(B.reader(), C.writer(), D.writer())
)

Spawn(processes...)

Sequence(processes...)

 16

Compositional

@process
def Counter(cout):
 Parallel(
 Prefix(C.reader(), A.writer(), 1),
 Increment(A.reader(), B.writer(),
 Delta(B.reader(), C.writer(), cout)
)
)

 17

Connecting Channels
Host A

Hosting channel A
A = Channel(“A”)

Get address
print(A.address)
('192.168.1.16', 63550)

 18

Connecting Channels
Host B

Connect to channel A
A = Channel(“A”, connect=('192.168.1.16', 63550))

 19

@clusterprocess

 20

Declaring Remote Process

A cluster process
@clusterprocess
def Increment(cin, cout):
 cout(cin() + 1)

 21

Declaring Remote Process

A cluster process
@clusterprocess(
 cluster_nodefile = <file containing list of nodes>,
 cluster_pin = <index for node in list>,
 cluster_hint = <'blocked' or 'strided'>
)
def Increment(cin, cout):
 cout(cin() + 1)

 22

Executing Remote Process

Spawn single increment process
Spawn(Increment(A.reader(), B.writer()))

or

Spawn 5 increment processes and put them on 5
different hosts if available
Spawn(5 * Increment(A.reader(), B.writer()),
 cluster_hint = 'strided')

 23

Connecting Channels Implicitly

Blocking PAR - Natural number generator
One clusterprocess per host
Parallel(
 Prefix(C.reader(), A.writer(), 1),
 Increment(A.reader(), B.writer(),
 Delta(B.reader(), C.writer(), D.writer()),
 cluster_hint = 'strided'
)

 24

Connecting Channels Implicitly

@clusterprocess
def P1(cin):
 cin() # read value

@clusterprocess
def P2(cout):
 cout(42) # send value

A = Channel()
Parallel(P1(A.reader()),P2(A.writer()))

 25

Connecting Channels Implicitly

@clusterprocess
def P1(cin):
 cin() # read value

@clusterprocess
def P2(cout):
 cout(42) # send value

A = Channel(“A”)
Parallel(P1(A.reader()),P2(A.writer()))

Channels:
“A”

 26

Connecting Channels Implicitly

@clusterprocess
def P1(cin):
 cin() # read value

@clusterprocess
def P2(cout):
 cout(42) # send value

A = Channel(“A”)
Parallel(P1(A.reader()),P2(A.writer()))

Channels:
“A”

cin()

cout()

Starting processes
on remote hosts using the SSH protocol.
PyCSP channels
are used to transfer any function parameters

P2

P1

 27

Connecting Channels Implicitly

@clusterprocess
def P1(cin):
 cin() # read value

@clusterprocess
def P2(cout):
 cout(42) # send value

A = Channel(“A”)
Parallel(P1(A.reader()),P2(A.writer()))

Channels:
“A”

cin()

cout()

The channel ends cin and cout reconnect
to the channel home and registers as they
are both new channel ends.

P2

P1

 28

Connecting Channels Implicitly

@clusterprocess
def P1(cin):
 cin() # read value

@clusterprocess
def P2(cout):
 cout(42) # send value

A = Channel(“A”)
Parallel(P1(A.reader()),P2(A.writer()))

Channels:
“A”

cin()

cout(42)

The channel ends cin and cout now
posts a request for communication at
the channel home

P2

P1

read

write 42

 29

Connecting Channels Implicitly

@clusterprocess
def P1(cin):
 cin() # read value

@clusterprocess
def P2(cout):
 cout(42) # send value

A = Channel(“A”)
Parallel(P1(A.reader()),P2(A.writer()))

Channels:
“A”

cin()

cout()

The channel home then probes a read
and write request for a potential match.

Acquires the process locks
and if successful, transfers the messages
and notifies the processes

P2

P1

L

L

 30

512 processes (cores) in a ring

@clusterprocess
def elementP(this_read, next_write):

 while True:
 token = this_read()
 next_write(token + 1)

 31

512 processes (cores) in a ring

Does not scale!

 32

Possible solutions

● Avoid a channel home completely
– Requires a lot more messages for any-to-any

channels. The location of all processes connected
to a channel must always be known.

● Request the user to redistribute another set of
channels, where each channel is hosted evenly
on the available hosts
– Difficult for the user

● Add mobility to a channel home, such that it
may be moved during active use.
– Simple for the user. Our choice.

 33

Introducing Mobile Channel Homes
in PyCSP

@clusterprocess
def elementP(this_read, next_write):

 this_read.become_home()

 while True:
 token = this_read()
 next_write(token + 1)

 34

Introducing Mobile Channel Homes
in PyCSP

● Based on a transition model presented in 2011.
– When a channel is poisoned, all active requests

(processes) at a channel are notified with a
POISON signal

– Similarly, when a channel home is moved, all active
requests (processes) at a channel are notified with
a MOVE signal

– Processes then receive the new address of the
channel together with the MOVE signal. The
processes then withdraws the active request from
the “old” channel home and reposts the request at
the new channel home.

 35

Introducing Mobile Channel Homes
in PyCSP

@clusterprocess
def elementP(this_read, next_write):

 this_read.become_home()

 while True:
 token = this_read()
 next_write(token + 1)

● Based on a transition model presented in 2011

 36

Introducing Mobile Channel Homes
in PyCSP

A

main B

C

elementP

this_read

next_write

elementP

this_read

next_write

L

L

 37

Introducing Mobile Channel Homes
in PyCSP

A

main B

C

elementP

this_read

next_write

elementP

this_read.become_home()

next_write

L

L

 38

Introducing Mobile Channel Homes
in PyCSP

A

main B

C

elementP

this_read

next_write

elementP

this_read.become_home()

next_write

B_2
MOVE B to B_2

L

L

 39

Introducing Mobile Channel Homes
in PyCSP

A

main B

C

elementP

this_read

next_write

elementP

this_read.become_home()

next_write

B_2

Sends any buffered messages

L

L

 40

Introducing Mobile Channel Homes
in PyCSP

A

main B

C

elementP

this_read

next_write

elementP

this_read

next_write

B_2

MOVED to B_2

B_2 is now the official channel home of B. If any processes connects
to B at main, they will receive the message “MOVED to B_2”

L

L

 41

Introducing Mobile Channel Homes
in PyCSP

A

main B

C

elementP

this_read

next_write

elementP

this_read

next_write

B_2

L

L

(moved)

 42

Introducing Mobile Channel Homes
in PyCSP

● The order of posted requests is not stable
during a move of a channel home. Thus,
priorities can not be guaranteed during this
step.

● For most PyCSP applications, this is not
expected to be an issue.

 43

Results

 44

 45

 46

 47

Conclusions

● PyCSP has distributed channels and remote
processes, but only with the introduction of the
become_home() functionality is PyCSP now
able to scale seamlessly to large clusters

● With a few tweaks, we expect that PyCSP can
scale beyond clusters with more than 512
cores.

● Thus, scientists does now have a tool which
can handle large computations using CSP in a
working Python environment.

 48

Thanks

	Dias 1
	Dias 2
	Dias 3
	Dias 4
	Dias 5
	Dias 6
	Dias 7
	Dias 8
	Dias 9
	Dias 10
	Dias 11
	Dias 12
	Dias 13
	Dias 14
	Dias 15
	Dias 16
	Dias 17
	Dias 18
	Dias 19
	Dias 20
	Dias 21
	Dias 22
	Dias 23
	Dias 24
	Dias 25
	Dias 26
	Dias 27
	Dias 28
	Dias 29
	Dias 30
	Dias 31
	Dias 32
	Dias 33
	Dias 34
	Dias 35
	Dias 36
	Dias 37
	Dias 38
	Dias 39
	Dias 40
	Dias 41
	Dias 42
	Dias 43
	Dias 44
	Dias 45
	Dias 46
	Dias 47
	Dias 48

