
Simulating CSP-Like Languages

Thomas Gibson-Robinson

Department of Computer Science, University of Oxford

August 25, 2013

1

Introduction

Building a model-checker for a process algebra requires a major
investment of resources. Therefore, it would be highly desirable to
be able to re-use existing model checkers where possible.

In On the Expressiveness of CSP, Roscoe proves that a large class
of process algebras can be simulated in CSP. Unfortunately,
Roscoe’s simulation was not directly implementable in
machine-CSP for a variety of reasons.

2

Contributions

We make three main contributions:

� Roscoe’s simulation has been modified to allow it to be encoded
in machine-CSP. The simulation efficiency has been drastically
improved to allow realistic sized processes to be considered.

� The simulation has been modified to allow a large class of
recursive processes to be simulated.

� A tool has been developed to allow the simulation to be
automatically constructed given natural descriptions of the
semantics of the process algebra and the script to be simulated.

3

CSP-Like Process Algebras
Consider the CSP operators (e.g. →, 2, u, |||, 4, ΘA):
� An operator only performs an action as a result of one of its
arguments performing an action.

� If we define on arguments as those that can perform a visible
event, then precisely the on arguments are allowed to do τ ’s
(correspondingly, an operator that cannot do a visible event is
off). For example:

P
τ−−→ P ′

P 2 Q
τ−−→ P ′ 2 Q

� Each on argument appears only once in the resulting state. For
example, there is no rule such as:

P
a−−→ P ′

Clone(P)
a−−→ P ||| P ′

4

CSP-Likeness
An operator Op(P1, . . . , PN) is CSP-like iff its operational
semantics can be written as a set of rules (φ, e, P) where:
� φ is a partial map that indicates which argument of Op has to
perform which event;

� e is the event that Op performs;
� P is the resulting state of the process.

For example, the rules of P 2 Q can be expressed as:

({1 7→ a}, a, ID(1)) a ∈ Σ

({2 7→ a}, a, ID(2)) a ∈ Σ

Whilst the rules of P ΘA Q can be expressed as:

({1 7→ a}, a,1 ΘA 2) a ∈ Σ \A
({1 7→ a}, a, ID(2)) a ∈ A

5

The Simulation

Let Op be a CSP-like operator and OnProcs / OffProcs be
vectors of processes. Consider defining a CSP process
Operator(Op,OnProcs,OffProcs) to simulate Op when applied
to OnProcs and OffProcs.

In order to simulate Op correctly, Operator must:

� Offer those events that Op initially offers;

� When an event a is performed, Operator must turn off
processes that are now discarded (e.g. 2) and turn on processes
that are newly created (e.g. → or ΘA).

6

Roscoe’s Simulation
Roscoe defined a CSP process Operator(Op,OnProcs,OffProcs)
that returns a strongly bisimilar CSP process.

Operator(Op,OnProcs,OffProcs) =̂(
‖
(n,P)∈OnProcs

(Harness(P, n), AlphaProc(n))

‖
...
Regulator(Op,OffProcs)

)
[[Rename]] \ {tau}.

Internally, the simulation uses events of the form (φ, x,B) where:

� φ is a partial map that indicates what event each on argument
performs;

� x is the event that Op performs;

� B is the set of processes that are turned off .
7

Efficiency of the Simulation

Performing a naïve translation of the above into CSPM produces a
simulation that is so inefficient that it cannot be used for anything
but the simplest of examples.

On inefficiency is that the set of all events of the form (φ, x,B) is
exponential in both the number of on processes and the size of the
alphabet.

However, note that ||| only requires events of the form:

({1 7→ a}, a, {}) ({2 7→ a}, a, {})

Further, all CSP operators only require polynomially many events
in terms of the size of the alphabet.

8

Improving Efficiency

The second problem is that the Harness definition is rather
complex:

Harness(P, n) =̂
((
P [[. . .]] Θ... STOP

)
4 off→ STOP

)
[[. . .]]

This is a complex expression for FDR to compile, and (in practice)
significantly slows it down.

However, many operators in CSP and other process algebras have
arguments that they never turn off , meaning that the full harness
does not need to be used for these arguments.

9

Recursion
Unfortunately, when the modified simulation is applied to recursive
processes, the resulting simulation cannot be compiled by FDR.
For example, consider the simulation of P = a→ P :

P = Operator(Prefix .a, 〈〉, 〈P 〉)
= Reg(Prefix , . . .)[[R]]

= (({}, a, {})→ (Harness(P, 0) ‖
...
Reg(Identity , . . .)))[[R]]

= a→ (Harness(P, 0) ‖
...
Reg(Identity , . . .))[[R]]

= a→ (P [[HR]] ‖
...
Reg(Identity , . . .))[[R]].

Thus, Pi, which is P unwrapped i times, is equivalent to:

P0 = P

Pi+1 = a→ ((Pi[[HR]] ‖
..
Reg(Identity , ...))[[R]]).

10

Recursion
Thus, in general, the simulation fails because recursion causes an
infinite number of processes to be put in parallel, meaning that
FDR never finds the fix-point.

One solution to this would be to throw-away the collection of
accumulated identity regulators whenever we do a recursion:

Q =̂ Operator(Prefix .a, 〈〉, 〈recurse → STOP 〉)
Θ{recurse} Q

This will require the following rule to be added to the identity
operator:

P
recurse−−−−−→ P ′

Identity(P)
recurse−−−−−→ Identity(P ′)

11

Thus:

Q =̂ Operator(Prefix .a, 〈〉, 〈recurse → STOP 〉)
Θ{recurse} Q

=

[
a→ ((recurse→ STOP)[[HR]] ‖

...
Reg(Identity , . . .))[[R]]

]
Θ{recurse} Q

=

[
a→ recurse→ (STOP [[HR]] ‖

...
Reg(Identity , . . .))[[R]]

]
Θ{recurse} Q

= a→ recurse→ Q

Hence, Q \ {recurse} = µX · a→ X.

12

Generalising The Solution

In order to generalise the solution we need to consider the different
ways in which operators treat their arguments.

Some arguments of operators may possibly perform an infinite
number of visible events before the operator is discarded. For
example, both arguments of ||| or the first argument of ΘA. Such
arguments are known as infinitely recursive.

Conversely, some arguments of operators may be guaranteed to
only perform a finite number of visible events before the operator
is discarded. For example, both arguments of 2, the left argument
of timeout, etc.

13

A (Sketched) Generalised Solution

The callProc channel is defined and every call to a recursive
process P is replaced by a callProc.P event.

The process WrapThread(Q) is defined using ΘcallProc to handle
recursions, much like the above example using recurse.

Each infinitely recursive argument P of an operator Op is replaced
by WrapThread(P).

It can then be proven that the original simulation is equivalent in
every CSP denotational model to the modified simulation.

14

Recursion (Example)

For example, the simulation of P ||| Q, given that P = a→ P and
Q = b→ Q is:

Operator(Interleave, 〈
WrapThread(

Operator(Prefix.a, 〈〉, 〈callProc.P → STOP 〉)),
WrapThread(

Operator(Prefix.b, 〈〉, 〈callProc.Q→ STOP 〉))
〉, 〈〉)

By the above results, the resulting process is equivalent in every
CSP denotational model to the original (non-compilable)
simulation.

15

Tool Support
A tool, tyger, has been developed that automates the construction
of the simulation, given the operational semantics of the process
algebra to simulate and a script in that process algebra:

Operator Exception(P : InfRec, Q, A)
Syntax Binary "[| $3 |>" 12 AssocNone
Rule

P =a=> P’
----------------------------- a <- diff(Sigma, A)
P [| A |> Q =a=> P’ [| A |> Q

EndRule
Rule

P =a=> P’
------------------ a <- A
P [| A |> Q =a=> Q

EndRule
EndOperator

16

tyger

The tool takes as input two files, one consisting of the operational
semantics of the language and the other containing a script to
simulate.

� After parsing the first input file, tyger performs a sort of
type-checking on the operational semantics and infers which
arguments of the operators are off and on;

� The tool then outputs a file that contains the definition of
Operator;

� The tool then type-checks the second file and uses the resulting
information to perform the recursion refactorings on the file;

� The tool then constructs the simulation and pretty-prints in to
a file.

17

Experiments: Simulation Overhead

The following table gives the time taken to check if the Dining
Philosophers problem is deadlock free for various number of
philosophers:

Number of Philosophers
Tool 3 4 5 6 7 8 9 10

Simulation 0.4 1.0 1.9 3.3 5.6 10.6 33.2 173.2
FDR < 0.1 < 0.1 < 0.1 0.1 0.2 1.1 7.0 42.5

All experiments were carried out on a Linux Virtual Machine with
2GB of RAM and one 2.2Ghz Core i7 core. FDR 3.0-beta-3 was
used in single-threaded mode.

18

Experiments: Simulating CCS

The following table gives the time taken to check if the Dining
Philosophers problem is deadlock free by both the Concurrency
Workbench (using version 7.1) and by a CSP simulation of CCS
(running under FDR 3.0-beta-3 in single-threaded mode).

Number of Philosophers
Tool 3 4 5 6 7 8 9
CWB < 0.1 < 0.1 0.3 2.6 38.5 * *

Simulation 0.6 0.8 1.8 3.0 8.9 53.9 384.0

19

Summary

We have:

� Altered Roscoe’s simulation to allow it to be be written in
machine-CSP and to be efficiently manipulated by FDR;

� Developed a method of refactoring processes that allows a large
class of recursive processes to be correctly simulated;

� Constructed a tool that can automatically construct the
simulation given the operational semantics of a CSP-like process
algebra and a script to simulate.

20

	Introduction
	The Simulation
	Efficiency
	Recursion
	Tool Support
	Experiments

