
Communicating Process Architectures 2013
P.H. Welch et al. (Eds.)
Open Channel Publishing Ltd., 2013
© 2013 The authors and Open Channel Publishing Ltd. All rights reserved.

185

Efficient Simulation of CSP-Like
Languages

Thomas GIBSON-ROBINSON

Department of Computer Science, University of Oxford, UK

thomas.gibson-robinson@cs.ox.ac.uk

Abstract. In “On the Expressiveness of CSP”, Roscoe provides a construction that,
given the operational semantics rules of a CSP-like language and a process in that
language, constructs a strongly bisimilar CSP process. Unfortunately, the construction
provided is difficult to use and the scripts produced cannot be compiled by the CSP
model-checker, FDR. In this paper, we adapt Roscoe’s simulation to make it produce a
process that can be checked relatively efficiently by FDR. Further, we extend Roscoe’s
simulation in order to allow recursively defined processes to be simulated in FDR,
which was not supported by the original simulation. We also describe the construc-
tion of a tool that can automatically construct the simulation, given the operational
semantics of the language and a script to simulate, both in an easy-to-use format.

Keywords. CSP, CSP-like, FDR, model checking

Introduction

Developing a model checker for a process algebra requires a significant investment of re-
sources, particularly if the model checker is to be efficient. Therefore, rather than developing
new model checkers for each new process algebra, it would make sense to reuse existing
model checkers, where possible.

In papers on the expressiveness of CSP [1,2], Roscoe develops a simulation that, given a
CSP-like language, constructs a strongly-bisimilar process in the process algebra CSP [3,4,5].
Thus, as CSP has an efficient, industrial-strength, model checker FDR [6], it should now be
possible to check models written in other CSP-like languages without having to develop a
new model checker.

Whilst the name CSP-like might appear to imply that only a small class of languages
can be simulated using [1,2], most of the CSP-like conditions are merely well-formedness
conditions and thus many other process algebras, such as CCS [7], the π-calculus [8] and
Lowe’s Readyness Testing CSP extension [9], are either CSP-like, or can be easily converted
into equivalent, but CSP-like formulations. Further, many denotational models for CSP, such
as Lowe’s Availability model [10], have CSP-like derived operational semantics that enable
the model to be extracted using the standard CSP models.

The above would suggest that a tool that could automatically construct a simulation of
processes written in a CSP-like language, given the operational semantics rules as input,
would be of value. Unfortunately, Roscoe’s construction in [1,2] was never intended to be
used as an actual simulation. In particular, only non-recursive processes can be simulated
within FDR as the simulated recursive processes are infinite state. The simulation also im-
poses a very high computational overhead, making it impractical for any non-trivial problem.
Further, the simulation is extremely complex to construct and the user has to construct the
simulation manually.

186 T. Gibson-Robinson / Efficient Simulation of CSP-Like Languages

Contributions In this paper we explain how to alter Roscoe’s simulation to allow it to be
encoded in machine-CSP (henceforth CSPM). We also give a number of optimisations to
Roscoe’s simulation to ensure that it can efficiently simulate processes. We then prove that
the resulting optimised simulation is still strongly bisimilar to the original process. We also
extend Roscoe’s simulation to enable recursive processes to be simulated correctly by FDR.
We then prove that, whilst this alteration is no longer strongly bisimilar, it results in a process
that is equivalent in all CSP models to the original process.

We also describe the construction of a tool, tyger, that takes as input the operational
semantics rules of the language (in a easy-to-use format) and a list of process definitions to
compile (again, in a natural format). The tool automatically produces the CSPM simulation
described above, and also automatically applies the necessary alternations to ensure that re-
cursive processes can be successfully simulated. The output of this tool is thus a CSP file that
can be passed to FDR, or any other CSPM tool.

This has a number of advantages. Not only does it mean that model checkers can be
easily constructed for other process algebras, but it allows a language designer to experiment
with the language whilst developing it. For example, suppose a user wants to create a process
algebra to enable easy verification of a certain problem. Previously, to experiment with the
language, an entirely new model checker would have to be constructed, making it difficult for
the language designer to experiment with the language’s capabilities during design. Now, a
simulation of the language can be constructed trivially, allowing experiments to be run whilst
the language is being developed and therefore providing feedback into the design.

Outline In Section 1 we give a brief overview of CSP, before considering what languages
we are able to simulate within CSP by defining Roscoe’s CSP-like condition. In Section 2 we
explain Roscoe’s original construction before giving a number of modifications that enable
it to run efficiently. In Section 3 we discuss the problem with recursion, explain the refactor-
ings required to permit recursive definitions and prove that the refactorings produce seman-
tically equivalent processes. Further, we discuss the limitations of the recursion refactorings.
In Section 4 we describe the construction of the tool. In Section 5 we detail the results of
several experiments that were run in order to verify the effectiveness and performance of the
simulation. Lastly, in Section 6 we draw conclusions and discuss future work.

1. Background

In this section we provide a brief overview of the fragment of CSP necessary to understand
the remainder of the paper. We also define what it means for an operational semantics to be
CSP-like, which represents the class of operational semantic languages that we can simulate.

1.1. A Brief Overview of CSP

CSP [3,4,5] is a process algebra in which programs or processes that communicate events
from a set Σ with an environment may be described. We sometimes structure events by send-
ing them along a channel . For example, c.3 denotes the value 3 being sent along the chan-
nel c. Further, given a channel c the set {|c|} ⊆ Σ contains those events of the form c.x.

The simplest CSP process is the process STOP , that can perform no events and thus
represents a deadlocked process. The process a→ P offers the environment the event a ∈ Σ
and then when it is performed, behaves like P . The process P 2 Q offers the environment
the choice of the events offered by P and by Q. Alternatively, the process P u Q, non-
deterministically chooses which of P or Q to behave like. Note that the environment cannot
influence the choice, the process chooses internally. P . Q initially offers the choice of the
events of P but can timeout and then behaves as Q.

T. Gibson-Robinson / Efficient Simulation of CSP-Like Languages 187

Syntax Meaning
a→ P Performs the event a and then behaves like P .
P 2 Q Offers the choice between P and Q.
P u Q Non-deterministically picks one of P and Q to behave as.
P \ A Runs P but hides events from A (which become τ).
P ||| Q Runs P and Q in parallel, enforcing no synchronisation.
P ‖

A

Q Runs P and Q in parallel, enforcing synchronisation on events in A.

P A‖B Q Runs P and Q in parallel, enforcing synchronisation on events in A ∩B.
P [[R]] Renames the events of P according to the relation R.
P ΘA Q Runs P until an event in A occurs, at which point Q is run.
P 4 Q Runs P , but at any point Q may interrupt P , perform an action and discard P .

Table 1. A summary of the syntax of CSP.

TThe process P A‖B Q allows P and Q to perform only events from A and B respec-
tively and forces P and Q to synchronise on events in A ∩ B. The process P ‖

A

Q runs P

and Q in parallel and forces them to synchronise on events in A. The interleaving of two
processes, denoted P ||| Q, runs P and Q in parallel but enforces no synchronisation. The
process P \ A behaves as P but hides any events from A by transforming them into a special
internal event, τ . This event does not synchronise with the environment and thus can always
occur. The process P [[R]], behaves as P but renames the events according to the relation R.
Hence, if P can perform a, then P [[R]] can perform each b such that (a, b) ∈ R. The process
P 4 Q initially behaves like P but allows Q to interrupt at any point and perform an event,
at which point P is discarded and the process behaves like Q. The process P ΘA Q initially
behaves like P , but if P ever performs an event from A, P is discarded and P ΘA Q behaves
like Q.

Recursive processes can be defined either equationally, or using the notation µX · P . In
the latter, every occurrence of X within P represents a recursive call to µX · P .

There are a number of ways of giving meaning to CSP processes. The simplest approach
is to give an operational semantics. The operational semantics of a CSP process naturally
creates a labelled transition system (LTS) where the edges are labelled by events from Σ∪{τ}
and the nodes are process states. The usual way of defining the operational semantics of CSP
processes is by presenting Structured Operational Semantics (SOS) style rules. For example,
the operational semantics of P ΘA Q can be defined by the following inductive rules:

P
a−−→ P ′

P ΘA Q
a−−→ Q

a ∈ A
P

b−−→ P ′

P ΘA Q
b−−→ P ′ ΘA Q

b /∈ A P
τ−−→ P ′

P ΘA Q
τ−−→ P ′ ΘA Q

The interesting rule is the first, which specifies that if P performs an event a ∈ A, then
P ΘA Q can perform the event a and then behave likeQ (i.e. the exception has been thrown).
The last rule is known as a tau-promotion rule as it promotes any τ performed by a component
(in this case P) into a τ performed by the operator. The justification for this rule is that τ is an
unobservable event, and therefore the operator cannot prevent P from performing the event.

CSP also has a number of congruent denotational semantics, where congruence means
that the denotational semantics may either be extracted from the operational semantics, or
calculated directly given the process. For example, the traces model represents each process
by the prefix-closed set of finite sequences of visible events that it can perform (i.e. a process
is represented by a subset of Σ∗).

188 T. Gibson-Robinson / Efficient Simulation of CSP-Like Languages

1.2. CSP-Like Languages

In [1] Roscoe proves that if an operator Op is CSP-like, then it is possible to construct a CSP
processOp′ such that the LTSs representingOp andOp′ are strongly bisimilar. In this section
we define what it means for an operator to be CSP-like.

Conventionally, operational semantics are represented by SOS rules, such as those given
above for the CSP exception operator. However, given that the syntax of SOS rules is very
general, defining what CSP-like means in terms of the rules would be rather difficult. For
example, the following SOS rule is not a legal CSP-like rule (since no CSP operator allows
an event to occur as the result of the absence of another event), but is a valid SOS rule:

¬(P
a−−→ P ′)

Op(P)
a−−→ Op(P ′).

Therefore, in [1], Roscoe instead uses a different presentation of operational semantics rules
in which only CSP-like operators are definable. We now give a brief overview of this alter-
native presentation: more information can be found in [1,5].

Definition 1.1 (From [1,5]). The combinator operational semantics of an operator F (P),
where P is a vector of processes, is defined by:

• Each process of the vector P is defined as either on or off . on arguments are indexed
by positive numbers, whilst negative indices refer to off arguments. Intuitively, an on
argument of a process can perform visible events, whilst an off argument cannot. For
example, both arguments of 2 are on, the first argument of ΘA is on, whilst the second
argument of ΘA is off.

• A set of combinator rules that specify the operational semantics of the operator, except
tau promotion rules which are implicitly defined for precisely the on arguments. A
single combinator rule is of the form (φ, x, T) where:

* φ is a partial function from the on indices to Σ. If φ(x) = y then the xth on process
performs the event y. If x /∈ dom(φ), then x does not perform an event.

* x ∈ {τ} ∪ Σ is the resulting event that the operator performs;
* T is a piece of syntax that represents the state of the resulting process. T is generated

from the following grammar:

T ::= −N | N | Op(T, . . . , T)

where: the first clause represents an off argument, the second clause a currently on
argument, and the third clause represents the application of an operator to a number
of process arguments. Further, there are a number of well-formedness conditions on
T :

1. on processes cannot be cloned, i.e. each on index i can appear at most once in T
(there is no CSP operator that can clone an on argument);

2. on processes cannot be suspended, i.e. if T contains Op′(P1, . . . , PN) where
Pi = j (i.e. Pi is the jth currently on process of Op), then i must be an on
argument of Op′ (again, no CSP operator can suspend and then later reactivate
an on argument).

For example, if T = 1, then this represents the rule that discards the current operator
and discards all process arguments except for 1. Alternatively, if T = 1 2 −1, then
the resulting state is the external choice of the 1st argument of the current operator
and the newly started process −1.

T. Gibson-Robinson / Efficient Simulation of CSP-Like Languages 189

For example, the external choice operator has two arguments which are both on and the
combinator rules consist of the set of all rules of the form ((a, ·), a,1) and ((·, a), a,2), where
a ranges over Σ. The exception operator has two arguments, the first of which is on whilst the
second is off. The set of combinator rules for ΘA consists of the set of all rules of the form
((a, ·), a,1 ΘA −1) where a ∈ Σ \ A, and rules of the form ((a, ·), a,−1) where a ∈ A.

A CSP-like operator is then defined as any operator whose operational semantics can
be expressed by a combinator operational semantics. A CSP-like language is defined as a
language in which every operator is CSP-like. Whilst this might appear to be restrictive, it
turns out that many process algebras, including CCS1 [7] and the π-calculus [8], are CSP-
like. Further, many denotational models for CSP, such as Lowe’s Availability Model [10],
have a derived operational-semantics that is CSP-like, meaning that we are able to simulate
these denotational models operationally.

2. Simulating CSP-Like Languages

In this section we define Roscoe’s simulation and then define an optimised CSPM simulation,
before proving the equivalence of the two. We start in Section 2.1 by describing Roscoe’s
simulation, including the internal format of the operational semantics and the CSP process
Operator that simulates a particular operator. In Section 2.2 we then explain the modifica-
tions that we made in order to construct a CSPM simulation. Further, we detail the changes
that we made to enable the simulation to run efficiently and prove that the optimisation still
result in a strong bisimulation.

Throughout this paper we will need to enlarge the set of events Σ that the environment
offers. Thus, for the remainder of this paper we will use Σ to denote the set of events that
the user uses in their script; Σ0 ⊇ Σ to include all semantic events (such as X to indicate
termination in the case of CSP); Σ1 ⊇ Σ0 to include all internal events used by the simulation.
We also use a special event tau ∈ Σ0 that will simulate a semantic τ .

2.1. Roscoe’s Simulation

In order to simulate arbitrary CSP-like operators in [1,2], Roscoe defines a data structure in
which the operational semantic rules of an operator are encoded. In this section, we start by
defining this encoding before explaining the simulation.

Roscoe’s encoding is an expansion of the combinator semantics, as presented in Def-
inition 1.1, in order to make the combinators more easy to work with. As with the combi-
nator semantics, operators such as · \ A are considered as a family of operators, one for
each A ⊆ Σ. Thus, the only arguments of an operator are on and off processes. Given an
operator α we define n(α) as the number of on arguments and I(α) as the number of off
arguments. Further, we index the on arguments by {1 . . .} and off arguments by {. . . − 1}
(i.e. a positive index i refers to the ith on process of α, whilst a negative index−i refers to the
ith off process of α). The operational semantics of an operator α is given by a set of tuples
(φ, x, β, f, ψ, χ,B) where:

• φ: specifies what event each on process must perform in order for this action to be
performed. Formally, it is a partial map from {1 . . . n(α)} to Σ0, where φ(x) = b
means the xth on process performs b. This corresponds precisely to φ in the combinator
rules (cf. Definition 1.1).

• x: is the resulting event from Σ0 that α performs.
• β: is the resulting operator that this process evolves into.

1CCS is not quite CSP-like as τ resolves choice. However, Roscoe shows how to simulate it in [1].

190 T. Gibson-Robinson / Efficient Simulation of CSP-Like Languages

• f : denotes which off process of α is used for each newly turned on process. Formally,
it is a map from {1 . . . k} (where k is equal to the number of processes turned on) to
{−I(α) . . .− 1} where f(x) = y indicates the xth newly turned on process is a copy
of the yth off process.

• ψ: specifies what the process arguments of β are, which can either be currently on
processes of α, or newly turned on processes (according to f). Formally, it is a map
from {1 . . . n(β)} to {1 . . . n(α) + k} where ψ(y) = x indicates that the yth argument
of β is either, if x ≤ n(α) then the xth on argument of α, or otherwise the x− n(α)th

newly turned on argument (i.e. the f(x− n(α)) off process of α).
• χ: specifies what the off arguments of β are in terms of those of α. Formally, χ is a

map from {−I(β) . . .− 1} to {−I(α) . . .− 1} where χ(y) = x means that the yth off
argument of β is the xth off argument of α.

• B: is the set of on processes that are discarded (this was not present in Roscoe’s model
but it is added for clarity).

In the following, we assume that there exists a function Rules that gives the rules for
each operator in the language that is being modelled. Thus, Rules is a function from the
set of all operators to the powerset of tuples (φ, x, β, f, ψ, χ,B) of the above form. For ex-
ample, assuming that the a → · operator is denoted as Prefix .a, and that · ‖

A

· is denoted as

Parallel .A, a partial specification of the Rules function for CSP can be encoded as follows
(where the identity operator is denoted by Identity):

Rules(Identity) =̂ {({(1, a)}, a, Identity , {}, {(1, 1)}, {}, {}) | a ∈ Σ0}
Rules(Prefix .a) =̂ {({}, a, Identity , {(1,−1)}, {(1, 1)}, {}, {})}

Rules(Parallel .A) =̂ {({(1, a), (2, a)}, a,Parallel .A, {}, {(1, 1), (2, 2)}, {}, {}) | a ∈ A}
∪ {({(1, a)}, a,Parallel .A, {}, {(1, 1), (2, 2)}, {}, {}) | a /∈ A}
∪ {({(2, a)}, a,Parallel .A, {}, {(1, 1), (2, 2)}, {}, {}) | a /∈ A}

For the rest of this paper we assume that a function Rules has been defined for the
language that we are attempting to model.

Operator Simulation We now define the process Operator(α, . . .) from [1,2] (with some
minor alterations) that simulates the CSP-like operator α. The general form that the process
will take is:

Operator(α, onProcs, offProcs) =̂(
‖

(n,P)∈onProcs
(Harness(P, n), AlphaProc(n))

‖⋃
n∈{1...|onProcs|} AlphaProc(n)

Reg
(
α, |onProcs|, id{1...|onProcs|}, id{−|offProcs|..−1}

))
[[Rename]] \ {tau}.

In the above, each on process is run in a harness that will both ensure that it is turned off
when necessary and that renames its events to allow the simulation to function correctly. The
regulator process is responsible for ensuring that only events according to the current operator
are allowed to occur.

Observe that the left hand side of the parallel in the above definition does not de-
pend on the current operator, only the on processes. Therefore, only Reg differs between,

T. Gibson-Robinson / Efficient Simulation of CSP-Like Languages 191

e.g. Operator(ExternalChoice, 〈P,Q〉, 〈〉) and Operator(Parallel .Σ, 〈P,Q〉, 〈〉). How-
ever, these have very different synchronisation patterns; in the former P and Q do not syn-
chronise whereas in the latter, P and Q synchronise on Σ. Therefore, it follows that the reg-
ulator needs to allow all possible synchronisation patterns to occur.

In order to ensure that we can simulate the two different synchronisation patterns, we
need to rename the events of each on process to allow the processes to synchronise together
in any possible way. The regulator could then be defined to allow only those synchronisations
that correspond to the current operator. Thus, the general event form that will be used in the
operator simulation will be a tuple (φ, x,B) where:

• φ is a partial map from on process to Σ0 (i.e. if φ(x) = y the xth process performs the
event y);

• x is the resulting event;
• B is the set of on processes that are discarded.

As we have fixed the event format, we are now able to defineRename as the function that re-
names each (φ, x,B) to x. Further,AlphaProc(n) can be defined to be the set of all (φ, x,B)
such that n is affected; i.e. n ∈ dom(φ) or n ∈ B.

We now consider the definition of Harness(P, n). The harness needs to run the process
P as if it were the nth on process, renaming every event that it performs to one of the above
form. It also needs to turn this process off when an event of the form (φ, x,B) where n ∈ B
is performed. Hence, we define Harness(P, n) as follows:

Harness(P, n) =̂
((
P [[Prime]] Θ{x′|x∈Σ0} STOP

)
4 off→ STOP

)
[[HRename]]

where off is a fresh event and Prime maps every event x ∈ Σ0 to both x and x′. HRename
renames as follows:

• Each event a ∈ Σ0 to every (φ, x,B) such that φ(n) = a and n /∈ B (i.e. where
process n performs φ(n) and is not discarded);

• Each event a′ ∈ {x′ | x ∈ Σ0} to every (φ, x,B) such that φ(n) = a and n ∈ B (i.e.
process n performs a, but is discarded);

• off to every (φ, x,B) such that n /∈ dom(φ) and n ∈ B (i.e. process n is discarded
by an event in which it does not partake).

We now define the regulator, which has three principle responsibilities: it must ensure
that only events allowed by the current operator can be performed by the processes; it must
track which process on the left hand side corresponds to which process of the current oper-
ator; and it must turn on processes according to the executed rule. Thus, the regulator takes
the following parameters:

• λ: the current operator;
• m: the number of processes ever turned on;
• Ψ: a map from {1 . . . n(λ)} to {1 . . .m}; in particular if Ψ(x) = y it means that the

the xth on argument of λ is the yth on argument;
• χ: a map from {1 . . . I(λ)} to {1 . . . I(α)} where α is the starting operator (i.e. the

operator for which Operator(α, . . .) was called); in particular if χ(x) = y it means
that the xth off argument of λ is the yth off argument of α.

We can then define the regulator, Reg(λ,m,Ψ, χ), as follows:

192 T. Gibson-Robinson / Efficient Simulation of CSP-Like Languages

Reg(λ,m,Ψ, χ) =̂

2(φ,x,β,f,ψ,χ′,B)∈Rules(λ) (φ ◦Ψ−1, x, {Ψ(x)|x ∈ B})→
‖n∈{m...m+|f |} (Harness(offProcs(χ(f(n−m)))), AlphaProc(n))

⋃
n∈{1...m+|f |} AlphaProc(n)‖⋃n∈{m+|f |...} AlphaProc(n)

Reg(β,m+ |f |, (Ψ ∪ idm+1,...,m+|f |) ◦ ψ, χ ◦ χ′)

Note that the above regulator allows only those events that correspond to the current operator
and, whenever such an event occurs, evolves into the state dictated by the rule that was chosen
(with the state being updated according to the definitions of f etc.).

Roscoe then proves that the above simulation results in a CSP process that is strongly
bisimilar to the original operator.

2.2. A CSPM Simulation

In this section we outline the alterations to Roscoe’s simulation that are required in order to
allow the simulation to be successfully modelled in CSPM . The first major issue that prevents
the above solution being compiled into CSPM is that the alphabets, such as AlphaProc(n),
are infinite because it is possible that an infinite number of processes can be turned on by an
operator. Thus, since the on processes have to be able to be synchronised in any possible way,
AlphaProc(n) has to represent an infinite number of possible synchronisations patterns. In
order to prevent this we disallow operators that could turn on an infinite number of argu-
ments2. Hence, we can now statically bound the maximum number of processes turned on to
some number N . Therefore, the set of all the (φ, x,B) events is given by:

{(φ, x,B) | φ ∈ {1 . . . N} → Σ0, x ∈ Σ0, B ⊆ {1 . . . N}}.

We create a new CSPM channel, renamings that carries events from the above set. Using
this, the remainder of the translation to CSPM is largely mechanical and is therefore elided.

Efficiency Unfortunately, the naïve translation of the above into CSPM results in scripts that
can only support at most a handful of events. In order to make the simulation run efficiently
a number of optimisations had to be made. Some of the simpler optimisations included using
sequences rather than sets to represent partial functions and using integers to identify events
of the form (φ, x,B), rather than tuples. However, in order to make the simulation really run
efficiently, a number of more interesting optimisations were made, as we now describe.

One problem with Operator is that the renamings channel has O(2N+|Σ0| · |Σ0| · 2N)
members, meaning that computing the Harness renaming or the set AlphaProc(n) will be
slow. However, most operators will never use the majority of the events. For example, CSP’s
parallel operator (over a set A), requires only events of the form ({(0, a), (1, a)}, a, {}),
({(0, b)}, b, {}), ({(1, b)}, b, {}), where a ∈ A, b /∈ A. In fact, all standard CSP operators
only use O(|Σ0|2) events. Thus, when computing the renamings and the process alphabets
we restrict ourself to the subset of renamings that could be used either by the current oper-
ator, or any resulting operator. This requires us to compute the set of all (φ, x,B) such that
(φ, x,B) is permitted either by the current regulator, or any regular we can evolve to.

To calculate the above set, we firstly calculate the set of regulator configurations that the
regulator can evolve into. In particular, we define the function configs(λ,m,Ψ, χ), where
the arguments are as per Reg, as the least fixed point of the following function h:

2Clearly no practical simulation could support such operators, so this is not a restriction in practice.

T. Gibson-Robinson / Efficient Simulation of CSP-Like Languages 193

h(X) =̂ X ∪ {(λ,m,Ψ, χ)}
∪ {(β,m+ |f |, (Ψ ∪ idm+1,...,m+|f |) ◦ ψ, χ ◦ χ′)

| (φ, x, β, f, ψ, χ′, B) ∈ Rules(λ), (λ,m,Ψ, χ) ∈ X}.

Thus, it follows that configs(λ,m,Ψ, χ) consists of the set of all states that Reg(λ,m,Ψ, χ)
can evolve into.

Using the above, the set of all events of the form (φ, x,B) that
Operator(α, onProcs, offProcs) requires, denoted closure(α, onProcs, offProcs), can be
defined as:

{(φ ◦Ψ−1, x, {Ψ(x)|x ∈ B}) | (φ, x, β, f, ψ, χ′, B) ∈ Rules(λ),

(λ,m,Ψ, χ) ∈ configs(α, |onProcs|, id{1...|onProcs|}, id{−|offProcs|..−1})}.

The correctness of the above is shown in the following lemmas.

Lemma 2.1. Suppose Operator(α, onProcs, offProcs) evolves into state in which Reg
is in state Reg(λ,m,Ψ, χ). Then, (λ,m,Ψ, χ) ∈ configs(α, |onProcs|, id{1...|onProcs|},
id{−|offProcs|..−1}).

Proof (Sketch). Observe that in the definition of Reg(λ,m,Ψ, χ), Reg evolves into states
precisely the same as those on the left hand side of h in the definition of configs.

Lemma 2.2. If Operator(α, onProcs, offProcs) internally uses the event (φ, x,B) then
(φ, x,B) ∈ closure(α, onProcs, offProcs).

Proof (Sketch). This follows from the observation that, internally, Reg participates in every
event thatOperator performs, and thus the set of events thatOperator uses is bounded by the
set of events that Reg allows, which, given Lemma 2.1, closure extracts by definition.

One other issue with the definition of Operator is that it contains a large number of
nested CSP operators, meaning that FDR has to deal with a large, complex, stack of operators.
However, observe that if a particular component n can never be turned off (as is the case with
CSP’s parallel operator) then Harness(P, n) is equivalent to P [[Rename]]. Hence, if we can
compute the set of arguments that can be turned off, it follows that we can easily decide when
to compute the full harness. In order to compute the set of arguments that can be turned off,
we define the function turned off(α, onProcs, offProcs) as:

{Ψ(b) | (λ,m,Ψ, χ) ∈ configs(α, |onProcs|, id{1...|onProcs|}, id{−|offProcs|..−1}),

(φ, x, β, f, ψ, χ′, B) ∈ Rules(λ), b ∈ B}.

The correctness of this optimisation can be proven as follows, noting that
Harness(P, n) = P [[Rename]], if n can never be turned off. We elide the proof since it
follows immediately from the definition of Reg and Lemma 2.1.

Lemma 2.3. IfOperator(α, onProcs, offProcs) evolves into a state in whichHarness(P, n)
has turned P off, then n ∈ turned off(α, onProcs, offProcs).

Having performed the optimisations we are now able to compile reasonably sized sys-
tems with little difficulty. Note that the above optimisations do not alter Roscoe’s original
result since, as proven above, the optimisations do not affect the semantics of the Operator
process.

194 T. Gibson-Robinson / Efficient Simulation of CSP-Like Languages

3. Recursion

As discussed in the introduction, FDR cannot successfully compile simulations of recursive
processes. For example, consider simulating CSP within CSP (which we do for ease of expo-
sition only). According to the simulation given in Section 2, the process P = a → P would
be simulated by the process P = Operator(Prefix .a, 〈〉, 〈P 〉). We calculate the definition of
this as FDR would below, writing HR for the renaming done by the Harness and R for the
renaming done by Operator.

P = Operator(Prefix .a, 〈〉, 〈P 〉)
= Reg(Prefix , . . .)[[R]] \ {tau}
= (({}, a, {})→ (Harness(P, 0) ‖

...

Reg(Identity , . . .)))[[R]] \ {tau}

= a→ (Harness(P, 0) ‖
...

Reg(Identity , . . .))[[R]] \ {tau}

= a→ (P [[HR]] ‖
...

Reg(Identity , . . .))[[R]] \ {tau}.

Thus, Pi, which is P unwrapped i times, is equivalent to:

P0 = P

Pi+1 = a→ ((Pi[[HR]] ‖
..

Reg(Identity , ...))[[R]] \ {tau}).

Whilst it is certainly true that Pi is equivalent to any of the other Pi, FDR (unsurprisingly)
does not detect this and instead loops, looking for a transition back to P . Therefore, this
results in an unbounded number of copies of Reg(Identity , . . .) being put in parallel.

In this section, we start in Section 3.1 by outlining a simple solution to the recursion
issue outline above. In Section 3.2 we then generalise this to allow a large class of recursive
definitions to be compiled. We then formalise the transformation and prove it correct in Sec-
tion 3.3. In Section 3.4 we expand the transformation to permit additional recursive processes
to be compiled. Lastly, in Section 3.5 we discuss the potential limitations of the recursion
refactorings presented in this section.

3.1. A Simple Solution

One solution to the problem above would be to periodically throw away the collection of
identity operator regulators that have been spawned. For example, consider the following
simulation of P = a→ P :

PSim =̂ Loop(Operator(Prefix .a, 〈〉, 〈callPSim→ STOP 〉))
Loop(Q) =̂ Q Θ{callPSim} PSim.

When compiling PSim, according to the definition of Loop, whenever
Operator(Prefix .a . . .) performs a callPSim event the left argument of Θ{callPSim} would
be terminated and PSim would be started again. In particular, if we calculate the definition
of PSim as FDR would, assuming that the identity operator allows callPSim (which we
discuss further below), we obtain the following:

PSim = Loop(Operator(Prefix .a, 〈〉, 〈callPSim→ STOP 〉))
= Operator(Prefix .a, 〈〉, 〈callPSim→ STOP 〉) Θ{callPSim} PSim

T. Gibson-Robinson / Efficient Simulation of CSP-Like Languages 195

= (a→ ((callPSim→ STOP)[[HR]] ‖
...

Reg(Identity , . . .))[[R]] \ {tau})

Θ{callPSim} PSim

= a→ (((callPSim→ STOP)[[HR]] ‖
...

Reg(Identity , . . .))[[R]] \ {tau}

Θ{callPSim} PSim)

= a→ (callPSim→ ((STOP [[HR]] ‖
...

Reg(Identity , . . .))[[R]] \ {tau})

Θ{callPSim} PSim)

= a→ callPSim→ PSim.

Hence, it follows that PSim \ {callPSim} simulates PSim in a way that FDR can suc-
cessfully compile.

Note that PSim \ {callPSim} is no longer strongly bisimilar to P as there is a τ
transition whenever PSim recurses. However, as all CSP denotational models equate τ → P
and P , this is not of any consequence providing the processes are used in refinement checks
(which is the intention, after all).

3.2. Generalising the Solution

In order to generalise the solution of Section 3.1 to arbitrary processes and operators we give
a number of refactorings that must be performed on the simulated script. The first refactoring
will be as above; thus, we declare a new channel callProc of type Proc (for ease we assume
process names may be sent over channels). We then replace every call inside a recursive
process to another recursive process P with a callProc.P event. Using this we can now define
a process WrapThread that is analogous to Loop above. Note that much of the complexity
in the following comes from the fact that the exception operator does not pass which event
from the exception set was performed to its right argument. We work around this by putting
the exception operator in parallel with a regulator that remembers which callProc event
occurred.

WrapThread(P) =

((P Θ{|callProc|} startProc?Q→ WrapThread(Q))

‖
{|callProc,startProc|}

µX · callProc?p→ startProc!p→ X) \ {|startProc, callProc|}.

Note that no callProc events can propagate out of a process of the form WrapThread(P).
As {|callProc|} 6⊆ Σ0 it follows that we will have to add the following rule to the

operational semantics of the Identity operator in order to allow the callProc events can
propagate, as discussed above.

P
callProc.p−−−−−−→ P ′

Identity(P)
callProc.p−−−−−−→ Identity(P ′)

p ∈ Proc

We might ask if similar propagation rules should be added to other operators for on argu-
ments. However, it is easy to see that in all but the case of the identity operator that if a
callProc event were to propagate then information would be lost. For example, suppose
P = a → P 2 R and R = b → R. As the call to R on the right of the external choice is
replaced by a callProc event, it follows that the recursion would resolve the external choice
which is clearly incorrect.

196 T. Gibson-Robinson / Efficient Simulation of CSP-Like Languages

3.3. Formalising the Solution

We now consider how to formalise the solution sketched above and, in particular, we prove
that the process that results from the transformations is equivalent, in a sense we later for-
malise, to the original simulation. In order to prove this, we firstly formally define what we
are actually simulating. In particular, we define a syntactic process which corresponds, es-
sentially, to a process definition in a CSPM file.

Definition 3.1. A syntactic process P is defined by the grammar P ::= Op(P, . . . , P) | N ,
where N represents a process name and Op is a CSP-like operator. A process environment Γ
is a function from process names to syntactic processes. For simplicity, we assume that Γ(N)
is never a process name, and is thus always of the form Op(. . .)3.

Given a syntactic process, it is possible to construct a simulation of it using the pro-
cesses from Section 2.1. Thus, we define a function simΓ(P) that, given a syntactic process
P , returns the simulation of it. For ease, we assume that the Operator process defined in
Section 2.1 can be given a single vector of processes, rather than two vectors of on and off
processes, respectively.

Definition 3.2. The simulation of P in Γ, denoted simΓ(P) is defined recursively by:

simΓ(Op(P1, . . . , PN)) =̂ Operator(Op, 〈simΓ(P1), . . . , simΓ(PN)〉)

simΓ(N) =̂ N

Note that the above simulation cannot be compiled by FDR if it contains recursive pro-
cesses, as discussed above. However, it is strongly bisimilar to the original process, given
Roscoe’s results.

We now consider how to formalise the recursion refactorings we sketched in the preced-
ing section. In order to formalise them, we need to distinguish between the different ways
that an operator can use the events performed by its arguments. For example, 2 only looks at
the initial visible events performed by each of its arguments, whilst ||| looks at all the events
performed by its arguments. We formalise this difference in the following definition.

Definition 3.3. An on process argument P of a CSP-like operator Op is 1-required iff P can
perform a visible event, i.e. there exists an inductive rule of the form:

. . . ∧ P a−−→ P ′ ∧ . . .
Op(. . . , P, . . .)

b−−→ Op′(. . .).

where a ∈ Σ. An argument P of a CSP-like operator Op is (k + 1)-required iff there exists
an inductive rule of the above form to a CSP-like operator Op′ 6= Identity such that P ′ is k-
required for Op′. An argument P of an operator Op is infinitely recursive iff P is k-required
for every k ∈ N. An argument P of an operator Op is only k-recursive iff P is k-required,
but not k + 1-required.

For example, considering CSP: both arguments of ‖ are infinitely recursive; both argu-
ments of 2 are only 1-required; the left argument of 4 is infinitely recursive but the right
argument is only 1-required; the left argument of ΘA is infinitely recursive but the right is not
required as it is off. Note that, by definition of an on argument each on argument is at least
1-required.

3This is not a restriction in the tool, but is added only to simplify the presentation.

T. Gibson-Robinson / Efficient Simulation of CSP-Like Languages 197

Using the above definitions, we can now formalise the recursion refactorings that we
sketched in Section 3.2. Firstly, we change every recursive call4 to a process N to be a
callProc event. Further, if an argument of an operator is infinitely recursive, we apply
WrapThread, to ensure that no callProc events propagate out. We formalise this as a func-
tion that returns a CSP process as follows.

Definition 3.4. Let Γ be a syntactic process environment and P a syntactic process.
rec simΓ(P) is defined inductively by:

rec simΓ(Op(P1, . . . , PN)) =̂ Operator(Op, 〈irecΓ(Op, 1, P1), . . . , irecΓ(Op,N, PN)〉)

rec simΓ(N) =̂ callProc.N → STOP

irecΓ(Op, i,N) =̂

{
WrapThread(rec simΓ(Γ(N))) i is infinitely recursive
rec simΓ(P) otherwise

irecΓ(Op, i, P) =̂ rec simΓ(P)

Note that the above simulation will no longer be strongly bisimilar to the original process
(or indeed to simΓ(P)). This is because whenever a recursion occurs, there will be two extra
τ ’s resulting from the hidden callProc events (cf.WrapThread). Whilst this is of theoretical
importance, this is not of any consequence to the tool, since all CSP denotational models
equate P and τ → P . Hence, a particular refinement check would hold on the original process
iff it holds on the above simulation.

Note that the above simulation is not sufficient for every CSP-like operator, nor every
syntactic process. Thus, we now consider what syntactic processes the above simulation can
handle. Firstly, observe that the process P = Q 2 P cannot be simulated, since the avail-
able transitions of P directly depend on those of P . Prohibiting such processes is an entirely
reasonable restriction: such a P is not well-defined and would be rejected by any CSP-based
tool (including FDR). Also, consider the process P = a → P ||| STOP . Again, the simu-
lation will produce a process that cannot be compiled by FDR, since the left-hand argument
is changed to WrapThread(a → callProc.P → STOP). Hence, when FDR compiles P ,
after an a is performed another copy of P , itself containing another copy of WrapThread,
will be spawned by the original WrapThread. We claim that prohibiting such processes is
entirely reasonable, on the grounds that FDR cannot compile any such process either.

1-required arguments require extra restrictions to be placed since, by definition, no re-
cursions can be permitted before a visible event has been performed. For example, the pro-
cess P = (P u STOP) 2 a → STOP is not well-defined since the τ of the u does not
resolve the 2, and thus the transitions of P again directly depend on those of P . We believe
that such a restriction is reasonable, since FDR would also fail to compile such a process.

More problematically, any process of the form P = Q 2 a → STOP cannot be
simulated since the Q will be converted to callProc.Q → STOP , but callProc events are
not allowed by the simulation of 2. Thus, it follows that the above simulation cannot deal
with immediately recursive arguments. We extend the simulation to support such arguments
in Section 3.4. We can formalise the set of processes for which the simulation is correct as
follows. In the following definition, we only consider operators where each argument of the
operator is either only 1-required or infinitely recursive, for simplicity. The definition and
subsequent results can be generalised to arguments that are only k-required for k > 1.

4We don’t actually need to change every recursive call; it actually suffices to change only recursive calls by
non-recursive processes to recursive processes or by recursive processes to other recursive processes. We do not
formalise this version since it adds extra complications.

198 T. Gibson-Robinson / Efficient Simulation of CSP-Like Languages

Definition 3.5. • Given a syntactic process P in a process environment Γ, P recurses to
N iff either P = N , or P = N ′ where Γ(N ′) recurses to N , or P = Op(P1, . . . , PN)
and one of the Pi recurses to N .

• A syntactic process P recurses toN through only on arguments iff P = N , or P = N ′

and Γ(N ′) recurses to N through only on arguments, or P = Op(P1, . . . , PN) and
there exists an on Pi such that Pi recurses to N through only on arguments.

• A syntactic process P has no named on arguments iff P is not a name, and if P =
Op(P1, . . . , PN) then each on Pi has no named on arguments.

• A syntactic process P has 1-guarded recursion to N iff P does not recurse to N ,
or P = N ′ and Γ(N ′) has 1-guarded recursion to N , or P = Op(P1, . . . , PN) and
whenever Op(P1, . . . , PN)

τ−−→ Op′(P), Op′(P) has 1-guarded recursion to N .
• A process environment Γ has correct simple recursion iff for every (N,P) ∈ Γ, for

every instance of Op(P1, . . . , PN) within P , and for each on Pi:

* If Pi is infinitely recursive, then Pi does not recurse to N ;
* If Pi is only 1-required, then Pi does not recurse to N through only on arguments,
Pi has no named on arguments and Pi has 1-guarded recursion to N .

Since the definition of has correct simple recursion only mentions operator arguments
that are only 1-required and infinitely recursive, it follows that we can only allow operators
that have only such arguments. With this observation in mind, we can state and prove our
main result. Note in the following, as discussed after Definition 3.4, we weaken the equiva-
lence from strong bisimulation to equivalence in any CSP denotational model.

Theorem 3.6. Let P be a syntactic process and Γ be a syntactic process environment with
correct simple recursion. If every argument of every operator used in Γ or P is either infinitely
recursive or only 1-required, then WrapThread(rec simΓ(P)) = simΓ(P), where equality
is interpreted in any CSP model.

Proof (Sketch). Let P and Γ be as per the lemma. Formally, this theorem can be proven by a
structural induction over P . The correctness of this result follows primarily from the require-
ment that Γ has correct simple recursion. This means that, if an argument wishes to perform
a callProc event, then the operator must have evolved into the Identity operator state, which
allows the callProc event to propagate, which can then be picked up by WrapThread.

3.4. Immediate Recursions

The above solution enables many recursive process definitions to be compiled, but does not
cover every possibility. As noted above, it does not correctly simulate processes that have im-
mediate recursion, such as P = a→ P 2 R and R = b→ R. In particular, in rec simΓ(P)
the right hand side of the external choice of P would be replaced by a callProc event. How-
ever, as these are not allowed to propagate through the external choice it follows that only the
choice of the left hand side would be presented.

The simplest solution to the above would be to inline the definition ofRwithin P to yield
the process P = a → P 2 b → R, which could be successfully simulated (in particular, it
has correct simple recursion and thus Theorem 3.6 applies). However, this will not work on
processes such as P = a → (P 2 b → P) since, after inlining, the process still contains
an incorrect usage of external choice (in this case, the inlined version would be P = a →
((a→ (P 2 b→ P) 2 P)). To solve the above we introduce a fresh name R for the process
P 2 b→ P . We then rewrite the definitions as:

P =̂ a→ R

R =̂ a→ R 2 b→ P.

T. Gibson-Robinson / Efficient Simulation of CSP-Like Languages 199

Note that the above processes have no disallowed immediate recursions.
In general, if an argument of a process is only k-required, we need to inline sufficiently

to ensure that none of the first k events can ever be callProc events. If we do this, then
it follows that the resulting syntactic process will satisfy the preconditions of Theorem 3.6
and thus this can be applied to correctly simulate the process. In order to formalise this we
firstly expand the definition of has correct simple recursion to allow immediate recursion. As
before, we concentrate only on operators where each argument is either infinitely recursive,
or only 1-required. Again, the definition could be generalised as required.

Definition 3.7. A process environment Γ has correct recursion iff for every (N,P) ∈ Γ, for
every instance of Op(P1, . . . , PN) within P , and for each on Pi:

1. If Pi is infinitely recursive, then Pi does not recurse to N ;
2. If Pi is only 1-required, then Pi does not recurse to N through only on arguments and
Pi has 1-guarded recursion to N .

Note that the second clause prohibits syntactic processes where the events for a process
depend recursively on the process itself. Clearly such processes are not well-defined. We now
define how to inline process definitions, in order to support the refactoring that was sketched
above. Note that the following transformation is only well-defined if the process environment
has correct recursion.

Definition 3.8. Given a syntactic process environment Γ′, the inlined process environment Γ′

is defined on each syntactic process contained in any process in Γ. In particular, dom(Γ′) is
the set of all NP ′ where P ′ is a subprocess of some P ∈ img(Γ). Further, Γ′ is defined by:

Γ′(NOp(P1,...,PM)) =̂ Op(inline(Op, 1, P1), . . . , inline(Op,N, PN))

Γ′(NN ′) =̂ Γ′(Γ(N ′))

inline(Op, i, Pi) =̂

NPi i is off
Γ′(NN ′) i is on and Pi = N ′

Γ′(NOp′(P′)) i is on and Pi = Op′(P′)

Note that the second clause of Γ′ is well-defined by the assumption in Definition 3.5 that
Γ(N) 6= N ′. Further, observe that the inline is semantics-preserving since it is essentially
just a renaming operation. Thus, if N ∈ dom(Γ), then simΓ(N) is strongly bisimilar to
simΓ′

(Γ′(N)).
Clearly, the inlining process will only terminate if no on argument recurses back to itself.

This is implied by the definition of has correct recursion in Definition 3.7.

Theorem 3.9. Let Γ be a process environment with correct recursion and let Γ′ be the flat-
tened process environment of Γ. Then Γ′ has correct simple recursion.

Proof. Let Γ and Γ′ be as per the lemma. By definition of correct recursion and correct simple
recursion it suffices to show: for each (N,P) ∈ Γ′, each Op(P1, . . . , PN) that is a subprocess
of P , and each on argument Pi, that Pi has no named on arguments. This follows immediately
from the definition of inline.

For optimisation reasons, the tool does not implement the refactoring exactly like this,
but instead detects when the recursion refactoring has to be applied and does so only to such
processes. This is discussed further in Section 4.

3.5. Limitations

The recursion refactorings that we have discussed above allow a large class of recursive pro-
cesses to be successfully simulated. However, there are fundamental limitations to the range

200 T. Gibson-Robinson / Efficient Simulation of CSP-Like Languages

of operators that can be simulated in such a way. One good example of an operator that can-
not be simulated using the above construction is the new CSP operator synchronising exter-
nal choice, 2A [11]. This operator behaves likes a hybrid of external choice and generalised
parallel. In particular, P 2A Q is resolved by P or Q performing a visible event outside of
A, whilst if P or Q wishes to perform an event from A, it must synchronise with the other
process. Thus, 2{} is equivalent to 2, whilst 2Σ is equivalent to ‖

Σ

.

This operator is particularly problematic for the recursion refactorings since it is the only
CSP operator where an argument that is infinitely recursive can also be recursed through.
For example, consider the process: P = a → b → P 2{a} a → STOP . In this pro-
cess, P recurses through the first argument of 2{a}, which is infinitely recursive5, (cf. Defi-
nition 3.3). However, FDR has no problem compiling the above process, because when the b
is performed, 2{a} is discarded, meaning that a transition back to P is found, as required.

There is no obvious way of altering the simulation to support an operator that
might sometimes recurse (and thus requires the callProc event to not be consumed by a
WrapThread inside 2{a}), but sometimes never recurses (and thus requires that all callProc
events must be consumed by aWrapThread inside 2{a}). In [1] Roscoe actually conjectures
that it is impossible to simulate 2A in such a way that FDR can successfully compile pro-
cesses that use it. Thankfully, such operators are sufficiently uncommon that the simulation
we provide is still applicable to a very wide variety of operational semantics.

4. Tool Support

As part of this work we have constructed a tool called tyger, written in Haskell, that auto-
matically constructs the simulation and refactors the user’s process definitions, as above. The
input to tyger consists of two input files, the first of which specifies the operational semantics
of the language. For example, the machine-readable version of the SOS rules for the CSP
exception operator, as given in Section 1.1, can be defined as follows:

Operator Exception(P : InfRec, Q, A)
Syntax Binary "[| $3 |>" 12 AssocNone
Rule

P =a=> P’
----------------------------- a <- diff(Sigma, A)
P [| A |> Q =a=> P’ [| A |> Q

EndRule
Rule

P =a=> P’
------------------ a <- A
P [| A |> Q =a=> Q

EndRule
EndOperator

In the above, Exception(P : InfRec, Q, A) specifies that the exception operator
takes 3 arguments, the first of which is a process that is infinitely recursive (cf. Definition 3.3).
The Syntax line provides the information that tyger requires to parse the file. In particular,
it specifies that the operator is a binary operator, with concrete syntax “[| $3 |>” where
$3 refers to the third argument (i.e. A), is non-associative and has a precedence of 12 (which
is used to disambiguate non-bracketed statements). Using this line tyger dynamically con-
structs a parser (using the Haskell Parsec library6) to parse this file. The two Rule constructs

5Hence, this violates the conditions of has correct recursion, since P recurses through an infinitely-recursive
argument.

6http://hackage.haskell.org/package/parsec

http://hackage.haskell.org/package/parsec

T. Gibson-Robinson / Efficient Simulation of CSP-Like Languages 201

are precisely the machine readable versions of the SOS rules from Section 1.1 (noting that
diff(Sigma, A) is the machine readable form of Σ \ A). Note that tau promotion rules are
omitted as they are automatically added.

After parsing the above file, tyger performs a sort of type-checking on the operational
semantics and infers which arguments of the operators are off and on. The type-checking is
necessary because the side conditions of the operational semantic conditions (e.g. the a <-
Sigma) can be written in a simple functional language, consisting of a simple set comprehen-
sions. It also checks that the operators are CSP-like by checking a number of conditions on
each SOS rule. For example, it checks that no on arguments are cloned, no on arguments are
suspended, amongst several other conditions. The operational semantics are then converted
into the form specified in Section 2.1. At this point, the simulation script can be produced,
which is done by concatenating some constant code that implements the Operator process
with some generated code for the Rules function.

The second input file contains process definitions which, thanks to the dynamic parser
construction, can be specified using natural syntax. For instance, when defining a CSP pro-
cess one can simply write P = a -> P [] b -> Q. Further, the script may contain defini-
tions using the functional portion of the CSPM language, such as head(<x>^xs) = x. The
script is then type-checked (using an experimental CSPM type checker), and then has the
recursion refactorings applied to it. In particular, the inferred types are used to identify all
processes within a file (note that the processes here are essentially the syntactic processes of
Definition 3.5). Then, a call graph of the processes is constructed and the strongly connected
components (SCCs) are deduced. This enables the recursive processes to be identified, which
then allows the recursion refactorings to be run.

If the recursion refactoring specified in Section 3.4 were applied exactly as specified,
this would result in many more named processes than are strictly necessary, slowing down
the simulation. Thus, instead the following recursion refactorings are applied instead:

• Every call from a recursive process to a recursive process is replaced by a callProc
event;

• Every call from a non-recursive process to a recursive process Q instead calls the
wrapped version, WrapThread(Q) (so that callProc’s are processed);

• Every infinitely recursive argumentQ of an operator is replaced byWrapThread(Q);
• Every argument that is only 1-required is inlined as per Section 3.4.

Further, in order to define the WrapThread process (cf. Section 3.2), the set of values that
each recursive process can take has to be specified. For example, the following defines a
recursive process P that takes a single integer value that can either be 0 or 1:

P :: ({0, 1}) -> Proc
P(x) = if x == 0 then a -> P(1) else b -> P(0)

Lastly, the transformed processes are pretty printed to a file. This file can be loaded into
FDR and any assertions that are contained can be checked in the usual way.

Availability tyger has been open-sourced and is available from https://github.com/
tomgr/tyger. Included with the code are several examples, including a full simulation of
CSP, a simulation of Lowe’s availability models [10], a simulation of Lowe’s Readyness
Testing extension to CSP [9], and a simulation of a portion of CCS [7].

5. Experiments

In order to demonstrate the effectiveness of the tool and to establish how efficient the simu-
lation is, we performed a number of experiments which we now describe. In this section, all

https://github.com/tomgr/tyger
https://github.com/tomgr/tyger

202 T. Gibson-Robinson / Efficient Simulation of CSP-Like Languages

Number of Philosophers
Tool 3 4 5 6 7 8 9 10

Simulation 0.4 1.0 1.9 3.3 5.6 10.6 33.2 173.2
FDR < 0.1 < 0.1 < 0.1 0.1 0.2 1.1 7.0 42.5

Table 2. Time in seconds to check if a CSP model of the Dining Philosophers is deadlock free for various
numbers of philosophers.

Number of Philosophers
Tool 3 4 5 6 7 8 9
CWB < 0.1 < 0.1 0.3 2.6 38.5 * *

Simulation 0.6 0.8 1.8 3.0 8.9 53.9 384.0
Table 3. Time in seconds to check if a CCS model of the Dining Philosophers is deadlock free for various
numbers of philosophers. The CWB was unable to falsify the property within 30 minutes with 8 or more
philosophers.

experiments were performed on a 64-bit Linux virtual machine with access to 2GB of RAM
and two 2.2GHz cores. The simulation was run using a pre-release version of FDR3, running
in single-threaded mode. CSP model checking was performed using the same pre-release ver-
sion of FDR3 in single-threaded mode. CCS model checking was performed using version
7.1 of The Edinburgh Concurrency Workbench [12].

In order to directly measure the overhead of the simulation, we simulated CSP itself.
Clearly, there is no point in doing this in general, but if we compare the time taken to check if
a CSP process P satisfies a property to the time taken to check if the same property is satisfies
by the simulation of P , then it follows that any difference must be due to the overhead of
the simulation. Table 2 gives the time taken to check if a simple CSP model of the classic
Dining Philosophers problem is deadlock free (in particular, it gives the time taken to find
the first counterexample). Whilst the simulation is slower, note that the magnitude of the
difference becomes less as the number of philosophers is increased. Further, the simulation
is still reasonably performant and scales in an almost identical way to the non-simulated
version, indicating that there should be no reason why larger models cannot be checked.

In order to demonstrate the that tool can effectively model other CSP-like process alge-
bras, we compared the performance of a simulation of CCS [7] with a native CCS tool, The
Edinburgh Concurrency Workbench [12] (henceforth, CWB). As noted in Section 1.2, CCS
is actually not quite CSP-like, since τ resolves + (which is the CCS analog of 2). Hence, in
order to simulate CCS we instead introduce a new event, ccs tau, which is used instead of
tau in the operational semantics rules. Then, explicit ccs tau promotion rules are added to
each operator and ccs tau is hidden at the top-level of the simulation. It follows that the re-
sulting operational semantics is CSP-like, although it is not compositional. Once this change
has been made, the translation of the operational semantics into the form required for tyger
is routine.

Table 3 details how long it took to verify if the Dining Philosophers problem is deadlock
free for an increasing number of philsophers. Whilst CWB outperforms the simulation for 6
philosophers or less, for 7 philosophers or more the simulation actually outperforms CWB.
Further, CWB was unable to falsify the property within 30 minutes when there were 8 or
more philosophers whilst the simulation took just 54s to find a counterexample. To a large
extent, this data justifies the motivation behind the tool. Not only is the simulation able to
effectively simulate other process algebras, but is actually able to improve on the performance
of custom tools (largely thanks to the optimisation performed on FDR).

We have had success in simulating a number of other CSP-like languages using tyger.
One interesting example is Lowe’s readyness testing extension to CSP [9]. This adds a new
operator, “if ready a then P else Q”, that tests if the event a is being offered and behaves like

T. Gibson-Robinson / Efficient Simulation of CSP-Like Languages 203

P if so and like Q otherwise. Lowe demonstrated its usefulness by giving a notably simple
solution to the readers and writers problem [13] that was fair to the writers. We were able to
successfully simulate this, with the simulation taking 60s to complete a safety check.

In the author’s experience, the performance of the simulation is perfectly adequate pro-
viding the number of events is resaonble, but unsuitable when the set of events become large.
This is primarily because the alphabets used by the simulation become prohibitively large,
and FDR appears to have trouble manipulating them.

6. Conclusions

In this paper we presented a CSPM adaptation of Roscoe’s simulation that can be success-
fully used in FDR. Further, we gave a number of optimisations to Roscoe’s simulation that
ensure the resulting simulation runs reasonably efficiently. We then proved that these optimi-
sations maintained the strong bisimulation between the original process and the simulation.
We also provided some automated recursion refactorings that permit a large class of recur-
sive definitions to be successfully compiled by FDR, even though the standard simulation
could not be. We then sketched the construction of a tool that can produce the simulation
automatically. Lastly, we described the results of several experiments that show the tool can
effectively simulate other process algebras.

Future Work The overhead imposed by the simulation is essentially unavoidable and, there-
fore, there are unlikely to be ways of significantly improving the performance using the cur-
rent approach. However, one option would be to add support directly within FDR for di-
rectly constructing the state machines for CSP-like languages. This would entirely avoid the
overhead of the simulation and, further, would negate the need for the complicated recursion
refactorings required.

There are several programs that produce CSP scripts as output, such as Roscoe’s shared
variable compiler [14] and Lowe’s Casper Security Protocol Compiler [15]. The output of
these tools can take a long time to compile, sometimes because it was not possible to express
certain behaviours as a simple combination of CSP operators. Thus, it would be interesting
to consider if domain-specific operators could be added to enable the above scripts to be ex-
pressed in a way that compiles more efficiently, using the new refinement checker mentioned
in the previous paragraph.

Acknowledgements I would like to thank Gavin Lowe, who supervised a large part of this
work as part of an Oxford undergraduate project [16]. Further, I would like to thank Gavin
for reviewing an early draft of this paper and Bill Roscoe for many interesting discussions
concerning this work. I would also like to thank the anonymous reviewers for providing many
useful comments.

References

[1] A. W. Roscoe. On the Expressiveness of CSP. Draft of February 2011, available from http://www.cs.
ox.ac.uk/files/1383/complete(3).pdf, 2011.

[2] A. W. Roscoe. CSP is Expressive Enough for Pi. In A.W. Roscoe C.B. Jones and K.R. Wood, editors,
Reflections on the work of C.A.R. Hoare. Springer, 2010.

[3] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
1985.

[4] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall, 1997.
[5] A. W. Roscoe. Understanding Concurrent Systems. Springer, 2010.
[6] Formal Systems (Europe) Ltd. Failures-Divergence Refinement—FDR 2 User Manual, 2011.
[7] R. Milner. A Calculus of Communicating Systems. Springer-Verlag New York, Inc., Secaucus, NJ, USA,

1982.

http://www.cs.ox.ac.uk/files/1383/complete(3).pdf
http://www.cs.ox.ac.uk/files/1383/complete(3).pdf

204 T. Gibson-Robinson / Efficient Simulation of CSP-Like Languages

[8] R. Milner. Communicating and Mobile Systems: the Pi-Calculus. Cambridge University Press, June 1999.
[9] G. Lowe. Extending CSP with Tests for Availability. In Communicating Process Architectures, pages

325–347, 2009.
[10] G. Lowe. Models for CSP with Availability Information. In EXPRESS’10, pages 91–105, 2010. http:

//dx.doi.org/10.4204/EPTCS.41.7.
[11] P. Armstrong, G. Lowe, J Ouaknine, and A.W Roscoe. Model Checking Timed CSP. In Proceedings of

HOWARD (Festschrift for Howard Barringer). 2012.
[12] Faron Moller and Perdita Stevens. Edinburgh Concurrency Workbench user manual (version 7.1). Avail-

able from http://homepages.inf.ed.ac.uk/perdita/cwb/.
[13] P. J. Courtois, F. Heymans, and D. L. Parnas. Concurrent Control with “Readers” and “Writers”. Commu-

nications of the ACM, 14(10):667–668, 1971.
[14] A. W. Roscoe and D. Hopkins. SVA, a Tool for Analysing Shared-variable Programs. In Proceedings of

AVoCS 2007, pages 177–183, 2007.
[15] G. Lowe. Casper: A Compiler for the Analysis of Security Protocols. Journal of Computer Security,

6(1-2):53–84, 1998.
[16] Thomas Gibson-Robinson. Tyger: A Tool For Automatically Simulating CSP-Like Languages In CSP.

MCompSci Thesis, University of Oxford, 2010.

http://dx.doi.org/10.4204/EPTCS.41.7
http://dx.doi.org/10.4204/EPTCS.41.7
http://homepages.inf.ed.ac.uk/perdita/cwb/

