
The Meaning and Implementation
of SKIP in CSP

Thomas Gibson-Robinson and Michael Goldsmith

Department of Computer Science, University of Oxford

August 25, 2013

1

Introduction

CSP has long had a method of composing processes sequentially.
In particular, the process P ;Q runs P until it terminates at which
point Q is run.

There has been some debate over the correct termination
semantics, with two main definitions:

� X-as-Refusal semantics, as developed by Hoare.

� X-as-Signal, as developed by Roscoe.

2

Defining Termination in CSP

Ω is the process that has terminated. It can perform no events.

SKIP is the process that terminates immediately. In CSP,
termination is indicated using the event X and thus SKIP is
defined as X→ Ω.

The operational semantics rules of the sequential composition
operator ; are:

P
a−−→ P ′

P ;Q
a−−→ P ′ ;Q

a ∈ Σ ∪ {τ} P
X−−→ Ω

P ;Q
τ−−→ Q

3

Termination and the Standard CSP Operators

We also need to define how the standard CSP operators respond to
one of their arguments offering a X.

→ and u have no on arguments, so cannot terminate.

[[·]], \ ·, Θ· and . only have one on argument, so terminate when
their argument does:

P
X−−→ Ω

P \ A X−−→ Ω

4

Termination and the Standard CSP Operators

The more interesting case concerns operators that have more than
one on argument.

� Operators that terminate Independently terminate when either
of their arguments terminate. � and 4 are defined as
terminating Independently. Thus:

P
X−−→ Ω

P � Q
X−−→ Ω

Q
X−−→ Ω

P � Q
X−−→ Ω

� Operators that Synchronise their termination terminate when all
of their arguments terminate. All CSP parallel operators have
Synchronising termination semantics. The operational semantics
of operators with Synchronising termination semantics varies.

5

X-as-Refusal

This semantics treats X as a standard visible event. This means
that the process SKIPChoicea =̂ SKIP � a→ STOP can either
perform an a or a X and the environment is free to choose.

Thus, the termination operational semantics of operators with
Synchronising termination semantics can be defined as follows:

P
X−−→ Ω ∧ Q X−−→ Ω

P ||| Q X−−→ Ω

6

X-as-Signal

Under the X-as-Signal semantics, X is treated as a communication
to the environment that cannot be refused. Thus, the termination
operational semantics of operators with Synchronising termination
semantics are as follows:

P
X−−→ Ω

P ||| Q τ−−→ Ω ||| Q
Q

X−−→ Ω

P ||| Q τ−−→ P ||| Ω Ω ||| Ω X−−→ Ω

The most important difference is in how the failures of processes
are calculated.

7

Denotational Semantics
The failures of a process represent what a process is allowed to
refuse having performed a certain sequence of events.

Fr(P) =̂ {(tr,X) | ∃Q · P tr
==⇒ Q ∧ X ⊆ Σ ∪ {X} ∧ Q ref X}

where Q ref X iff Q is stable (i.e. Q 6 τ−−→), and, ∀x ∈ X ·Q 6 x−−→.

Fs(P) =̂ Fr(P) ∪ {(tr,X) | P tr_〈X〉
=====⇒ Ω, X ⊆ Σ}

Hence, for SKIPChoicea (SKIP � a→ STOP) with Σ = {a}:

Fr(SKIPChoicea) = {(〈〉, {}), (〈a〉, {a,X}), (〈X〉, {a,X})}
Fs(SKIPChoicea) = {(〈〉, {}), (〈a〉, {a,X}), (〈X〉, {a,X})}

∪{(〈〉, {a})}

Thus, under X-as-Signal, SKIPChoicea = a→ STOP . SKIP .
8

Simulating X-as-Signal
Consider SKIPChoicea ||| STOP . Under X-as-Refusal this is equal
to a→ STOP , but under X-as-Signal this is equal to
a→ STOP . STOP = a→ STOP u STOP .

Let τr be a fresh event and define BSkip =̂ τr → X→ Ω.

We define the operational semantics of ; on τr by:

P
τr−−→ P ′

P ;Q
τ−−→ P ′ ;Q

All other operators are defined as treating τr exactly like any other
event in Σ. In particular, observe that:

(BSkip � a→ STOP) \ {τr} = a→ STOP . SKIP .

9

Simulating X-as-Signal
Consider SKIPChoicea ||| STOP . Under X-as-Refusal this is equal
to a→ STOP , but under X-as-Signal this is equal to
a→ STOP . STOP = a→ STOP u STOP .

Let τr be a fresh event and define BSkip =̂ τr → X→ Ω.

We define the operational semantics of ; on τr by:

P
τr−−→ P ′

P ;Q
τ−−→ P ′ ;Q

All other operators are defined as treating τr exactly like any other
event in Σ. In particular, observe that:

(BSkip � a→ STOP) \ {τr} = a→ STOP . SKIP .

9

Simulating X-as-Signal

We can define our simulation as:

Sig(SKIP) =̂ BSkip

Sig(STOP) =̂ STOP

Sig(a→ P) =̂ a→ Sig(P)

Sig(P � Q) =̂ Sig(P) � Sig(Q)

Sig(P ;Q) =̂ Sig(P) ; Sig(Q)

Sig(P ||| Q) =̂ (Sig(P) ;BSkip) ‖
{τr}

(Sig(Q) ;BSkip)

Theorem

Fs(P) = Fr(Sig(P) \ {τr}).

10

Proof (!) by Example

Sig(SKIPChoicea ||| STOP)

= (a→ STOP � BSkip) ;BSkip ‖
{τr}

(STOP ;BSkip)

= (a→ STOP � BSkip) ;BSkip ‖
{τr}

STOP.

The interesting bit concerns the left hand side:

(a→ STOP � BSkip) ;BSkip

= a→ STOP . BSkip.

Thus Sig(SKIPChoicea ||| STOP) \ {τr} = a→ STOP . STOP .

11

Simulation Efficiency
FDR has a specialised representation of labelled-transition systems
known as high-level machines.

For example, a high-level machine for P ||| Q has rules:

(a,) 7→ a a ∈ αP
(, a) 7→ a a ∈ αQ

The rules can also be organised into formats. For example, the
rules for P ;Q are divided into two formats. The first specifies how
the transitions of P are promoted:

(a,) 7→ a a ∈ αP, a 6= X
(X,) 7→ τ ∧ move to format 2

The second format simply has the rules:

(, a) 7→ a a ∈ αQ
12

Supercompilation

FDR also combines together the rules for high-level machines in a
process known as supercompilation. For example, the process
(P ||| Q) ||| R is not represented as two high-level machines, but as
one with the rules:

(a, ,) 7→ a a ∈ αP
. . .

However, this means that:

(P1 ;Q1) ||| . . . ||| (PN ;QN)

has 2N formats.

13

Impact on the Simulation

Recall that Sig(P ||| Q) = (Sig(P) ;BSkip) ||| (Sig(Q) ;BSkip)
and thus the simulation of P1 ||| . . . ||| PN will have 2N formats.

However, we only need to apply the simulation to processes that
contain a choice between a X and a visible event.

We can predict which processes contain a choice between a X and
a visible event by using a structural definition that identifies which
processes can immediately perform a X.

Some care has to be taken in order to correctly consider processes
such as (a→ SKIP \ Y) � b→ STOP : this requires the
simulation to be applied iff a ∈ Y .

14

Summary

� We have developed a way of simulating X-as Signal under the
X-as Refusal semantics.

� We have developed a way of statically identifying which
processes the simulation has to be applied to, in order to
improve the performance of the simulation.

15

	Introduction
	The Simulation
	Simulation Efficiency

