The Meaning and Implementation
of SKIP in CSP

Thomas Gibson-Robinson and Michael Goldsmith

Department of Computer Science, University of Oxford

August 25, 2013

Introduction

CSP has long had a method of composing processes sequentially.
In particular, the process P ; () runs P until it terminates at which
point @ is run.

There has been some debate over the correct termination
semantics, with two main definitions:

® -as-Refusal semantics, as developed by Hoare.

® -as-Signal, as developed by Roscoe.

Defining Termination in CSP

Q) is the process that has terminated. It can perform no events.

SKIP is the process that terminates immediately. In CSP,
termination is indicated using the event v and thus SKIP is
defined as v — .

The operational semantics rules of the sequential composition
operator ; are:

a / ‘/
P—=PF ,exu{ry -L=8
P;Q— P;Q P;Q—Q

Termination and the Standard CSP Operators

We also need to define how the standard CSP operators respond to
one of their arguments offering a v".

— and M have no on arguments, so cannot terminate.

[], \ -, ©. and > only have one on argument, so terminate when
their argument does:

P-Q
P\A-SQ

Termination and the Standard CSP Operators

The more interesting case concerns operators that have more than
one on argument.

m Operators that terminate Independently terminate when either
of their arguments terminate. [0 and A are defined as
terminating Independently. Thus:

v
P50 Q—0
POQ-5>0 POQ-5Q

m Operators that Synchronise their termination terminate when all
of their arguments terminate. All CSP parallel operators have
Synchronising termination semantics. The operational semantics
of operators with Synchronising termination semantics varies.

5

v -as-Refusal

This semantics treats v' as a standard visible event. This means
that the process SKIPChoice, = SKIP (O a — STOP can either
perform an a or a v’ and the environment is free to choose.

Thus, the termination operational semantics of operators with
Synchronising termination semantics can be defined as follows:
PLang L0
v
PlIQ-50

v -as-Signal

Under the v'-as-Signal semantics, v” is treated as a communication
to the environment that cannot be refused. Thus, the termination
operational semantics of operators with Synchronising termination
semantics are as follows:

v
P50 Q—Q
T T v
PllQ—0ll@ PllQ—P[Q QQ—0

The most important difference is in how the failures of processes
are calculated.

Denotational Semantics

The failures of a process represent what a process is allowed to
refuse having performed a certain sequence of events.

F(P)={tr,X)|3Q - P QAX CSU{V}AQref X}

where Q ref X iff Q is stable (ie. Q A=), and, Vo € X - Q £,

FS(P) = F(P)U{(tr,X)| P =% 0 x c %}

Hence, for SKIPChoice, (SKIP 0 a — STOP) with ¥ = {a}:

F(SKIPChoicea) = {((), {}), ((a), {a, v'}), (V') {a, V' })}
F?(SKIPChoicea) = {((),{}), ((a), {a,v'}), (v}, {a, v})}
V{0, {a})}

Thgus, under v'-as-Signal, SKIPChoice, = a — STOP > SKIP.

Simulating v -as-Signal
Consider SKIPChoice, ||| STOP. Under v -as-Refusal this is equal

to a — STOP, but under v'-as-Signal this is equal to
a— STOPv> STOP =a— STOP M STOP.

Simulating v -as-Signal
Consider SKIPChoice, ||| STOP. Under v -as-Refusal this is equal

to a — STOP, but under v'-as-Signal this is equal to
a— STOPv> STOP =a— STOP M STOP.

Let 7 be a fresh event and define BSkip = 7. — v — Q.
We define the operational semantics of ; on 7, by:

P p
P;Q - P;Q

All other operators are defined as treating 7, exactly like any other
event in Y. In particular, observe that:

(BSkipQda— STOP)\ {r.} =a— STOP > SKIP.

Simulating v -as-Signal

We can define our simulation as:

Sig(SKIP) = BSkip
Sig(STOP) = STOP
Sig(a — P) = a — Sig(P)
Sig(P 0 Q) = Sig(P) O Sig(Q)
Sig(PQ) = Si < ;5@
)

Theorem

F(P) = F(Sig(P) \ {7})-

10

Proof (!) by Example

Sig(SKIPChoice, ||| STOP)

= (a — STOP O BSkip) ; BSkip || (STOP ; BSkip)
{rr}

= (a — STOP O BSkip) ; BSkip || STOP.
{rr}

The interesting bit concerns the left hand side:

(a — STOP O BSkip) ; BSkip
=a— STOP > BSkip.

Thus Sig(SKIPChoice, ||| STOP) \ {r.} =a — STOP > STOP.

11

Simulation Efficiency

FDR has a specialised representation of labelled-transition systems
known as high-level machines.

For example, a high-level machine for P ||| @ has rules:
(a,—) —a a € aP
(,a) »a a € a@)

The rules can also be organised into formats. For example, the
rules for P ; @ are divided into two formats. The first specifies how
the transitions of P are promoted:

(a,—) —a a€c€aPa#Vv
(v',—) = 7 A move to format 2
The second format simply has the rules:
(L,a)—~a a € a@

12

Supercompilation

FDR also combines together the rules for high-level machines in a
process known as supercompilation. For example, the process

(P ||| Q) ||| R is not represented as two high-level machines, but as
one with the rules:

(a,—,—) —a a € aP

However, this means that:

(Pr; Q) Il - Il (Pv s @n)

has 2V formats.

13

Impact on the Simulation

Recall that Sig(P ||| Q) = (Sig(P) ; BSkip) ||| (Sig(Q) ; BSkip)
and thus the simulation of Py ||| ... ||| Py will have 2V formats.

However, we only need to apply the simulation to processes that
contain a choice between a v and a visible event.

We can predict which processes contain a choice between a v and
a visible event by using a structural definition that identifies which
processes can immediately perform a v'.

Some care has to be taken in order to correctly consider processes
such as (e — SKIP \ 'Y) O b — STOP: this requires the
simulation to be applied iff a € Y.

14

Summary

m We have developed a way of simulating v'-as Signal under the
v'-as Refusal semantics.

m We have developed a way of statically identifying which
processes the simulation has to be applied to, in order to
improve the performance of the simulation.

15

	Introduction
	The Simulation
	Simulation Efficiency

