
Communicating Process Architectures 2013
P.H. Welch et al. (Eds.)
Open Channel Publishing Ltd., 2013
© 2013 The authors and Open Channel Publishing Ltd. All rights reserved.

157

Specifying and Analysing Networks of
Processes in CSPT

(or In Search of Associativity)

Paul HOWELLS a,1 and Mark D’INVERNO b

a Department of Computer Science & Software Engineering,
University of Westminster, UK

b Department of Computing, Goldsmiths, University of London, UK

Abstract. In proposing theories of how we should design and specify networks of pro-
cesses it is necessary to show that the semantics of any language we use to write down
the intended behaviours of a system has several qualities. First in that the meaning of
what is written on the page reflects the intention of the designer; second that there are
no unexpected behaviours that might arise in a specified system that are hidden from
the unsuspecting specifier; and third that the intention for the design of the behaviour
of a network of processes can be communicated clearly and intuitively to others. In
order to achieve this we have developed a variant of CSP, called CSPT , designed to
solve the problems of termination of parallel processes present in the original formu-
lation of CSP. In CSPT we introduced three parallel operators, each with a different
kind of termination semantics, which we call synchronous, asynchronous and race.
These operators provide specifiers with an expressive and flexible tool kit to define the
intended behaviour of a system in such a way that unexpected or unwanted behaviours
are guaranteed not to take place. In this paper we extend out analysis of CSPT and
introduce the notion of an alphabet diagram that illustrates the different categories
of events that can arise in the parallel composition of processes. These alphabet dia-
grams are then used to analyse networks of three processes in parallel with the aim of
identifying sufficient constraints to ensure associativity of their parallel composition.
Having achieved this we then proceed to prove associativity laws for the three paral-
lel operators of CSPT . Next, we illustrate how to design and construct a network of
three processes that satisfy the associativity law, using the associativity theorem and
alphabet diagrams. Finally, we outline how this could be achieved for more general
networks of processes.

Keywords. concurrency, CSP, CSPT , parallel operators, associativity, process networks

Introduction

In the original failure-divergence semantic model for Communicating Sequential Processes
(CSP) developed by Hoare, Brookes and Rosoce [1,2,3,4] the incomplete treatment of suc-
cessful process termination, and in particular parallel termination, permitted intuitively con-
tradictory processes to be defined. For example, it was possible to define a parallel process
that appeared to have terminated several times before actually doing so. In many cases this
meant that the behaviour of the system did not match the intention of the specifier when it
was specified formally using CSP.

1Corresponding Author: Paul Howells, Department of Computer Science & Software Engineering, University
of Westminster, 115 New Cavendish St., London, W1W 6RU, UK. E-mail: P.Howells@westminster.ac.uk.

158 P.Howells and M.d’Inverno / Specifying and Analysing Networks of Processes in CSPT

In response to this problem we developed a variant of CSP as defined in the original
work of Hoare and its development by Roscoe [5,6], called CSPT that has been introduced
elsewhere [7,8]. In this work we demonstrated how CSPT , solves the original termination
problems by introducing three distinct but related parallel operators that between them pro-
vide a transparent and intuitive means for specifying the desired termination of networks of
processes. These three parallel operators each have a different form of termination semantics
based on different ways of combining the termination of its component processes. The three
forms are synchronous termination, asynchronous termination and race termination (where
the first component process to terminate, terminates the composite process).

The design of these three parallel operators, was motivated by the desire to provide a
system designer with both the precision and flexibility to be able to select as wide a range of
different kinds of termination and interaction for networks of parallel processes. In doing so
we had two overarching principles: (i) to design a semantic model as consistent as possible
with the original model defined for CSP; and (ii) to design a model that provided any system
designer with the confidence that the system would behave as intended.

By providing these three operators, we claim (and indeed have proved) that any system
specifier can now make precise choices about how parallel networks of processes are required
to successfully terminate and interact by means of synchronised events.

The need for such parallel operators can be seen when we consider the range of concur-
rent systems, with different termination behaviour, that we would wish to specify and design.
For example, (distributed) client/server systems usually require the asynchronous termina-
tion of the client and server processes. In contrast, for a system of hardware components,
synchronous termination would normally be a fundamental requirement. For parallel search-
ing, race termination would be desirable, since, it is only necessary to wait for the first (and
possibly only) successful process to terminate. By providing parallel operators with differ-
ent termination semantics, a more natural way of modelling and designing modern parallel
systems in different environments becomes possible.

In [8], we focused on the specification of how parallel processes should terminate using
CSPT ’s three parallel operators. In this paper we continue the investigation of CSPT ’s par-
allel operators, by focusing on the specification of parallel process interaction. In particular,
the different types of synchronous and asynchronous events that can occur in a parallel com-
position. A key aspect of this investigation is the discovery of constraints for and proof of
associativity laws for the three parallel operators. These laws provide specifiers and design-
ers with an essential law for developing, analysing and reasoning about their specifications
and designs of networks of processes. For example, as we will demonstrate, they allow us
to construct a process network using the parallel operators based on the types of interactions
required. Further, the associativity constraints can be used to determine if the associativity
law applies for a given process network and determine if a network with specific types of
interactions is constructable.

Aims and Motivations

The main goal of the paper is to prove as general an associativity law as possible for the
generalised parallel operator of CSP and of our three operators - race, synchronous and asyn-
chronous of CSPT . As Roscoe [6] acknowledges the generalised parallel operator for CSP
has become the most widely used and so there is a need for as strong an associativity law
as possible to enable CSP practitioners to design and analyse parallel networks of processes.
Roscoe has introduced a weak notion of associativity and we have improved the strength of
the associativity law. The weak law, for example, provides little practical use when designing
and analysing networks of parallel processes that are constructed using it. Therefore, there is
a clear need for a strengthened version of the associativity law. Of course Roscoe does pro-

P.Howells and M.d’Inverno / Specifying and Analysing Networks of Processes in CSPT 159

vide a strong associativity law for the alphabetised parallel operator (see Section 3.2). How-
ever, this law only deals with the case when the synchronising alphabets of the operator are
the same as the alphabets of the process operands. Clearly this is limiting for any specifier.

Furthermore, one of our aims is to make the analysis and design of CSP process networks
more tractable for system developers. To date there appears to be no methodology specifically
aimed at designing and analysing the interactions in these networks. In this paper we attempt
to address this by presenting a detailed analysis and categorisation of the event types that can
occur in these types of networks. When this is combined with the use of alphabet diagrams,
it provides a simple methodology to help developers design and understand the interactions
between processes in these networks.

Outline of the Rest of the Paper

In Section 1, we provide a brief introduction to CSPT . Alphabet diagrams are introduced in
Section 2. These illustrate the different categories of events, and thus interactions, that can
arise in the parallel composition of processes. In Section 3, we use alphabet diagrams to
identifying constraints sufficient to ensure associativity laws for the three parallel operators
of CSPT . We then illustrate, in Section 4, how to use the associativity law and alphabet
diagrams to design and construct a simple network of process that satisfy the associativity
law. We suggest further work, in Section 5. Finally, we present our conclusions in Section 6.
(Appendix A contains a summary of the notation, definitions and functions used in the paper.
Appendix B details the proof of the main Associativity result presented in Section 3.5.)

1. An Introduction to CSPT
1

In this section2,we provide an overview of CSPT , for a complete description please see [7,
8,10]. (For a summary of the CSP and CSPT notation and definitions used throughout the
paper, see Appendix A.)

In Hoare, Brookes and Roscoe’s original CSP [1,2,3,4] there was a well known problem
concerning the incomplete treatment of parallel termination by two of original parallel oper-
ators: alphabetised (A||B)3 and asynchronous/interleaving (|||). In particular, the type of termi-
nation that occurred using these operators was inconsistent and could vary depending on the
termination of the processes being combined.

We shall now give an example to illustrate the type of problems that could arise. First
recall, that the successful termination of a process in CSP (and CSPT) is modelled by the
event tick (X). Now consider the following process equivalence derivable within the original
CSP:

(a→ SKIP)|||(b→ SKIP) ≡ (a→ ((X→ b→ SKIP) ut (b→X→ SKIP)))

ut (b→ ((a→X→ SKIP) ut (X→ a→ SKIP)))

Clearly the Xs on the right hand side cannot be interpreted as the successful termination of
the process (a→ SKIP)|||(b→ SKIP), since it continues to perform a, b and X events. This
illustrates how the original semantics for CSP could gave rise to these obviously undesirable
and intuitively contradictory processes.

1This section contains material extracted from Sections 3.1, 5.2 and 5.6 of [7] and Sections 3.2, 3.3 and 3.4
of [8] by permission of Springer and Elsevier, respectively.

2This section is identical to Section 1 of [9], a companion paper in these same Proceedings (CPA 2013). This
duplication, by permission of the Editors, is to let both papers be self-contained.

3Here and henceforth, A and B represent the alphabets of the processes being composed. For example, as in
PA||BQ, where A = α(P) and B = α(Q) respectively.

160 P.Howells and M.d’Inverno / Specifying and Analysing Networks of Processes in CSPT

Several solutions have been proposed to this problem, including Tej and Wolf [11],
Roscoe [5,6], Hoare and He [12] and the authors’s own solution CSPT [7]. For a detailed
comparison of these solutions the interested reader is referred to [7].

Our starting point in defining CSPT was the original failure-divergence model devel-
oped by Hoare, Brookes and Roscoe [3]. Our aim in modifying this model was to provide a
more robust treatment of termination through the consistent and special handling ofX by the
language (processes and operators) and semantics (failures and divergences).

For CSPT , this was achieved by defining a new process axiom that captured our view of
termination:

t 6= 〈 〉 ∧ (sa〈X〉at,∅) ∈ F ⇒ s ∈ D (T1)

where s and t are traces, F and D are the failure and divergence sets respectively of a process.
This axiom means that if a process indicates that it has terminated (by means of the X) but
continues to perform events (t), then it must have started diverging before it performed theX
(i.e. s ∈ D). For the rational behind this axiom, see our companion paper [9].

This new termination axiom resolves the termination issues of the original semantics,
and it is added to the existing CSP process axioms (D1) to (N5), see Appendix A, to define
CSPT . Note that our view of tick (X) is consistent with Hoare’s, i.e. that it is a normal event,
and have not adopted Roscoe’s view that it is a special signal event. In doing this, we have
defined a sub-model of the original failure-divergence model NT such that, within this sub-
model, all processes are well-behaved with respect to termination. In addition, three new
forms of parallel operators were defined for CSPT , each with a different form of termination
semantics, as replacements for the original ones. We now introduce the language and model
for CSPT ; we begin by introducing the three new parallel operators.

1.1. Parallel Operators of CSPT

Our three new parallel operators are defined to be used as replacements for the original syn-
chronous (||), interleaving (|||) and alphabetised (A||B) parallel operators. It is necessary to de-
fine replacements for ||| and A||B, as they do not satisfy (T1). These new parallel operators are
generalised (or interface) style parallel operators, i.e. are parameterised by the set of events
the processes are required to synchronise on. Each of these three operators has a distinct type
of parallel termination semantics, and thus are distinct operators, see [8] for details. We call
them synchronous, asynchronous and race, that we define here.

Synchronous: requires the successful termination of both P and Q; and the synchronisa-
tion of their termination, that is,X.

Asynchronous: requires the successful termination of both P and Q; and P and Q termi-
nated asynchronously, i.e. they do not synchronise on X. (Roscoe [5,6] refers to this type of
parallel termination semantics as distributed termination.)

Race: requires the successful termination of either P or Q asynchronously. Successful
termination fails to occur only if both P and Q fail to terminate. Unlike synchronous and
asynchronous termination where the environment observes a single X, under race termina-
tion semantics it can observe anyX that is performed by P or by Q. Consequently, the firstX
the environment observes is taken as representing the termination of the parallel composition
and whichever of P or Q did not terminate, i.e. did not preform theX, is aborted. Hence, with
this type of termination semantics termination occurs as soon as either P or Q does so.

Note that in [5,6] Roscoe chooses to reject race termination semantics, due to the prob-
lems of dealing with the non-terminated process, e.g. the need for some powerful mechanism
to manage its termination. We believe, however, that it is preferable at least to offer system
specifiers the choice of using this type of termination semantics and let them resolve these
issues, rather than ban it outright. We believe that this is not against the spirit of CSP, since

P.Howells and M.d’Inverno / Specifying and Analysing Networks of Processes in CSPT 161

there are other features available in CSP that also raise similar implementation issues, e.g.
the various interrupt style operators.

The CSPT parallel operators with these different forms of parallel termination semantics,
are given in Table 1. Each operator is parametrised by a synchronisation set (Ω,∆,Θ), that is
the set of events on which the combined processes are required to synchronise. Events which
are not in the synchronisation set but that can be performed by either P or Q or both are
asynchronous events.

Table 1. CSPT parallel operators

Termination Semantics Operator Synchronisation Set Notes
Generalised P||ΩQ ∅ ⊆ Ω ⊆ Σ

Synchronous P||∆Q {X} ⊆ ∆ ⊆ Σ X ∈ ∆

Asynchronous P|||ΘQ ∅ ⊆ Θ ⊆ Σ− {X} X /∈ Θ

Race P|ΘQ ∅ ⊆ Θ ⊆ Σ− {X} X /∈ Θ

We define a generalised parallel operator (denoted P||ΩQ) that is used to define the op-
erators with synchronous and race termination semantics. To distinguish this from the syn-
chronous termination operator we denote the synchronisation set by Ω rather than ∆. The
synchronous parallel operator ||∆ is simply the generalised one ||Ω, with the constraint that
X ∈ ∆, thus ensuring synchronous termination. The race termination operator |Θ can also be
defined using ||Ω and SKIP as follows:

P|ΘQ =̂ (P||ΘQ); SKIP [∅ ⊆ Θ ⊆ Σ− {X}]

where Σ is the set of all events and, for CSPT , includes X. Note that CSPT does not have
the law (P; SKIP = P), otherwise the above would mean the race and generalised operators
were the same. To illustrate how this definition behaves, consider the process (P||ΘQ); R,
with Θ ⊆ Σ − {X}. Whichever of the two Xs R (the environment) observes first it takes as
representing the termination of P||ΘQ and, hence, R proceeds to execute; whichever of P or
Q did not terminate is aborted.

The asynchronous parallel operator |||Θ is defined independently, as its form of termina-
tion semantics is not compatible with ||Ω, i.e. it cannot be used to define |||Θ. Both process
operands must terminate for |||Θ to terminate, so it is not the same as ||Θ (see previous para-
graph). Both processes must terminate for ||∆, if ∆ = Θ ∪ {X}, but they synchronise on their
Xs (i.e. a non-terminating process can prevent the other operand from terminating, which is
not the case for |||Θ).

Here are examples of the three parallel operators of CSPT , that illustrate the difference
between |Θ and the two others (which for these examples, with empty synchronisation sets,
are the same):

a→ SKIP||∅b→ SKIP ≡ a→ SKIP|||∅b→ SKIP

≡ (a→ b→ SKIP) ut (b→ a→ SKIP)

a→ SKIP|∅b→ SKIP ≡ (a→ (SKIP u (SKIP ut b→ SKIP)))

ut (b→ (SKIP u (SKIP ut a→ SKIP)))

It is important to note that we do not include the generalised parallel operator ||Ω in
the language of CSPT , since this would defeat the purpose of the whole exercise. Since, it
would again result in inconsistent processes, similar to the one given above in Section 1, with
multiple ticks in its traces. However, by restricting its use to defining ||∆ and |Θ we ensure
these forms of processes do not occur. The semantic functions for the generalised operator
are given in Appendix A. Full details for the other processes and operators, including the
operational semantics and all semantic functions, can be found in [7,8].

162 P.Howells and M.d’Inverno / Specifying and Analysing Networks of Processes in CSPT

1.2. The Model and Language of CSPT

The model for CSPT , NT is defined by adding the Termination axiom (T1) to the process
axioms (D1) to (N5) of the original CSP model N, given in Appendix A. Hence, in NT the
failure and divergence sets of a process are defined as for N, except that they also satisfy the
process axiom (T1) as well as (D1) to (N5). The semantic functions F and D for NT are the
same as for N, and are given in [7].

The language for CSPT is the same as that of the original CSP, but uses the more recent
form of relational renaming instead of functional renaming and uses the three new parallel
operators as replacements for ||, ||| and A||B, see Table 2. It is defined as follows:

P ::= ⊥ | STOP | SKIP | a→ P | P u P | P ut P | P; P | P\a
| P[[R]] | µ p.F(p) | p | P||∆P | P|||ΘP | P|ΘP

where a ∈ Σ− {X}. ⊥ is the divergent process (can be defined as µ p.p). STOP is the dead-
locked process and SKIP is the successfully terminating process. a→P is action prefix. PuQ
is nondeterministic choice and PutQ is deterministic choice. P; Q is sequential composition.
P\a is event hiding. P[[R]] is action (relational) renaming, with the usual constraint [5,6] ap-
plying to the renaming relation R with respect to X, i.e. that no other event is mapped to it
or that it is mapped to another event. p is a process variable, µ p.F(p) is recursion and in the
definition of F(p), only the above processes and operators can be used. P||∆Q, P|||ΘQ and
P|ΘQ are the generalised synchronous, asynchronous and race parallel operators respectively.
The processes and operators of CSPT are well-defined and well-behaved in NT .

Table 2. CSPT replacements for ||, ||| and A||B
Termination Semantics ||| A||B ||
Synchronous (||∆) ∆ = {X} ∆ = (A ∩ B) ∪ {X} ∆ = (A ∪ B) ∪ {X}
Asynchronous (|||Θ) Θ = ∅ Θ = (A ∩ B)− {X} Θ = (A ∪ B)− {X}
Race (|Θ) Θ = ∅ Θ = (A ∩ B)− {X} Θ = (A ∪ B)− {X}

We can now build on the account given so far in order to begin to investigate associativity
of networks of CSPT processes in the following sections.

2. Alphabet Diagrams

We introduce the notion of an alphabet diagram, which is a method of analysing parallel
composition by means of the types of events that could occur or could not occur in its execu-
tion. An alphabet diagram is simply a Venn diagram that allows us to consider the different
types of events that are involved in a parallel process throughout its lifetime. These events are
subdivided into synchronous and asynchronous events. This subdivision allows us to char-
acterise a parallel process depending on the presence or absence of these types of events.
In [13], Schneider uses a related form of event diagram for parallel composition, but only to
illustrate what events are initially possible.

As an example, consider the generalised parallel composition P||ΩQ of two processes P
and Q, with alphabets A and B respectively, that are required to synchronise on a particular
set of events Ω. The semantics of P||ΩQ is that P and Q are composed in parallel and are
required to synchronise on every event in Ω, irrespective of their alphabets. Events which are
not in Ω but which can be performed by either P or Q or both are asynchronous events. The
event types for P||ΩQ are illustrated in the alphabet diagram of Figure 1 and defined below.

P.Howells and M.d’Inverno / Specifying and Analysing Networks of Processes in CSPT 163

1

7

A B

Σ

8

Ω

3 4

5 6

2

Figure 1. Alphabet diagram for P||ΩQ.

1. Possible synchronous events (A ∩ B ∩ Ω): P and Q could synchronise on these since
they are possible for both of them. Events of this type can only occur when both pro-
cesses agree. They are called possible synchronous events because P and Q may never
be willing to perform them at the same time, hence, they may never be performed.

2. Common asynchronous events (A ∩ B ∩ Ω): P and Q do not synchronise on these,
even though they are possible for both of them. This type of event can be performed
by either P or Q.

3. P’s private asynchronous events (A ∩ B ∩ Ω): only possible for P and since they are
not in the synchronisation set they are performed independently of Q.

4. Q’s private asynchronous events (A ∩ B ∩ Ω): as for P’s.
5. P’s inhibited synchronous events (A ∩ B ∩ Ω): only possible for P but they are also

in the synchronisation set. Therefore, they require the participation of Q, which is
impossible as they are not in Q’s alphabet, hence, these events cannot be performed.

6. Q’s inhibited synchronous events (A ∩ B ∩ Ω): as for P’s.
7. Irrelevant synchronous events (A∩B∩Ω): not in the alphabets of either process, and

consequently cannot be performed.
8. Irrelevant events (A ∩ B ∩ Ω): not in the alphabets of either of the two processes nor

are they required to be synchronised on.

Clearly Irrelevant synchronous events and Irrelevant events can never occur in the trace
of any parallel process composed of P and Q because they are not in their alphabets. We
therefore, only need to consider events which are actually possible for the two processes, i.e.
within the union of their alphabets A ∪ B, regions 1 to 6.

The eight types of events are the most which can occur for any given P, Q and Ω using
this operator. However, for a particular instance of P||ΩQ only a subset of these types of events
may be present. The presence or absence of these event types in a given instance of P||ΩQ can
be used to classify different types of parallel composition.

3. Associativity of the Parallel Operators

In our search for an associativity law for each of the CSPT ’s parallel operators we concentrate
on finding an associativity law for the generalised parallel operator – ||Ω. The reason for this
is that it is used to define two of the three operators: synchronous (||∆) and race (|Θ). Further
more, any associativity law for this operator will form the basis for the associativity law for
the asynchronous operator (|||Θ). In addition, for the purposes of this present investigation we
treat tick (X) as any other event that a process could perform.

164 P.Howells and M.d’Inverno / Specifying and Analysing Networks of Processes in CSPT

3.1. Associativity of the Generalised Operator

The most important property required of P||ΩQ after it has been shown to be a well-defined
and well-behaved process is associativity. That is, for what values of Λ1, Λ2, Π1, Π2, Γ1 and
Γ2 does the following hold?

P||Λ1
(Q||Λ2

R) ≡ Q||Π1
(P||Π2

R) ≡ (P||Γ1
Q)||Γ2

R

We will refer to each of these processes as the (Λ), (Π) and (Γ) versions respectively.
It is obvious that constraints must be placed on the synchronisation sets, since combining

processes using the existing parallel operators either in a different order or with different
operators are rarely equivalent; that is, in general none of the following hold:

P||(Q|||R) ≡ (P||Q)|||R
P|||(Q||R) ≡ (P|||Q)||R

P|||(QB||CR) ≡ (P|||Q)A∪B||CR

P|||(QB||CR) ≡ (P||Q)||R

3.2. Related Work

Roscoe [6] page 60, gives the following “weak (in that both interfaces are the same)” associa-
tivity law for his generalised parallel operator (that has asynchronous termination semantics).

P||X(Q||XR) = (P||XQ)||XR 〈||X−assoc〉

He states that it is difficult to “... construct a universally applicable and elegant associativity
law.”, for this type of operator due to the various types of events that can occur. In this context
“universal” means that the synchronisation set X is independent of the alphabets of the three
processes. He gives as an example, the process P||X(Q||YR) and an event that could occur in X
but not in Y that both Q and R can perform. In what follows we shall denote this type of event
as a synchronous common event, and denote it by (QRa)Ps, for processes similar to Roscoe’s
example. In addition, we shall show that if an event of this type is present in these types of
processes then they cannot be transformed using a “universally applicable” associativity law.
Schneider [13] gives a similar universal associativity law, for his “interface parallel” operator
which has synchronous termination semantics.

Roscoe [6] gives an associativity law for his alphabetised parallel operator (with asyn-
chronous termination) and gives an equivalence relating it to his generalised one as follows:

(PA||BQ)A∪B||CR = PA||B∪C (QB||CR) 〈A||B−assoc〉
(PA||BQ) = P||A∩B Q

where A, B and C are α(P), α(Q) and α(R) respectively. By combining these two, it is
possible to produce a less universal but stronger associativity law for the generalised operator
than 〈||X−assoc〉. This new law would be applicable when all events in the intersections of
the processes’ alphabets are synchronised. However, it does not cover the cases when any
common asynchronous events are present, for example, when an event in A∩B is required to
be asynchronous, because by definition of A||B it must be synchronous.

Our aim in Section 3 is, therefore, to discover as general an associativity law as possible
for our generalised parallel operator. Such laws are relevant to standard CSP because they
capture intrinsic properties about parallel associativity and thus can be translated directly into
associativity laws for the parallel operators of standard CSP.

P.Howells and M.d’Inverno / Specifying and Analysing Networks of Processes in CSPT 165

3.3. Event Types for Three Processes

To identify the constraints on the synchronisation sets that are required to make the opera-
tor associative, we shall consider all of the possible event types that can occur when three
processes are combined.

We have seen that when two processes are combined there are eight types of events but
only six of these are relevant. When three are combined there are thirty two, of which twenty
eight are relevant. Some of these are new types of events, others are just a natural extension
of the existing types when three processes are combined. Below are listed all of the types of
events that can occur, with a definition of the new types of events.

Private asynchronous events: are only performed by a single process, denoted for each pro-
cess by – Pa, Qa, Ra.

Possible binary synchronous events: pairs of processes can synchronise on these. This ex-
cludes other forms of synchronous events such as ternary synchronous events etc. De-
noted for each pair of processes by – PQs, PRs, QRs.

Common binary asynchronous events: are restricted to only two processes. Denoted for
each pair of processes by – PQa, PRa, QRa.

Inhibited events: are due to the first synchronisation set that has effect on the process. De-
noted for each process by – Pi, Qi, Ri. For example, in P||Λ1

(Q||Λ2
R), Pi events are due

to Λ1, Qi and Ri events are due to Λ2.
Inhibited private events: are private asynchronous events under the first synchronisation set

but are then inhibited by the second synchronisation set which has effect on the process.
Denoted for each process by – (Pa)i, (Qa)i, (Ra)i. For example, in P||Λ1

(Q||Λ2
R) only

(Qa)i and (Ra)i events are present, they are not in Λ2 but are in Λ1. No (Pa)i events are
present since only one synchronisation set affects P.

Possible ternary synchronous events: all three processes are required to synchronise on
these. Therefore, they are included in both synchronisation sets. Denoted by – PQRs.

Common ternary asynchronous events: all three processes can perform these asynchronously,
hence, they are not included in either synchronisation set. Denoted by – PQRa.

Common synchronous events: are possible synchronous events because of the first syn-
chronisation set but then become common asynchronous events with the third process.
Denoted by – (PQs)Ra, (PRs)Qa, (QRs)Pa. Note that only one of these types of events
can occur in any one of the three processes, for example, in P||Λ1

(Q||Λ2
R) only (QRs)Pa

events can occur.
Synchronous common events: are common asynchronous events under the first synchroni-

sation set but then become possible synchronous events when combined with the third
process. Denoted by – (PQa)Rs, (PRa)Qs, (QRa)Ps. Again only one of these types of
event can be present in either of the three processes, for example, in Q||Π1

(P||Π2
R) only

(PRa)Qs events can occur.
Inhibited synchronous events: are possible synchronous events because of the first syn-

chronisation set but are then required to be possible synchronous events with the third
process which cannot perform them and are therefore, inhibited. Denoted by – (PQs)i,
(PRs)i, (QRs)i. Only one of these event types can be present in each of the three pro-
cesses, for example, (QRs)i in P||Λ1

(Q||Λ2
R).

Inhibited common events: are common asynchronous events under the first synchronisa-
tion set but are then required to be possible synchronous events with the third pro-
cess which cannot perform them and are therefore, inhibited. Denoted by – (PQa)i,
(PRa)i, (QRa)i. Only one of these event types can be present, for example, (PRa)i in
Q||Π1

(P||Π2
R).

166 P.Howells and M.d’Inverno / Specifying and Analysing Networks of Processes in CSPT

Irrelevant synchronous events: are not in the alphabets of the two processes being com-
bined, and consequently have no effect on the resultant process. Denoted by – PQis,
PRis, QRis.

Irrelevant events: are outside the alphabets of all three processes and the synchronisation
sets involved, denoted by – PQRi.

3.3.1. Alphabet Diagram for Three Processes

Only certain combinations of these events can occur in one of the ways of combining P, Q
and R. To see what part of the three processes’ alphabets form each event type for each of the
different combinations we give one alphabet diagram, see Figure 2, and use it to represent
each of the three processes one at a time. That is S1 and S2 represent Λ1, Λ2, Π1, Π2, Γ1 and
Γ2 respectively.

Note that even though a particular area is (visually) the same in the diagram under all
three interpretations, this is because the same two groups of areas are used to represent the
three pairs of synchronisation sets. The areas are not intended to be equal, as would be seen
if four other groups of areas were introduced to represent the other pairs of synchronisation
sets.

1S 2S

1S 2S

1S 2S

1S 2S

1S 2S

1S 2S 1S 2S1S 2S

A B

C

8

2

11

27

13 9

1 3

4

762019 18 22

21
17

5

25

29

32

Σ

121516

30 31

2628

1014

23 24

Figure 2. Alphabet diagram for three processes.

3.3.2. Tabulation of Event Types

Below in Tables 3 – 9 are tabulated the areas of the alphabet diagram of Figure 2, which
comprise each of the event types for each of the three processes. Each area corresponds to
a distinct region of the alphabet diagram, indicated by the number associated with it. If an
event type is not possible then its area is given as the empty set. Due to limitations of space
we have not included the tables for the various types of inhibited and irrelevant events4. We
use the additional notation of Γ, Λ and Π as superscripts of the event types to indicate which
of the three processes are under consideration, e.g. PaΓ represents the private asynchronous
events of P in the Γ process.

4An extended version of this paper is in preparation and the full details of the inhibited and irrelevant events
will be included there.

P.Howells and M.d’Inverno / Specifying and Analysing Networks of Processes in CSPT 167

Table 3. Private asynchronous events: Pa, Qa, Ra

Event Set of Events Area

PaΓ (A ∩ B ∩ C ∩ Γ1 ∩ Γ2) 17

PaΛ (A ∩ B ∩ C ∩ Λ1 ∩ Λ2) ∪ (A ∩ B ∩ C ∩ Λ1 ∩ Λ2) 20, 17,

∪ (A ∩ B ∩ C ∩ Λ1 ∩ Λ2) ∪ (A ∩ B ∩ C ∩ Λ1 ∩ Λ2) 8, 14

PaΠ (A ∩ B ∩ C ∩Π1 ∩Π2) 17

QaΓ (A ∩ B ∩ C ∩ Γ1 ∩ Γ2) 21

QaΛ (A ∩ B ∩ C ∩ Λ1 ∩ Λ2) 21

QaΠ (A ∩ B ∩ C ∩Π1 ∩Π2) ∪ (A ∩ B ∩ C ∩Π1 ∩Π2) 8, 10,

∪ (A ∩ B ∩ C ∩Π1 ∩Π2) ∪ (A ∩ B ∩ C ∩Π1 ∩Π2) 24, 21

RaΓ (A ∩ B ∩ C ∩ Γ1 ∩ Γ2) ∪ (A ∩ B ∩ C ∩ Γ1 ∩ Γ2) 12, 25

∪ (A ∩ B ∩ C ∩ Γ1 ∩ Γ2) ∪ (A ∩ B ∩ C ∩ Γ1 ∩ Γ2) 28, 16

RaΛ (A ∩ B ∩ C ∩ Λ1 ∩ Λ2) 25

RaΠ (A ∩ B ∩ C ∩Π1 ∩Π2) 25

Table 4. Common binary asynchronous events: PQa, PRa, QRa

Event Set of Events Area

PQaΓ (A ∩ B ∩ C ∩ Γ1 ∩ Γ2) 5

PQaΛ (A ∩ B ∩ C ∩ Λ1 ∩ Λ2) 5

PQaΠ (A ∩ B ∩ C ∩Π1 ∩Π2) 5

PRaΓ (A ∩ B ∩ C ∩ Γ1 ∩ Γ2) 13

PRaΛ (A ∩ B ∩ C ∩ Λ1 ∩ Λ2) 13

PRaΠ (A ∩ B ∩ C ∩Π1 ∩Π2) 13

QRaΓ (A ∩ B ∩ C ∩ Γ1 ∩ Γ2) 9

QRaΛ (A ∩ B ∩ C ∩ Λ1 ∩ Λ2) 9

QRaΠ (A ∩ B ∩ C ∩Π1 ∩Π2) 9

Table 5. Common ternary asynchronous events: PQRa

Event Set of Events Area

PQRaΓ (A ∩ B ∩ C ∩ Γ1 ∩ Γ2) 4

PQRaΛ (A ∩ B ∩ C ∩ Λ1 ∩ Λ2) 4

PQRaΠ (A ∩ B ∩ C ∩Π1 ∩Π2) 4

3.4. Defining Associative Synchronisation Sets

For associativity we require the three parallel alternatives to be equivalent. For this to be the
case a necessary condition is firstly that all three processes have the same event types present
and secondly that each event type contains the same set of events in each process. We shall
apply this constraint only to the event types that could actually occur and not to any particular
type of inhibited events, because in general it is unimportant how an event is inhibited.

So from Table 3 it is clear that the Pa, Qa and Ra must be restricted in some way.
Consider Pa, it contains events which are present in the (Λ) process which are not of the same
type in the other two processes, i.e. areas 8, 14 and 20. Therefore, as a first step we require
the following to hold:

168 P.Howells and M.d’Inverno / Specifying and Analysing Networks of Processes in CSPT

Table 6. Possible binary synchronous events: PQs, PRs, QRs

Event Set of Events Area

PQsΓ (A ∩ B ∩ C ∩ Γ1 ∩ Γ2) 6

PQsΛ (A ∩ B ∩ C ∩ Λ1 ∩ Λ2) 6

PQsΠ (A ∩ B ∩ C ∩Π1 ∩Π2) 6

PRsΓ (A ∩ B ∩ C ∩ Γ1 ∩ Γ2) 14

PRsΛ (A ∩ B ∩ C ∩ Λ1 ∩ Λ2) 16

PRsΠ (A ∩ B ∩ C ∩Π1 ∩Π2) 14

QRsΓ (A ∩ B ∩ C ∩ Γ1 ∩ Γ2) 10

QRsΛ (A ∩ B ∩ C ∩ Λ1 ∩ Λ2) 10

QRsΠ (A ∩ B ∩ C ∩Π1 ∩Π2) 12

Table 7. Possible ternary synchronous events: PQRs

Event Set of Events Area

PQRsΓ (A ∩ B ∩ C ∩ Γ1 ∩ Γ2) 1

PQRsΛ (A ∩ B ∩ C ∩ Λ1 ∩ Λ2) 1

PQRsΠ (A ∩ B ∩ C ∩Π1 ∩Π2) 1

Table 8. Common synchronous events: (PQs)Ra, (PRs)Qa, (QRs)Pa

Event Set of Events Area

(PQa)RsΓ (A ∩ B ∩ C ∩ Γ1 ∩ Γ2) 3

(PQa)RsΛ ∅
(PQa)RsΠ ∅

(PRa)QsΓ ∅
(PRa)QsΛ ∅
(PRa)QsΠ (A ∩ B ∩ C ∩Π1 ∩Π2) 2

(QRa)PsΓ ∅
(QRa)PsΛ (A ∩ B ∩ C ∩ Λ1 ∩ Λ2) 2

(QRa)PsΠ ∅

Pa = (A ∩ B ∩ C ∩ Γ1 ∩ Γ2)

= (A ∩ B ∩ C ∩ Λ1 ∩ Λ2) ∪ (A ∩ B ∩ C ∩ Λ1 ∩ Λ2)

∪ (A ∩ B ∩ C ∩ Λ1 ∩ Λ2) ∪ (A ∩ B ∩ C ∩ Λ1 ∩ Λ2)

= (A ∩ B ∩ C ∩ Π1 ∩ Π2)

As a second step it is necessary to eliminate those events which are present in the (Λ)
process which do not form part of Pa in the others. Therefore, the following equalities must
hold:

Pa = (A ∩ B ∩ C ∩ Γ1 ∩ Γ2)

= (A ∩ B ∩ C ∩ Π1 ∩ Π2)

= (A ∩ B ∩ C ∩ Λ1 ∩ Λ2) ∪ (A ∩ B ∩ C ∩ Λ1 ∩ Λ2)

P.Howells and M.d’Inverno / Specifying and Analysing Networks of Processes in CSPT 169

Table 9. Synchronous common events: (PQa)Rs, (PRa)Qs, (QRa)Ps

Event Set of Events Area

(PQs)RaΓ (A ∩ B ∩ C ∩ Γ1 ∩ Γ2) 2

(PQs)RaΛ ∅
(PQs)RaΠ ∅

(PRs)QaΓ ∅
(PRs)QaΛ ∅
(PRs)QaΠ (A ∩ B ∩ C ∩Π1 ∩Π2) 3

(QRs)PaΓ ∅
(QRs)PaΛ (A ∩ B ∩ C ∩ Λ1 ∩ Λ2) 3

(QRs)PaΠ ∅

In addition, the following equality must hold, because there is no way that the Pa events of
the (Γ) and (Π) versions could contain any events from the A ∩ B ∩ C and A ∩ B ∩ C areas.

(A ∩ B ∩ C ∩ Λ1 ∩ Λ2) ∪ (A ∩ B ∩ C ∩ Λ1 ∩ Λ2) = ∅

Two possible restrictions that satisfy these equalities are the following:

A ∩ Λ2 = ∅ and A ∩ Λ1 ∩ Λ2 = ∅

The problem with the first is that it would also eliminate the possibility of PQRs events, for
this reason we choose the second. This leads to similar constraints for Γ1, Γ2, Π1 and Π2

derived from Qa and Ra as follows:

B ∩ Π1 ∩ Π2 = ∅ C ∩ Γ1 ∩ Γ2 = ∅

From Table 8 it is clear that none of the events: (PQa)Rs, (PRa)Qs and (QRa)Ps, should
occur in either of the three alternatives. Since there is no way in which they can occur in all
of them. Therefore, constraints must be placed on Γ1, Γ2, Λ1, Λ2, Π1 and Π2 so that they
are eliminated. If these events are eliminated then so are the corresponding inhibited ones:
(PQa)i, (PRa)i and (QRa)i.

Similarly, from Table 9 we must eliminate: (PQs)Ra, (PRs)Qa and (QRs)Pa. However,
the constraints that were introduced to eliminate the problems involving Pa, Qa and Ra also
eliminate these events, as can be seen from Table 9.

Therefore, we must only find constraints to eliminate (PQa)Rs, (PRa)Qs and (QRa)Ps.
So we require the following equalities to hold:

(QRa)Ps = (A ∩ B ∩ C ∩ Λ1 ∩ Λ2) = ∅

(PQa)Rs = (A ∩ B ∩ C ∩ Γ1 ∩ Γ2) = ∅

(PRa)Qs = (A ∩ B ∩ C ∩ Π1 ∩ Π2) = ∅

Just considering (QRa)Ps three possible restrictions which satisfy this equality are the fol-
lowing:

B ∩ Λ1 ∩ Λ2 = ∅ or C ∩ Λ1 ∩ Λ2 = ∅ or B ∩ C ∩ Λ1 ∩ Λ2 = ∅

The problem with the first and second is that they would also eliminate the possibility of
PQs and PRs events respectively (see Table 6), for this reason we choose the third. This leads
to similar constraints for Γ1, Γ2, Π1 and Π2 derived from (PQa)Rs and (PRa)Qs as follows:

170 P.Howells and M.d’Inverno / Specifying and Analysing Networks of Processes in CSPT

A ∩ C ∩ Π1 ∩ Π2 = ∅ A ∩ B ∩ Γ1 ∩ Γ2 = ∅

So summarising, if Γ1, Γ2, Λ1, Λ2, Π1 and Π2 satisfy the above constraints then parts
of event types and complete event types are eliminated. These events must be eliminated
because if one of these categories of events were present in one of the three processes then it
could not in general be equivalent to either of the other two irrespective of what values were
chosen for the synchronisation sets. It is also the case that adopting these constraints reduces
all of the equalities on the event types which can occur to equalities of just one area in all
three processes.

3.5. Associativity Law

Using the constraints and equalities derived in the previous section as well as those from the
tabulation of the event types we arrive at the following associativity law for the ||Ω operator:

P||W∪X∪Y(Q||W∪ZR) ≡ Q||W∪X∪Z(P||W∪YR) ≡ R||W∪Y∪Z(P||W∪XQ) (1)

where W ⊆ Σ, A ∩ Z = ∅, B ∩ Y = ∅, C ∩ X = ∅ and A, B, C are the alphabets of P,
Q and R respectively. Intuitively W represents the events that all three processes are required
to synchronise, X represents the events that only P and Q are required to synchronise, Y
represents the events that only P and R are required to synchronise and Z represents the
events that only Q and R are required to synchronise. For an outline of a proof of this law see
Appendix B.

From this, the appropriate values for the original synchronisation sets are as follows:

Λ1 = W ∪ X ∪ Y Λ2 = W ∪ Z
Π1 = W ∪ X ∪ Z Π2 = W ∪ Y
Γ1 = W ∪ X Γ2 = W ∪ Y ∪ Z

3.5.1. Tabulation and Alphabet Diagram of Event Types

The alphabet diagram for the associative case for the three processes is given in Figure 3. This
diagram represents all three cases at once, i.e. the areas are the same for the three versions.
This differs from the diagram for the general cases, Figure 2, which represented one of the
three cases at a time. The event types, for events that are not inhibited in some way, are given
in Table 10 and for the associative case the following event type equalities must hold:

(PQa)Rs = (PRa)Qs = (QRa)Ps = ∅
(PQs)Ra = (PRs)Qa = (QRs)Pa = ∅
(PQa)i = (PRa)i = (QRa)i = ∅

Again due to space limitations we do not include the detailed tabulation of the inhibited
and irrelevant events. The events which form each event type for each process can easily be
derived from those in Tables 3 – 9, by substituting in the above values for the synchronisation
sets.

3.6. Associativity Laws for CSPT Parallel Operators

Based on the associativity law for the generalised parallel operator ||Ω, we can now state
(proofs similar) the associativity laws for the synchronous (||∆), asynchronous (|||Θ) and
race (|Θ) parallel operators as follows:

P||W∪X∪Y(Q||W∪ZR) ≡ Q||W∪X∪Z(P||W∪YR) ≡ R||W∪Y∪Z(P||W∪XQ) (2)

P|||W∪X∪Y(Q|||W∪ZR) ≡ Q|||W∪X∪Z(P|||W∪YR) ≡ R|||W∪Y∪Z(P|||W∪XQ) (3)

P|W∪X∪Y(Q|W∪ZR) ≡ Q|W∪X∪Z(P|W∪YR) ≡ R|W∪Y∪Z(P|W∪XQ) (4)

P.Howells and M.d’Inverno / Specifying and Analysing Networks of Processes in CSPT 171

36

37

33

35 32

34
31

27 24 28

29

26
23

25

20 16 17

15
19 18

21

7 8

A

22

14

2

6

B

30

10

38

C

W X Y Z

Σ

12 11 13 9

1

4 3 5

Figure 3. Alphabet diagram for associative case.

Table 10. Associative case: possible events.

Event Set of Events Area

Pa (A ∩ B ∩ C ∩W ∩ X ∩ Y) 22

Qa (A ∩ B ∩ C ∩W ∩ X ∩ Z) 30

Ra (A ∩ B ∩ C ∩W ∩ Y ∩ Z) 38

PQa (A ∩ B ∩ C ∩W ∩ X) 6

PRa (A ∩ B ∩ C ∩W ∩ Y) 14

QRa (A ∩ B ∩ C ∩W ∩ Z) 10

PQRa (A ∩ B ∩ C ∩W) 2

PQs (A ∩ B ∩ C ∩W ∩ X) 4

PRs (A ∩ B ∩ C ∩W ∩ Y) 13

QRs (A ∩ B ∩ C ∩W ∩ Z) 9

PQRs (A ∩ B ∩ C ∩W) 1

In these three laws the meanings of W, X, Y , Z and A, B, C are as for ||Ω; and the same
constraints apply to all three laws: W ⊆ Σ, A ∩ Z = ∅, B ∩ Y = ∅ and C ∩ X = ∅.

However, due to the termination semantics of each operator there are additional con-
straints with respect to tick (X). For the synchronous operator we require synchronous ter-
mination, therefore, X ∈ W. In the case of the asynchronous and race operators termination
is not synchronised, i.e.X is an asynchronous event, therefore,X /∈ W,X,Y,Z.

3.7. Testing for Associativity

Now that an associativity law has been proved for the generalised operator, we can use it to
determine whether an instance of either P||Λ1

(Q||Λ2
R) or Q||Π1

(P||Π2
R) or (P||Γ1

Q)||Γ2
R can

be transformed into an equivalent instance of the other two.
This equivalence preserving transformation can be achieved if the two synchronisation

sets used to combine the three processes satisfy two conditions. The two conditions have

172 P.Howells and M.d’Inverno / Specifying and Analysing Networks of Processes in CSPT

been derived from the way in which the pairs of synchronisation sets in the associativity law
are defined in terms of the sets W, X, Y , Z and the constraints placed on each of them. This
question can also be answered using the laborious technique of working out the event types
which occur and checking that none of them prohibit the transformation, i.e. occur only in
that particular alternative.

The two conditions for the pair of synchronisation sets for a process of the form
P||Λ1

(Q||Λ2
R) are the following:

(1) A ∩ Λ1 ∩ Λ2 = ∅
(2) B ∩ C ∩ Λ1 ∩ Λ2 = ∅

If Λ1 and Λ2 satisfy these conditions then the process can be re-written as either of the other
two forms, by using Λ1 and Λ2 to define W, X, Y and Z. It is possible to assign different
values to these sets while still ensuring equivalence, the differences only affect how events
are inhibited. One set of values for these variables is the following:

W = Λ1 ∩ Λ2 X = C ∩ Λ1 ∩ Λ2 Y = B ∩ Λ1 ∩ Λ2 Z = Λ1 ∩ Λ2

These in turn are used to define the synchronisation sets for the other two processes as spec-
ified in the associativity law.

The conditions on the pairs of synchronisation sets and the definitions of W, X, Y and Z
for the (Π) and (Γ) versions are as follows:

(1) B ∩ Π1 ∩ Π2 = ∅
(2) A ∩ C ∩ Π1 ∩ Π2 = ∅

W = Π1 ∩ Π2 X = C ∩ Π1 ∩ Π2 Y = Π1 ∩ Π2 Z = A ∩ Π1 ∩ Π2

(1) C ∩ Γ1 ∩ Γ2 = ∅
(2) A ∩ B ∩ Γ1 ∩ Γ2 = ∅

W = Γ1 ∩ Γ2 X = Γ1 ∩ Γ2 Y = B ∩ Γ1 ∩ Γ2 Z = A ∩ Γ1 ∩ Γ2

So for example, assuming Λ1 and Λ2 satisfy both conditions then the following holds:

P||Λ1
(Q||Λ2

R) ≡ Q||Π1
(P||Π2

R) ≡ (P||Γ1
Q)||Γ2

R

And the definition of the other synchronisation sets are as follows:

Π1 = (Λ1 ∩ Λ2) ∪ (C ∩ Λ1 ∩ Λ2) ∪ (Λ1 ∩ Λ2) = Λ2 ∪ (Λ1 ∩ C)

Π2 = (Λ1 ∩ Λ2) ∪ (B ∩ Λ1 ∩ Λ2) = (Λ1 ∩ Λ2) ∪ (Λ1 ∩ B)

Γ1 = (Λ1 ∩ Λ2) ∪ (C ∩ Λ1 ∩ Λ2) = (Λ1 ∩ Λ2) ∪ (Λ1 ∩ C)

Γ2 = (Λ1 ∩ Λ2) ∪ (B ∩ Λ1 ∩ Λ2) ∪ (Λ1 ∩ Λ2) = Λ2 ∪ (Λ1 ∩ B)

4. Specifying and Implementing the Parallel Composition of Three Processes

In this section we show how to specify a parallel composition of three processes in terms of
event types, and implement it using ||Ω by defining the two synchronisation sets required.

The specification of the parallel composition of processes in terms of event types can
be viewed as the specification of the inter-connections/interface between a network of three
processes. Here we only consider a network of three processes, but we believe the present

P.Howells and M.d’Inverno / Specifying and Analysing Networks of Processes in CSPT 173

treatment could be extended to deal with a network consisting of an arbitrary number of
processes.

This reverses the type of analysis performed during the search for the associativity law,
where given the processes and two synchronisation sets, it was defined what type each event
would be. The present approach is more useful when using ||Ω to implement networks of
processes, whereas the other is more useful when analysing existing ones.

The way in which we specify the parallel composition and interface of three processes
in terms of event types is done in three stages:

1. Define the alphabets A, B and C of the three processes P, Q and R.
2. Determine how the events in each of the following seven regions A∩B∩C, A∩B∩C,

A∩ B∩C, A∩ B∩C, A∩ B∩C, A∩ B∩C and A∩ B∩C should be partitioned into
event types

3. Define the two synchronisation sets using these partitions.

We shall now give an example of how to apply these three stages for the associative case.

4.1. Example for the Associative Case

Our aim is to illustrate how to choose two interfaces (synchronisation sets) I1 and I2, such
that we can apply the associativity law to the following simple network:

P||I1(Q||I2R)

Thus, we need to ensure that the event types that cause the associativity law to fail, for this
form of network, cannot arise with our chosen interfaces.

Stage one is to define the alphabets for the three processes. For this example, we chose
the arbitrary alphabets A, B and C respectively. Hence, based on our previous investigation,
we must ensure that certain categories of Pa events and both (QRa)Ps and (QRs)Pa events do
not occur. Therefore, we need to define the sets W, X, Y and Z as used in law (1) to define the
two interfaces as follows:

I1 = W ∪ X ∪ Y and I2 = W ∪ Z

where the W, X, Y and Z have the same intuitive meanings and satisfy the same constraints as
given previously. By defining these four sets in this way, we are ensuring that the associativity
law is applicable for our two interfaces.

For stage two, we use Table 11 to tabulate the events and components of events which
fall into the seven areas. Note that we have ignored irrelevant synchronisation events and
impossible events. As an example of how to read the table consider the region A ∩ B ∩ C;
if the (Λ) form of process has been chosen the events in this area will be either Pa or Pi
events, depending on how it is partitioned. A diagrammatic view of how the seven areas are
partitioned for the (Λ) process is given in Figure 4.

There are a number of equalities which hold between the event types in each alterna-
tive and between the three alternatives. These additional equalities hold because we are deal-
ing with the associative case. For simplicity we do not distinguishing between the different
ways in which an event is inhibited, since for most cases this is irrelevant. Therefore, we
group together the various categories of inhibited events using the following six equalities
denoted by Pw, Qw, Rw, PQw, PRw and QRw. These inhibited events are then included in
the synchronisation set W.

174 P.Howells and M.d’Inverno / Specifying and Analysing Networks of Processes in CSPT

Table 11. Associate case: partitioned events

Area (Λ) (Π) (Γ)

A ∩ B ∩ C Pa,Pi1 Pa,Pi1, (Pa)i Pa,Pi1, (Pa)i
A ∩ B ∩ C Qa,Qi1, (Qa)i Qa,Qi1 Qa,Qi1, (Qa)i
A ∩ B ∩ C Ra,Ri1, (Ra)i Ra,Ri1, (Ra)i Ra,Ri1
A ∩ B ∩ C PQa,PQs,Pi2,Qi2 PQa,PQs,Pi2,Qi2 PQa,PQs, (PQs)i
A ∩ B ∩ C PRa,PRs,Pi3,Ri2 PRa,PRs, (PRs)i PRa,PRs,Pi2,Ri2
A ∩ B ∩ C QRa,QRs, (QRs)i QRa,QRs,Qi3,Ri2 QRa,QRs,Qi2,Ri3
A ∩ B ∩ C PQRa,PQRs PQRa,PQRs PQRa,PQRs

Pi2

Pi3

Ri1

Ri2

Pi1

Pa1

Qi2
1Qi

A B

C

Ra

QRa

(Qa)i

Qa

(Ra)i

PQRa PQRs

PQs PQa

(QRs)i

QRs

PRa

PRs

Σ

Figure 4. Partition of events for associative case of P||Λ1
(Q||Λ2

R).

A ∩ B ∩ C : Pw = PiΛ1 = PiΠ1 ∪ (Pa)iΠ = PiΓ1 ∪ (Pa)iΓ

A ∩ B ∩ C : Qw = QiΛ1 ∪ (Qa)iΛ = QiΠ1 = QiΓ1 ∪ (Qa)iΓ

A ∩ B ∩ C : Rw = RiΛ1 ∪ (Ra)iΛ = RiΠ1 ∪ (Ra)iΠ = RiΓ1
A ∩ B ∩ C : PQw = PiΛ2 = QiΛ2 = PiΠ2 = QiΠ2 = (PQs)iΓ

A ∩ B ∩ C : PRw = PiΛ3 = RiΛ2 = (PRs)iΠ = PiΓ2 = RiΓ2
A ∩ B ∩ C : QRw = (QRs)iΛ = QiΠ3 = RiΠ2 = QiΓ2 = RiΓ3

Finally for stage three, we define the sets W, X, Y and Z to be used to define the interfaces
I1 and I2 as follows:

W = PQRs ∪ (Pw ∪ Qw ∪ Rw ∪ PQw ∪ PRw ∪ QRw)

X = PQs Y = PRs Z = QRs

There are obviously other ways of combining the synchronous and inhibited events to achieve
the desired result but we leave the definition of these to the reader.

5. Further Work

We have demonstrated how to use ||Ω to implement a network of three processes with specific
interfaces between the processes. These interfaces were defined in terms of the event types

P.Howells and M.d’Inverno / Specifying and Analysing Networks of Processes in CSPT 175

of the processes’ alphabets. This approach entailed defining the processes’ alphabets, then
partitioning up the alphabets into the required event types and finally defining the two syn-
chronisation sets using these event types. An obvious extension of this work is to develop a
method, and probably more importantly some succinct notation, that would allow an arbitrary
number of processes to be constructed into a network with the required event types present.
For example, with n processes the network would have the form:

P1 ||Ω1
(P2 ||Ω2

(. . . (Pn−1 ||Ωn−1
Pn) . . .)

The notation would need to be able to deal with the n alphabets of the processes, the n − 1
synchronisation sets and the 22n−1 different event types that could occur, although most of
these event types would be classed as inhibited.

The process of constructing the required network would then be similar to that for three
processes given in Section 4, and in outline would be as follows:

1. Define the alphabets A1, . . . ,An of the n processes, P1, . . . ,Pn.
2. Determine how the events in each of the 2n regions A1 ∩ A2 ∩ . . . ∩ An to A1 ∩ . . . ∩

An−1 ∩ An should be partitioned into event types.
3. Finally, define the n− 1 synchronisation sets Ω1, . . . ,Ωn−1 using these partitions.

If the network was required to be “associative”, in the sense that the order in which
the processes were to be composed was irrelevant, then its construction would be greatly
simplified. Since, the sets of synchronisation events between each pair of processes is one of
the most important factors in ensuring associativity, we could use Xi,j to denote the required
set of synchronous events between Pi and Pj. Then for each Xi,j require that it is disjoint with
all other processes’ alphabets in the network, i.e. the following condition should hold:

Xi,j ∩ (
⋃

k 6=i, j

Ak) = ∅

We are grateful to one of the anonymous reviewers who raised the issue of whether
it is possible to give an indication of the “order of magnitude” of the different types of
events present. Currently, we are only able to provide an answer for the most important event
types with respect to ensuring the associativity law holds, namely the pure synchronous and
asynchronous events. In this context, pure means those types that are performed either syn-
chronously by all participating processes, e.g. PQRs, or asynchronously by all processes, e.g.
PQRa. For these we are able to state that: for n processes the total number of different (pure)
synchronous event types is 2n − (n + 1) and for (pure) asynchronous event types it is 2n − 1.
We leave the derivation of similar results for the more complex case for mixed event types,
i.e. those that are performed synchronously by some processes and asynchronously by others,
e.g. (PQa)Rs, as a topic for future research.

We are grateful to two of the anonymous reviewers who raised issues regarding the
constraints on the two synchronisation sets that are required to ensure that the associativity
law holds. In particular, are the conditions we give in Section 3.4 necessary? They are clearly
sufficient, but currently we are unable to say with any confidence that they are also necessary.
However, given that we consider a number of alternative conditions, and that one reviewer
has also suggested:

C̄ ∩ Λ2 = B̄ ∩ Λ2 = ∅ (equivalently Λ2 ⊆ B ∩ C),

as an alternative constraint to eliminate the problem Pa events; we strongly suspect that they
are not.

176 P.Howells and M.d’Inverno / Specifying and Analysing Networks of Processes in CSPT

6. Summary and Conclusions

We have extended previous work describing our language and model CSPT for specifying
the behaviour of networks of processes which is a variant (a variant specifically chosen to be
as close as possible to the original formulation) of the original language of CSP developed
by Hoare, Roscoe and others. Specifically, we have extended our analysis by the discovery
and proof of associativity laws for the three parallel operators. By developing these laws we
provide specifiers and designers with essential laws for specifying, designing, analysing and
reasoning about networks of parallel processes.

In particular, our analysis of the event types which can occur in processes of the form
(P||Γ1

Q)||Γ2
R, resulted in the discovery of constraints on the pair of synchronisation sets Γ1

and Γ2, which when satisfied allowed the definition of an associativity law. These constraints
also provided us with a simple “test” for associativity. As a result of this analysis we were
able to prove the general associativity law for ||Ω and hence, for ||∆, |||Θ and |Θ. We believe
these laws, although not “universally applicable” in the sense of Roscoe [5], that it is the most
general and useful possible for these style of operators.

Furthermore, we demonstrated how to use ||Ω to implement a network of three processes
with specific interfaces (synchronisation sets) between the processes. These interfaces are
defined in terms of the event types of the processes’ alphabets. This approach entails defining
the processes’ alphabets, then partitioning up the alphabets into the required event types and
finally defining the two interfaces using these event types. Clearly, this would be a useful
technique when attempting to construct networks of processes using ||Ω. We believe this ap-
proach could be scaled up to deal with an arbitrary number of processes, with the aid of some
well chosen notation, but we leave the details as a topic for further investigation.

Based on our investigations, we suggest the following general guideline for system de-
signers, when choosing interfaces for these type of networks: if one wishes to be able to apply
an associativity law, then one should avoid any interface that results in mixed event types, as
these can only occur in networks that are constructed in particular ways.

Note that associativity is not always desired and that, in those cases, events can be (and
need to be) of mixed type. For example, client-server systems have many client processes
interleaving access to a pair of request and reply channels: first they send a request, then
wait for a reply. Their use of those channels is asynchronous between them. The set of client
processes (i.e. their parallel composition) now synchronises with the (single) server process
on those request and reply channels: the server waits for a request, then sends a reply. The
reply will be taken by the client that made the request since it will be the only client listen-
ing - the other clients are either blocked trying to make a request or doing something else.
So, the request and reply channel interfaces are mixed: asynchronous between the clients
and synchronous between the client group and the server. Associating the component pro-
cesses in some other way (e.g. with some clients grouped with the server and some just with
themselves) gives a system that is semantically different and incorrect5.

However, when associativity matters, by identifying the associativity constraints and
proving the set of associativity laws, we have provided a practical technique for designers to
capture intuitively and flexibly the intended behaviour of the processes networks they wish
to build.

Acknowledgements

We would like to acknowledge and thank the three anonymous referees for their feedback
on the paper. We found this very helpful in improving the paper overall, but especially in

5This example was suggested by one of the anonymous reviewers.

P.Howells and M.d’Inverno / Specifying and Analysing Networks of Processes in CSPT 177

improving the readability of the paper. We would also like to gratefully acknowledge the
advice and assistance of the following individuals from whom at various stages we benefited
a great deal over several very detailed discussions on our work: Richard Bornat, Jonathan
Bowen, Michael Luck and Steve Schneider. Finally, we would like to acknowledge the help
and assistance of the CPA 2013 Editors, especially Peter Welch, in preparing this paper.

References

[1] S. D. Brookes. A Model for Communicating Sequential Processes. PhD thesis, Oxford University, 1983.
[2] S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A Theory of Communicating Sequential Processes.

Journal of the ACM, 31(7), 1985.
[3] S. D. Brookes and A. W. Roscoe. An improved failures model for Communicating Sequential Processes.

In Proceedings of Pittsburgh Seminar on Concurrency, LNCS 197, pages 281–305. Springer-Verlag, 1985.
[4] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall International, 1985. ISBN: 0-131-

53271-5.
[5] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall International, 1997. ISBN: 0-13-

674409-5.
[6] A.W. Roscoe. Understanding Concurrent Systems. Springer, 2010. ISBN: 978-1-84882-257-3.
[7] P. Howells and M. d’Inverno. A CSP model with flexible parallel termination semantics. Formal Aspects

of Computing, 21(5):421–449, 2009.
[8] P. Howells and M. d’Inverno. Specifying Termination in CSP. Theoretical Computer Science, 2013. DOI:

10.1016/j.tcs.2013.05.008.
[9] P. Howells and Mark d’Inverno. Successful Termination in Timed CSP. In Proceedings of Communicating

Process Architectures 2013 (CPA13), 2013.
[10] P. Howells. Communicating Sequential Processes with Flexible Parallel Termination Semantics. PhD

thesis, University of Westminster, 2005.
[11] H. Tej and B. Wolff. A Corrected Failure-Divergence Model for CSP in Isabelle/HOL. In Proceedings of

the FME ’97 – Industrial Applications and Strengthened Foundations of Formal Methods, LNCS 1313.
Springer-Verlag, 1997.

[12] C. A. R. Hoare and He Jifeng. Unifying Theories of Programming. Prentice-Hall, 1998.
[13] S. Schneider. Concurrent and Real-time Systems: The CSP Approach. Wiley, 2000. ISBN: 0-471-62373-3.
[14] J. W. de Bakker. Mathematical Theory of Program Correctness. Prentice-Hall International, 1980.
[15] J. E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Programming Language Theory. MIT

Press, 1977.

A. (Appendix) CSPT : Notation, Axioms and Semantic Definitions

This appendix contains a summary of the notation and definitions used in the paper and the
proof of the associativity law for the generalised parallel operator ||Ω. For a more detailed
description of CSP, see [4,5,6] and for CSPT see [7,8].

A.1. Basic Notation

The notation used in CSP and CSPT is the following. Σ is the set of all events, and is count-
able; denoted by a, b, c. P(Σ) is the power set of Σ; denoted by X, Y , Z. Σ∗ is the set of
finite sequences of events, i.e., traces; denoted by r, s, t, u. 〈 〉 represents the empty sequence.
〈a, b, c, d〉 represents the sequence with members a, b, c, d. sat represents the concatenation
of the two sequences s and t. s ≤ t is the sequence prefix relation and s < t is the proper pre-
fix relation. #s is the length of the sequence s. a in s is sequence membership. X represents
the set complement of X, with respect to Σ, i.e., X ∩ X = ∅ and X ∪ X = Σ. X − Y is the
set difference of X and Y , i.e., X − Y = X ∩ Y . Finally, processes are denoted by P, Q, R and
A, B, C denote their alphabets. The set of all process identifiers is denoted by Ide, and use
p, q, . . . to range over Ide.

178 P.Howells and M.d’Inverno / Specifying and Analysing Networks of Processes in CSPT

A.2. Axioms for Failures and Divergences

In this model a process P is denoted by an ordered pair 〈F, D〉, where F is the failure set of
P, and D is the divergence set of P. A failure set F and divergence set D are any sets that
satisfy the following conditions:

F ⊆ Σ∗ × P(Σ) D ⊆ Σ∗

In addition, they must also satisfy the following process axioms, including the CSPT

Termination axiom (T1):

s ∈ D⇒ sat ∈ D (D1)

s ∈ D⇒ (sat,X) ∈ F (D2)

(〈 〉,∅) ∈ F (N1)

(sat,∅) ∈ F ⇒ (s,∅) ∈ F (N2)

(s,X) ∈ F ∧ Y ⊆ X ⇒ (s,Y) ∈ F (N3)

(s,X) ∈ F ∧ (∀ c ∈ Y : (sa〈c〉,∅) /∈ F)⇒ (s,X ∪ Y) ∈ F (N4)

(∀Y ∈ F(X) : (s,Y) ∈ F)⇒ (s,X) ∈ F (N5)

t 6= 〈 〉 ∧ (sa〈X〉at,∅) ∈ F ⇒ s ∈ D (T1)

For a natural language interpretation of these axioms, see the Appendix of [9].

Definition A.1 The traces and alphabet of a process are now defined as follows:

traces(P) = { s | ∃X ∈ P(Σ) : (s,X) ∈ F }
α(P) = {a | ∃ t ∈ traces(P) : a in t }

A.3. Nondeterministic (refinement) ordering on processes

The refinement ordering on CSP processes is defined in terms of the reverse subset ordering
on the failure and divergence set components of processes, (the details of the underlying
theory can be found in [14,15]), and is defined as follows.

Definition A.2 The refinement ordering v is defined as follows:

〈F1,D1〉 v 〈F2,D2〉 =̂ F1 ⊇ F2 ∧ D1 ⊇ D2

where 〈F1,D1〉 and 〈F2,D2〉 represent the processes P1 and P2 respectively.

P1 v P2, (P1 is refined by P2) means that P1 is more nondeterministic than P2 if it can
diverge whenever P2 can diverge and fail whenever P2 can fail, i.e. any behaviour which is
possible for P2 is also possible for P1 and that P1 may also exhibit behaviour which is not
possible for P2.

Definition A.3 The ordering v induces an equivalence relation ≡ on processes defined as
follows:

P ≡ Q =̂ P v Q ∧ Q v P

Hence two processes are equivalent in the model NT when their failure and divergent set
components are equal. This space of processes together with the ordering, i.e., (PROCT , v)
is a partially ordered set, with least element ⊥.

P.Howells and M.d’Inverno / Specifying and Analysing Networks of Processes in CSPT 179

A.4. Semantic functions for CSPT

This section contains the semantics functions F and D for the generalised parallel operator
P||ΩQ. The CSPT semantic functions for the other “standard” processes and operators, the
two new parallel operators: P|||ΘQ and P|ΘQ, can be found in [7] and for CSP in [4,5,6].

First, we define an environment that is used to define process identifiers and the failure
and divergence semantics functions as follows.

Definition A.4 An environment e is a function which maps process identifiers (Ide) to failure
and divergence pairs 〈F,D〉 as follows.

e : Ide→ P(Σ∗ × P(Σ))× P(Σ∗)

The set of all such environments is denoted by NEnv.

Definition A.5 The semantic function N for CSPT is defined as follows:

N : CSPT → [NEnv→ NT]

N [[P]]e = 〈F [[P]]e, D[[P]]e〉

where the two functions F and D are defined as follows:

F : CSPT → [NEnv→ P(Σ∗ × P(Σ))]

D : CSPT → [NEnv→ P(Σ∗)]

We now give the definition of the semantic functions F and D for ||Ω (and hence ||∆).
The semantic functions for P||ΩQ use the merge function to construct the legal traces for
the parallel operator. merge takes three arguments, two traces and a synchronisation set, and
maps them to the (possibly empty) set of traces. If the result of merging two traces, s and t,
is the empty set, then the two traces are incompatible, because of synchronous events.

Definition A.6 The function merge(s, t,Ω) is defined as follows:

merge : Σ∗ × Σ∗ × P(Σ) → P(Σ∗)

In the following a 6= b.

merge(〈a〉as, 〈b〉at,Ω) = merge(〈b〉at, 〈a〉as,Ω) [a, b /∈ Ω]

= {〈a〉au | u ∈ merge(s, 〈b〉at,Ω)}

∪ {〈b〉au | u ∈ merge(〈a〉as, t,Ω)}

merge(〈a〉as, 〈a〉at,Ω) = { 〈a〉au | u ∈ merge(s, t,Ω) } [a ∈ Ω]

merge(〈a〉as, 〈b〉at,Ω) = merge(〈b〉at, 〈a〉as,Ω) [a /∈Ω,b∈Ω]

= { 〈a〉au | u ∈ merge(s, 〈b〉at,Ω) }

merge(〈a〉as, 〈b〉at,Ω) = ∅ [a, b ∈ Ω]

merge(〈 〉, 〈a〉as,Ω) = merge(〈a〉as, 〈 〉,Ω) [a /∈ Ω]

= { 〈a〉au | u ∈ merge(〈 〉, s,Ω) }

merge(〈 〉, 〈a〉as,Ω) = merge(〈a〉as, 〈 〉,Ω) = ∅ [a ∈ Ω]

merge(〈 〉, 〈 〉,Ω) = { 〈 〉 }

180 P.Howells and M.d’Inverno / Specifying and Analysing Networks of Processes in CSPT

We now define the failure and divergence set semantic functions F and D for P||ΩQ.

D[[P||ΩQ]]e ={ uav |∃ s,t : u∈ merge(s, t,Ω) ∧ ((s ∈ D[[P]]e ∧ t ∈ traces(Q))

∨ (s ∈ traces(P) ∧ t ∈ D[[Q]]e)) }

F [[P||ΩQ]]e ={ (u,X∪Y∪Z) |X ⊆ Ω ∧ Y,Z ⊆ Ω ∧ ∃ s, t : u ∈ merge(s, t,Ω)

∧ (s,X ∪ Y) ∈ F [[P]]e ∧ (t,X ∪ Z) ∈ F [[Q]]e }
∪ { (u,X) | u ∈ D[[P||ΩQ]]e ∧ X ∈ P(Σ) }

B. (Appendix) Proof of the Associativity Law

In this section we present an outline of just the following part of the proof of:

P||W∪X∪Y(Q||W∪ZR) ≡ R||W∪Y∪Z(P||W∪XQ) (1)

The proof of equivalence of the other process with either of these two is similar. Equation (1)
is proved6 by showing that the divergence and failure sets of the two sides are equal. First,
we need some lemmas.

B.1. Merge Lemmas

To prove the associativity law we require the following merge lemmas: symmetry, trace
prefix and associativity.

merge(s, t,Ω) = merge(t, s,Ω) (merge-Sym)

sat ∈ merge(u,w,Ω)⇒ ∃ u′,w′ : u′ ≤ u ∧ w′ ≤ w ∧ (merge-Prefix)

s ∈ merge(u′,w′,Ω)

6One of the anonymous reviewers suggested that our law (1) was a special case of Roscoe’s 〈A||B−assoc〉 law,
see Section 3.2, and suggested the following proof:

Let D, E, F be the private asynchronous events of P, Q, R. Then the left-hand side equals:

P D∪W∪X∪Y ||E∪F∪W∪X∪Y∪Z (Q E∪W∪X∪Z ||F∪W∪Y∪Z R)

using the law relating alphabetised and generalised parallel (see Section 3.2). Then by Law 〈A||B−assoc〉, the
above equals:

(P D∪W∪X∪Y ||E∪W∪X∪Z Q) D∪E∪W∪X∪Y∪Z ||F∪W∪Y∪Z R

Which equals the right-hand side, again by the law relating alphabetised and generalised parallel. In particular,
the above shows that the law you produce is just a particular instance of the law for alphabetised parallel.

We agree that this equality above is correct. However, we believe that the sets used do not include any of
the shared asynchronous events between the three processes, i.e. PQa, PRa, QRa or PQRa. Furthermore, if
these were included in the above example, then due to the definition of this operator they would automatically
become synchronised events, since they are all within the intersections of the sets used. In particular, (assuming
that the W,X,Y are as defined in our law) then D ∪ W ∪ X ∪ Y does not necessarily define the alphabet of
P. Since even with the inclusion of P’s private asynchronous events D, this set does not include P’s shared
asynchronous events with either Q (PQa) or R (PRa) or both (PQRa). Therefore, we believe that Roscoe’s law
〈||X−assoc〉 is a special case of our associativity law, since ours also deals with this more general case when
shared asynchronous events are present, which Roscoe’s law does not.

P.Howells and M.d’Inverno / Specifying and Analysing Networks of Processes in CSPT 181

{ u | u ∈ merge(p, x,W ∪ X ∪ Y) ∧ x ∈ merge(q, r,W ∪ Z) } (merge-Ass)

={ u | u ∈ merge(q, y,W ∪ X ∪ Z) ∧ y ∈ merge(p, r,W ∪ Y) }
={ u | u ∈ merge(r, z,W ∪ Y ∪ Z) ∧ z ∈ merge(p, q,W ∪ X) }

where W, X, Y , Z, A, B and C are as before and p ∈ A∗, q ∈ B∗ and r ∈ C∗.

We omit the poofs of these lemmas as they are straightforward (by structural induction) and
lengthy. The details can be found in [10]. �

B.2. Proof of Divergence Set Equality

We need to prove the following:

D[[P||W∪X∪Y(Q||W∪ZR)]]e = D[[R||W∪Y∪Z(P||W∪XQ)]]e

This proof is split into the following two parts:

(a) s ∈ D[[P||W∪X∪Y(Q||W∪ZR)]]e ⇒ s ∈ D[[R||W∪Y∪Z(P||W∪XQ)]]e
(b) s ∈ D[[R||W∪Y∪Z(P||W∪XQ)]]e ⇒ s ∈ D[[P||W∪X∪Y(Q||W∪ZR)]]e

To prove (a) we start by expanding the lhs using the definition of D[[P||ΩQ]]e.

D[[P||W∪X∪Y(Q||W∪ZR)]]e
= {uav | ∃ p, q, r, x : u ∈ merge(p, x,W ∪ X ∪ Y) ∧ p ∈ D[[P]]e

∧ x ∈ merge(q, r,W ∪ Z) ∧ q ∈ traces(Q) ∧ r ∈ traces(R)}
∪ {uav | ∃ p, q, r, x, y : u ∈ merge(p, xay,W ∪ X ∪ Y) ∧ p ∈ traces(P)

∧ x ∈ merge(q, r,W ∪ Z) ∧ q ∈ D[[Q]]e ∧ r ∈ traces(R)}
∪ {uav | ∃ p, q, r, x, y : u ∈ merge(p, xay,W ∪ X ∪ Y) ∧ p ∈ traces(P)

∧ x ∈ merge(q, r,W ∪ Z) ∧ q ∈ traces(Q) ∧ r ∈ D[[R]]e}

We shall refer to these three sets as (lhs-P), (lhs-Q) and (lhs-R) respectively. The rhs can be
expanded similarly as follows:

D[[R||W∪Y∪Z(P||W∪XQ)]]e
= {uav | ∃ p, q, r, z : u ∈ merge(r, z,W ∪ Y ∪ Z) ∧ r ∈ D[[R]]e

∧ z ∈ merge(p, q,W ∪ X) ∧ p ∈ traces(P) ∧ q ∈ traces(Q)}
∪ {uav | ∃ p, q, r, z, y : u ∈ merge(r, zay,W ∪ Y ∪ Z) ∧ r ∈ traces(R)

∧ z ∈ merge(p, q,W ∪ X) ∧ p ∈ D[[P]]e ∧ q ∈ traces(Q)}
∪ {uav | ∃ p, q, r, z, y : u ∈ merge(r, zay,W ∪ Y ∪ Z) ∧ r ∈ traces(R)

∧ z ∈ merge(p, q,W ∪ X) ∧ p ∈ traces(P) ∧ q ∈ D[[Q]]e}

We shall refer to these three sets as (rhs-R), (rhs-P) and (rhs-Q) respectively. Note that both
the rhs and the lhs divergent sets are the union of three sets and that each one represents the
case where one of the processes is definitely diverging. To prove part (a) it is sufficient to
show that each of the rhs sets is a subset of the corresponding lhs sets, so we must prove the
following:

(i) s ∈ (lhs-P) ⇒ s ∈ (rhs-P)
(ii) s ∈ (lhs-Q) ⇒ s ∈ (rhs-Q)
(iii) s ∈ (lhs-R) ⇒ s ∈ (rhs-R)

182 P.Howells and M.d’Inverno / Specifying and Analysing Networks of Processes in CSPT

The proof of (i) is as follows:

(1) s ∈ (lhs-P) Assumption
(2) ∃ u, p, q, r, x : u ≤ s ∧ u ∈ merge(p, x,W ∪ X ∪ Y)

∧ x ∈ merge(q, r,W ∪ Z) ∧ p ∈ D[[P]]e
∧ q ∈ traces(Q) ∧ r ∈ traces(R)

(3) ∃ u, p, q, r, z : u ≤ s ∧ u ∈ merge(r, z,W ∪ Y ∪ Z)
∧ z ∈ merge(p, q,W ∪ X) ∧ p ∈ D[[P]]e
∧ q ∈ traces(Q) ∧ r ∈ traces(R)

(merge-Sym),
(merge-Ass)

(4) s ∈ (rhs-P) y = 〈 〉, (rhs-P)

This completes the proof of part (i). �

The proof of (ii) is as follows:

(1) s ∈ (lhs-Q) Assumption
(2) ∃ u, p, q, r, x, y : u ≤ s ∧ u ∈ merge(p, xay,W ∪ X ∪ Y)

∧ x ∈ merge(q, r,W ∪ Z) ∧ p ∈ traces(P)
∧ q ∈ D[[Q]]e ∧ r ∈ traces(R)

(3) u ∈ merge(p, xay,W ∪ X ∪ Y) ∧ p ∈ traces(P)
(4) ∃ u′, p′ : u′ ≤ u ∧ p′ ≤ p ∧ u′ ∈ merge(p′, x,W ∪X∪Y)

∧ p′ ∈ traces(P)
(merge-Prefix),
N2(P)

(5) ∃ u′, p′, q, r, x : u′ ≤ s ∧ u′ ∈ merge(p′, x,W ∪ X ∪ Y)
∧ x ∈ merge(q, r,W ∪ Z) ∧ p′ ∈ traces(P)
∧ q ∈ D[[Q]]e ∧ r ∈ traces(R)

(2), (4)

(6) ∃ u′, p′, q, r, z : u′ ≤ s ∧ u′ ∈ merge(r, z,W ∪ Y ∪ Z)
∧ z ∈ merge(p′, q,W ∪ X) ∧ r ∈ traces(R)
∧ p′ ∈ traces(P) ∧ q ∈ D[[Q]]e

(merge-Ass)

(7) s ∈ (rhs-Q) y = 〈 〉, (rhs-Q)

This completes the proof of part (ii). �

The proof of (iii) is similar and is omitted. Therefore, this completes the proof of part (a).

The proof of part (b) is similar and is omitted. Thus we have proved that the divergent sets of
both sides are equal as required.

B.3. Proof of Failure Set Equality

We need to prove the following:

F [[P||W∪X∪Y(Q||W∪ZR)]]e = F [[R||W∪Y∪Z(P||W∪XQ)]]e

Again the proof is split into the following two parts:

(a) (s,X) ∈ F [[P||W∪X∪Y(Q||W∪ZR)]]e ⇒ (s,X) ∈ F [[R||W∪Y∪Z(P||W∪XQ)]]e;
(b) (s,X) ∈ F [[R||W∪Y∪Z(P||W∪XQ)]]e ⇒ (s,X) ∈ F [[P||W∪X∪Y(Q||W∪ZR)]]e.

Only the proof of (a) is given since that of (b) is similar. To prove (a) we start by expand-
ing the lhs repeatedly using the definition of F [[P||ΩQ]]e:

F [[P||W∪X∪Y(Q||W∪ZR)]]e
= { (u,D ∪ E ∪ F) | ∃ p, x : D ⊆ W ∩ X ∩ Y ∧ E,F ⊆ W ∪ X ∪ Y

∧ u ∈ merge(p, x,W ∪ X ∪ Y) ∧ (p,D ∪ E) ∈ F [[P]]e
∧ (x,D ∪ F) ∈ F [[Q||W∪ZR]]e }

∪ { (u,D) | u ∈ D[[P||W∪X∪Y(Q||W∪ZR)]]e }

P.Howells and M.d’Inverno / Specifying and Analysing Networks of Processes in CSPT 183

Since the divergence sets were dealt with above we can ignore the second set.

= { (u,D ∪ E ∪ F) | ∃ p, q, r, x : D ⊆ W ∩ X ∩ Y ∧ E,F ⊆ W ∪ X ∪ Y
∧ D ∪ F = U ∪ V ∪M ∧ U ⊆ W ∩ Z
∧ V,M ⊆ W ∪ Z ∧ u ∈ merge(p, x,W ∪ X ∪ Y)
∧ x ∈ merge(q, r,W ∪ Z) ∧ (p,D ∪ E) ∈ F [[P]]e
∧ (q,U ∪ V) ∈ F [[Q]]e ∧ (r,U ∪M) ∈ F [[R]]e }

∪ { (u,D ∪ E ∪ F) | ∃ p, x : D ⊆ W ∩ X ∩ Y ∧ E,F ⊆ W ∪ Z
∧ u ∈ merge(p, x,W ∪ X ∪ Y) ∧ (p,D ∪ E) ∈ F [[P]]e
∧ x ∈ D[[Q||W∪ZR]]e ∧ D ∪ F ∈ P(Σ) }

Again the second set can be ignored because it is included in the previously discarded failure
set. The failure set for the rhs can be similarly expanded.

F [[R||W∪Y∪Z(P||W∪XQ)]]e
= { (u,D′ ∪ E′ ∪ F′) | ∃ p, q, r, z : D′ ⊆ W ∩ Y ∩ Z ∧ E′,F′ ⊆ W ∪ Y ∪ Z

∧ D′ ∪ F′ = U′ ∪ V ′ ∪M′ ∧ U′ ⊆ W ∩ X
∧ V ′,M′ ⊆ W ∪ X ∧ u ∈ merge(p, z,W ∪ Y ∪ Z)
∧ z ∈ merge(q, r,W ∪ X) ∧ (p,D′ ∪ E′) ∈ F [[P]]e
∧ (q,U′ ∪ V ′) ∈ F [[Q]]e ∧ (r,U′ ∪M′) ∈ F [[R]]e }

Now both sides have been completely expanded we can proceed with the proof.

(1) (s,G) ∈ F [[P||W∪X∪Y(Q||W∪ZR)]]e Assumption
(2) ∃ p, q, r, x,D,E,F,U,V,M : D ⊆ W ∩ X ∩ Y

∧ E,F ⊆ W ∪ X ∪ Y ∧ U ⊆ W ∩ Z
∧ V,M ⊆ W ∪ Z ∧ D ∪ F = U ∪ V ∪M
∧ G = D ∪ E ∪ F ∧ s ∈ merge(p, x,W ∪ X ∪ Y)
∧ x ∈ merge(q, r,W ∪ Z) ∧ (p,D ∪ E) ∈ F [[P]]e
∧ (q,U ∪ V) ∈ F [[Q]]e ∧ (r,U ∪M) ∈ F [[R]]e

(3) ∃ p, q, r, z,D,E,F,U,V,M : D ⊆ W ∩ X ∩ Y
∧ E,F ⊆ W ∪ X ∪ Y ∧ U ⊆ W ∩ Z
∧ V,M ⊆ W ∪ Z ∧ D ∪ F = U ∪ V ∪M
∧ G = D ∪ E ∪ F ∧ s ∈ merge(r, z,W ∪ Y ∪ Z)
∧ z ∈ merge(p, q,W ∪ X) ∧ (p,D ∪ E) ∈ F [[P]]e
∧ (q,U ∪ V) ∈ F [[Q]]e ∧ (r,U ∪M) ∈ F [[R]]e

(merge-Ass)

Since we have shown the existence of the traces required to satisfy the rhs, traces can be
ignored from now on. Therefore, all that remains to be shown is the existence of the failure
sets needed to satisfy the rhs, i.e. D′, E′, F′, U′, V ′ and M′. These can be defined in terms of
the failure sets of the lhs D, E, F, U, V and M since the traces are the same for both the lhs
and the rhs. So we define the required failure sets as follows:

U′ = ((U ∪ V) ∩W ∩ X ∩ Y) ∪ (V ∩W ∩ X ∩ Y ∩ Z) ∪ (E ∩W ∩ X ∩ Y)
V ′ = E ∩ (W ∪ X)
M′ = (U ∪ V) ∩ (W ∪ X)
D′ = (U ∩W ∩ Y ∩ Z) ∪ (E ∩W ∩ Y ∩ Z ∩ X)
E′ = (U ∩W ∩ Z ∩ Y) ∪ M
F′ = (U ∩ X ∩ Y) ∪ (V ∩ (W ∪ (X ∩ Y) ∪ (X ∩ Z))) ∪ (V ∩W ∩ X ∩ Z)

∪ (E ∩ (W ∪ (X ∩ Y) ∪ (X ∩ Z))) ∪ (E ∩W ∩ X ∩ Y)

It is clear from the definitions of these sets that they satisfy the rhs requirements.

184 P.Howells and M.d’Inverno / Specifying and Analysing Networks of Processes in CSPT

G = D′ ∪ E′ ∪ F′ ∧ D′ ⊆ W ∩ Y ∩ Z ∧ E′,F′ ⊆ W ∪ Y ∪ Z

∧ U′ ⊆ W ∩ X ∧ V ′,M′ ⊆ W ∪ X ∧ D′ ∪ F′ = U′ ∪ V ′ ∪M′

Proof is trivial and is omitted. Now all that remains to be shown is that these sets are in fact
refused by the relevant processes, that is prove each of the following:

(p,U′ ∪ V ′) ∈ F [[P]]e (q,U′ ∪M′) ∈ F [[P]]e (r,D′ ∪ E′) ∈ F [[R]]e

The proof of (p,U′ ∪ V ′) ∈ F [[P]]e is as follows:

(1) (p,D ∪ E) ∈ F [[P]]e Assumption
(2) (U ∪ V) ∩W ∩ X ∩ Y ⊆ D def. D
(3) (E ∩W ∩ X ∩ Y) ∪ (E ∩ (W ∪ X)) ⊆ E def. E
(4) (p, ((U ∪ V) ∩W ∩ X ∩ Y) ∪ (E ∩W ∩ X ∩ Y)

∪ (E ∩ (W ∪ X))) ∈ F [[P]]e
N3(P), (1),
(2), (3)

(5) (V ∩W ∩ X ∩ Y ∩ Z) ⊆ Z ⊆ A def. Z
(6) ∀ a ∈ (V ∩W ∩ X ∩ Y ∩ Z) : (pa〈a〉,∅) /∈ F [[P]]e def. Z
(7) (p,U′ ∪ V ′) ∈ F [[P]]e N4(P), (4), (6)

Notes: (5) means that the events in (V ∩W ∩ X ∩ Y ∩ Z) are outside the alphabet A of P, i.e.
are impossible for it. (6) states that in particular they are impossible after P has performed
the trace p.

The proofs of (q,U′ ∪ M′) ∈ F [[Q]]e and (r,D′ ∪ E′) ∈ F [[R]]e are similar, the sets of
impossible events for these are (E ∩W ∩ X ∩ Y) and (E ∩W ∩ Y ∩ Z ∩ X) respectively.

This concludes the proof of the failure sets equality. Therefore, we have proved that the
failure sets and divergence sets of both sides are equal, and hence, the two processes are
equivalent. This concludes the proof of the associativity law. �

