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Abstract. This paper is fundamentally a personal perspective on the sad state of High
Performance Computing (HPC, or what was known once as Supercomputing). It arises
from the author’s current experience in trying to find computing technology that will
allow codes to run faster: codes that have been painstakingly adapted to efficient per-
formance on parallel computing technologies since around 1990, and have allowed
effective 10-fold increases in computing performance at 5 year HPC up-grade inter-
vals, but for which the latest high-count multi-core processor options fail to deliver
improvement. The presently available processors may as well not have the majority of
their cores as to use them actually slows the code – hard-won budget must be squan-
dered on cores that will not contribute. The present situation is not satisfactory: there
are very many reasons why we need computational response, not merely throughput.
There are a host of cases where we need a large, complex simulation to run in a very
short time. A simplistic calculation based on the nominal performance of some of the
big machines with vast numbers of cores would lead one to believe that such rapid
computation would be possible. The nature of the machines and the programming
paradigms, however, remove this possibility. Some of the ways in which the computer
science community could mitigate the hardware shortfalls are discussed, with a few
more off the wall ideas about where greater compute performance might be found.
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Introduction

The point of parallel computing from an HPC (High Performance Computing) perspective
is to be able to solve bigger problems faster than can be achieved with a single processor –
this is about memory size and computing performance. It would be nice to be able to treat
the combination of parallel computer and parallel code as the ultimate in object orientation –
to add a new feature to the solver capability would be to add a new object. Sadly, this is not
how it works in practice. Despite superficial resemblances, networks of objects are not a good
match for networks of computers. Objects can interact in ways that are far more subtle and
complex than message passing over wires, even with our best (software engineering) efforts
to ensure low coupling. The result is almost the opposite of what is needed - to add a new
feature requires new, additional code to be integrated into the existing object code under the
current paradigm. Code maintenance and development, therefore, is seriously non-trivial - its
cost depends on the size of the whole system, not the size of the new feature. Furthermore,
obtaining good parallel computing performance and scalability to large numbers of cores is
very hard to achieve in the first place, and yet harder to maintain through cycles of code
development.

Hard as code performance is to get on large parallel machines, the hardware is becoming
finer grained and intrinsically less homogeneous as the HPC industry slavishly tries to keep
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up with what it thinks Moore’s law was, claiming to supply us with ever more processing
power via more and more cores on single silicon substrates. This is creating new problems:

1. Memory addressing for cores on a processor is different from that for separate pro-
cessors. In practice, this is even more complicated as will be described briefly later.

2. Often a different parallel approach and library is used for core to core communica-
tions to that for processor to processor – e.g. OpenMP for the first and MPI for the
second

3. Bandwidth and latency for communications is similarly different for the various lay-
ers.

This adds to the existing problem for the user of large parallel computers, that more
processors and cores does not necessarily make a given problem run faster, and in general
speed of solutions does not scale with number of cores – we cannot run a problem on a
bigger computer and expect it to run as much faster (if at all) as we might naively expect.
So a solution that might take 250 hours on 100 processors in the old currency will not run in
25 hours on 1000 cores or 2.5 hours on 10,000 cores, etc. In fact, we may find that without
completely rewriting the solver, and possibly rethinking the numerical approach, we cannot
speed up an existing problem at all. We might be able to run bigger problems, but not speed
up the existing range of problems. While being able to run bigger problems is important, we
also need to speed up the solution time. Yet, because of the interaction between processing
time and the amount of data to be communicated between parallel processes, and the fact
the individual cores are not contributing significantly to the continuing (apparent) increase
in processor performance, each problem size for a particular solver has a sweet spot in core
count where the performance is optimal, and above and below this core count the performance
drops off. We may be criticised for following a data-parallel route to parallelising our solvers,
but remember the earlier point – one of the driving reasons for using parallel computing is
the access to more memory – this is not merely nice to have, it is absolutely essential.

It is therefore, the combination of the microprocessor designers’ failing to comprehend
the real issues of multi-core, i.e. parallel processing, and the failure of the computer scientists
to offer a better programming paradigm that we can use that has led us to this position.

The present parallel computer hardware approach is wrong, but there are few options, so
we just have to make it work. There are three major hardware issues to overcome:

1. the inhomogeneity of the communications which makes it harder to get real perfor-
mance and requires special programming,

2. the contention between many cores trying to gain access to a single block of memory
with limited memory access bandwidth, and

3. the lack of reliable, high bandwidth, low latency, homogeneous interconnect.

Hand-in-hand with the failure of HPC platforms to deliver realisable computing per-
formance, knowledge in computer science (CSP [1,2,3,4,5], the π-calculus [6], occam [7,
8,9,10,11], etc.) has overtly not been adopted to attempt to mitigate the deficiencies in the
hardware – or failed equally spectacularly to be disseminated to users.

A real source of frustration is that we did have technology, both hardware and software
in the Transputer and occam, that with development over the intervening years since Inmos’
demise would/could have avoided these issues. Development of programming potential has
continued without a “good” hardware platform for implementation, and ignored by the HPC
industry at large. Good science has continued in a few special places, but funding sources
have not recognised the dangers lurking ahead and have failed to put sufficient priority and
resources in those special places. Now, the writing is on the wall for scalable general high
performance computing unless and until these issues are recognised and serious investment
can be focused here.
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1. Our Need for High Performance Computing (HPC)

HPC is increasingly being used in the Aerospace industry. Initially this has been in the risk
reduction of the design function to remove ineffective solutions and optimise towards a best
compromise. Aerodynamics and structural analysis were probably the areas where earliest
HPC effort was directed. In the late 1980s and early 90s, the HPC platform of choice was
the CRAY XMP followed by the YMP. These were multi-purpose, multi-user systems, set
up for very many, relatively small jobs, while electromagnetic (EM) simulations were large
jobs requiring the whole machine for periods of ten days and more at a time. This disjoint in
job pattern resulted in only one partial EM simulation ever being accomplished at that time.
From the early 1990s, it became feasible to do realistic electromagnetic simulations of light-
ning strikes to aircraft and their effect on coupling into aircraft systems cables. This became
feasible at that time because of the subject-dedicated affordable parallel computing offered
by Transputer technology followed by their emulation using consumer microprocessors.

One hundred and ninety two T800 processors provided equivalent performance to that
achievable from the Cray YMP, but as a machine dedicated to electromagnetics, and with a
single user provided the required access to long run times. With one more foray into shared
supercomputing resources which failed, we have maintained EM resources since those early
1990s with increases in compute performance of about a factor of 10 at each upgrade at 5
yearly intervals. It is a sad but true fact that these increments in performance of the computing
platform have been largely absorbed by more refinement in the representation of our aircraft,
in improvements in the modelling of features and materials, and improvements in the code
accuracy through better boundary conditions and switching from single to double precision.
Hence, while our present computer is about 10,000 times faster than the first, the same sim-
ulation now takes 3 days instead of 10, but with significantly improved accuracy. The new
technology and ideas growing from CSP and Transputer had opened up new opportunities on
which we were able to capitalise. But the HPC Industry were quite happy to let people think
everything was carrying on along the upward trend of ever-increasing computing power, even
though the achievable performance was rising more slowly or was static. We have now got to
a point where the technologies available actually cannot solve some large problems because
of lack of scaling.

Developments in-hand at the present will introduce increased requirements as we move
from Cartesian “sugar cube” discretisation of the problem and the space around it, to un-
structured, body-conforming cell models. Another development is to model the generation of
voltage arcs and thermal sparks when the very high lightning currents flow through joints in
carbon fibre composite (CFC) structures. This modelling work would increase the compute
time up to thousands of days without some acceleration techniques1, but even so may take
from 10 to 20 days per run on the next 10-fold upgrade in HPC power.

Installed antenna performance (IAP) modelling and electrostatic discharge (ESD) have
become, and high intensity radiated fields (HIRF) simulations are also becoming, part of the
virtual armoury with comparative problem sizes and run times, but which add to the overall
amount of computing required. See Table 1.

Table 1. Typical problem sizes in EM on current HPC.

Simulation Cells Time-Steps Run Time
Lightning & HIRF 150M to 600M 1M – 4M 1 – 4 days

ESD 4.6B 160k 4 – 5 days
IAP <12B <60k 1 day

1An adaptation of Holland’s method [12] for reducing the value of the speed of light to reduce the number of
time steps required to cover an elapsed electromagnetic interaction time.
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It should be noted that HPC procurements for this EM simulation purpose are always
done against a compute performance requirement, not a number of cores.

2. Opportunities that cannot be tapped

At present, the turn-around time for just the computing element of the simulations we do
(for instance) for lightning, when a significant airframe or system design change is proposed
(e.g. one that might change the performance of the lightning protection), is between 1 and
3 months2: that is, there is a solid one to three months of computing on an entire 512 core
computer. The latest processors improve on this marginally. Ideally, we would like to reduce
this by a factor of 10, not only to reduce delivery times on the results, but also to give us some
latitude for re-runs.

It is inevitable that we frequently choose sub-optimal solutions because we cannot eval-
uate multi-disciplinary trade-offs between the requirements for various design solutions. In
many cases, we “know” that a decision is wrong, but cannot offer the solid evidence. Sadly,
electromagnetic hazards are what we describe as “unwanted performance” issues and is con-
sidered more as a constraint on design than a driver. On the other hand, the low observability
and antenna installed performance issues are more “wanted performance” and are perceived
more positively. The ability to do good analysis very fast would enable us to provide solid
evidence quickly, and influence decisions more and more often and thus reach nearer opti-
mal solutions. Cost benefits would arise from this, especially if we could prevent eventual
re-design and re-work, which is exceptionally expensive.

However, there are many other opportunities, such as the use of virtual or augmented
reality, that would substantially reduce design, manufacturing and modification times and
costs, that we cannot reap advantage from as these would require near real-time simulations.
More processors/cores, beyond a limit, not only does not help, it starts to hinder. This cannot
be described as scalable computing.

3. EM Simulations on HPC Platforms

We have recently tested one of our major codes on a new parallel cluster based on AMD
16-core processors. Each node was equipped with a quantity of memory, and four processor
sockets. Each processor was made up of two pieces of silicon, each with 8 cores. Even on
a piece of silicon, the communications bandwidth was not uniform between all cores, and
that between cores on different silicon and between processors on the node were different
again. That between nodes was governed by the system interconnect, in this case, Infiniband
at 40GByte/s. This architecture is shown in Figure 1.

Even more recently, the code has been tested on different, single substrate, 8-core de-
vices. Figure 2 shows the effect on the number of iterations of the EM solver per hour by
using more cores rather than processors to solve a given problem. In each case 24 cores were
used, but using 2, 4 and 8 cores per processor on 12, 6 or 3 processors. Everything else re-
mained the same. Thus, more cores does not lead to greater performance. In fact, much of
the current HPC offerings may not be capable of delivering needed computing performance,
though many-core processors are an attractive option to those who pay for the space, cooling
and electricity consumption. The truth is, however, that if the computing power is needed,
the bills just have to be paid.

2This is likely to be about the limit of time available. Testing in these cases is not an option as it would require
an aircraft to be taken from the assembly line for a period of weeks for testing, and then requiring some degree
of refurbishment with consequences for increased cost and delays in delivery.
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Figure 1. Typical communication hierarchy on modern HPC. Each layer has different bandwidth and latency.
The concurrency programming model for layers 1, 2 and 3 is OpenMPI. For layer 4, it is MPI.

Figure 2. 24-core processing with various cores per processor.

This inhomogeneity introduces considerable complexity to understanding performance
issues and load-balancing for optimisation. It also, usually, imposes at least two programming
methods and libraries for message passing – OpenMP for inter-core/intra-node and MPI for
inter-node communications – which itself adds complexity to understanding the parallel po-
tential of processes and algorithms, as well as to implementation and maintenance, validation
and documentation.

When we started out to use what was then known as Massively Parallel Computing, to
run simulations of electromagnetic interactions, the introduction of Transputers was chang-
ing the world and offering affordable computer power of previously unavailable levels. This
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was transformative in that what had not been economically viable suddenly became emi-
nently realisable. At this time, the Transputer was thought of as the gateway to affordable
High Performance Computing (HPC). The Transputer’s role as a very good embedded de-
vice was a later and secondary consideration. occam was similarly considered. The demise
of the Transputer had the unwanted side-effect of side-lining occam as a mainstream HPC
programming language, which the developers of occam and its derivatives have been unable
to counter. This is part of the reason we are in the HPC pickle that we are in.

4. What is needed for usable, scalable HPC

First, we are not asking for parallel computing nirvana: we are not asking that our poorly
written serial codes should be able to run optimally on arbitrary parallel architectures and
HPC implementations, nor even that our well sculpted parallel codes should always run opti-
mally without some intervention. However, we should not have to implement multiple paral-
lel programming paradigms within a single code and revisit the code for every new compute
machine offered by the purveyors of hardware. We should certainly not have to abstract our
physics to alternative numerical algorithms to try and demonstrate that we can benefit from
HPC platform claims that they continue to adhere to Moore’s law.

It is worth noting here that our primary code was, 10-15 years ago, considered to be
embarrassingly parallel. It was originally written in Fortran, rewritten from the mathemat-
ical algorithms in occam and analysed using a CSP formal description. After the demise
of Transputer, the occam code was translated into Fortran with some parts written in C to
manage run-time array sizing. Since then there have been some minor modifications to opti-
mise its performance for Power PC, Compaq Alpha, AMD and Intel processors in array sizes
from 92 to 512 cores and increasing its performance in increments of approximately 10 times
every 5 years.

However, for the next HPC upgrade, while it is easy to find solutions that offer nominal
performance gains, it is somewhat harder to maintain the improvement in actual, delivered
performance running our codes on our data. In short, while a typical simulation currently
takes 3 days on 512 cores of five year old technology, it is hard to find a solution that will
run the same problem in any less time, let alone say 12 hours; and impossible to find one that
will solve the problem in 10 minutes or even 1 hour, no matter how much money might be
available to be spent on the computer. Ten minutes is perhaps too severe a requirement, but
surely, 1 hour is not. This is not scalable computing.

What I need is:

• occam or occam-like communications constructs3 embodied in Fortran or C/C++.
(Personally, I would prefer occam, but it is very hard to convince others to switch
from a programming language they have come to love – it is an emotional thing.)

• A smart means of launching parallel processes4, whether many of the same, some of a
number of varieties, or different from each other.

• Programming, profiling, performance monitoring and debugging tools.

Some will tell me straight away that I can have all of these things now, but that isn’t
really quite accurate. I am sure that I could have much of what I ask for in tools that I must
assemble and/or compile myself, and with no kind of support other than a personal telephone

3However, the constructs are not enough: an understanding of the underlying CSP process model (which does
not mean an understanding of CSP itself) together with an appreciation of the occam parallel security rules
concerning shared references and aliasing (automatically enforced by the occam compiler, but not by those for
the other languages) is also needed.

4Looking further to the future, an ability for the dynamic construction of process networks – i.e. not just at
start-up – may be useful.
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call to someone I happen to know. Actually, I work in industry where the software must pass
some formal stages of review to ensure it works, does what it is supposed to do, is supported
to assist those using it now and indefinitely into the future, and will transfer to or be available
on other hardware in case of disaster or replacement, etc...

Ideally, I would like hardware, or equivalent software implementation, that incorporates
programmable interconnect logic that allows a number of defined point-to-point links to be
established for a run-time, to remove the delays involved in arbitrary routing, plus the tools
to devise the routing plan and to program it.

Why are the computer science departments around the country not researching in these
areas? Why indeed do the most recent strategy reports [13,14] have nothing to say about
these aspects of the problem of high performance computing?

The above is by no means a complete wish list: other aspects of HPC that should be
seriously researched include:

1. Analogue computer co-processors and the language extensions to program them.
Analogue computers are a faster and a nearer exact means of modelling many physi-
cal phenomena. The means to create them should be more accessible now, with lower
noise and more stable operational amplifiers, than was the case in days of the great-
est interest in them (1950s and early 1960s). Imagine what could be programmed
with a large parallel array of conventional processors each with a digitally controlled
analogue computer.

2. FPGA co-processors and the language extensions to program them. This is not such a
pipe dream. Two such companies, AlphaData and Nallatech, have already contributed
to a significant computing capability of this type at Edinburgh’s EPCC. However,
when we wanted to consider the technology for our HPC role, our code could not be
benchmarked because of the difficulties in translating it to the different technology.
Either computing hardware is usable or fated to disappear. The potential benefits
of this approach are so significant, however, that more effort should be given to a
coherent processor/FPGA co-processor programming language extension.

5. Conclusion

HPC (or supercomputing) has become a poor relation in the computing world. It is appar-
ently not a large enough endeavour globally to command specific technology developments.
Instead, it hangs on the coat tails of the consumer, even the games market. HPC platforms
declare nominal performance from which few, if any, problems can possibly gain advantage
and even fewer will ever be able to invest in the coding to do it.

The really disappointing thing is that UK led the world into the parallel computing age,
both conceptually and practically. Short-sighted government and the computer industry let
that lead disappear, leaving the world to the HPC cul-de-sac in which we now find ourselves.
An extraordinary note is that we were aware of this at least as far back as 1995 and warned
ourselves and any who would listen, at the Crisis in HPC workshop [15,16,17]. That crisis is
upon us now.

Even so, the occam community still has some of the ingredients to mitigate the present
problems, but has mostly lain down and merely purred since the demise of the Transputer,
rather than boldly addressing the current issues. By all means carry on research into the
intricacies of pure occam-ite programming, but also have a good look at how this elegant
paradigm can be raised into useful functioning parallel computing tools despite the serious
shortcomings of the hardware world.
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