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� The Distributed Application Debugger is 
a debugging tool for parallel programs 

� Targets the MPI platform 
� Runs remotley even on private networks 
� Has record and replay features. 
� Integrates GDB 



� Results from survey of students learning 
parallel programming concluded 3 
things: 
•  1. Sequential errors are still frequent 
•  2. Message errors are time consuming 
•  3. Print statements are still used for debugging 



� Survey results categorized according to 
the domains of multilevel debugging 
•  Sequential errors 
•  Message errors 
•  Protocol errors 

� In addition to 
•  Data decomposition errors 
•  Functional decomposition errors 







� The Client 
•  The GUI interacting with the programmer 

� The Call Center 
•  A central messaging hub (running on the cluster) for  
�  Routing messages from the MPI program to The Client 
�  Routing commands from The Client to the MPI program 

� Bridges 
•  A relay application for passing data between The 

Client and The Call Center, when The Call Center is 
not directly accessible (cluster behind firewall) 

� The Runtime 
•  A libraries with wrapper code for the MPI functions 

(talks to The Call Center) 
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•  Client runs at home 
•  Bridges on the servers in between home 
  and the cluster 
•  Call Center on the cluster 
•  MPI processes on the cluster  
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� The user provides a connection path and 
credentials on all machines 



� The user provides a connection path and 
credentials on all machines 

� The system initiates SSH connections to 
each configured computer and launches 
a Bridge or The Call Center. 

� Each component then connects to each 
other via TCP. 





� Include a special mpi.h header file 
� MPI calls are caught by wrapper 

functions 
� Upon start up, each node creates a 

callback connection to The Call Center 
�  Data passed to MPI functions is sent 

back. 









An MPI session can be run in 3 modes: 
�  Play 

• Just run like regular MPI 
�  Record (Record all messages)  

• Record all messages 
�  Replay 

• Use recorded messages to play back  



� The Runtime behaves like regular MPI 
•  Nothing is saved to disk 
•  Nothing is read from disk 
•  Messages and parameters ARE sent back to The 

Client 



�  The Runtime  
•  Saves messages and parameters to a log file 
•  Executes the actual MPI call 
•  Saves the result  

 



�  The Runtime does not execute any real 
MPI calls. 
•  All data is supplied from log files. 
•  No actual communication takes place 
•  Guarantees the same run as when the log file 

was recorded 



� Mixed mode is special 
•  Some processes execute real MPI calls 
•  Some replay from log file 

�  Sometimes its necessary to execute MPI calls if  
communicating with someone who is executing real MPI 
calls; E.g. to avoid buffer overflow 

�  Validation is done on real values and log file values 



� The Runtime sends back 2 debugging 
messages per MPI command 
•  A PRE message indicating that an MPI command 

is about to be executed 
•  A POST message indicating that an MPI 

command completed 
� Console messages are routed per node 

to the appropriate window. 



� Debugging data gets displayed within 
the Console, Messages, or MPI tabs 



� The Console Tab displays anything that 
the user’s code wrote to stdout. 



�  The Messages Tab 
displays messages 
as they come  

�  Matches Send/
Receive pairs 
between nodes. 

�  Messages without a 
corresponding Send 
or Receive message 
get highlighted in 
red.  



� The MPI tab displays all 
MPI commands 
•  in the order they were executed 
•  along with their parameters. 

� Commands statuses 
(success, fail, or blocked) 
are displayed with icons in 
the Status Column. 





� Buffer values can 
be requested and 
inspected. 





� GDB can be 
attached to any 
node and controlled 
with the GDB 
Control Panel. 







� The source code to The Distributed 
Application Debugger can be found on 
GitHub at: 

�  https://github.com/mjones112000/
DistributedApplicationDebugger 




