
Michael Q. Jones & Matt B. Pedersen
University of Nevada Las Vegas

� The Distributed Application Debugger is
a debugging tool for parallel programs

� Targets the MPI platform
� Runs remotley even on private networks
� Has record and replay features.
� Integrates GDB

� Results from survey of students learning
parallel programming concluded 3
things:
•  1. Sequential errors are still frequent
•  2. Message errors are time consuming
•  3. Print statements are still used for debugging

� Survey results categorized according to
the domains of multilevel debugging
•  Sequential errors
•  Message errors
•  Protocol errors

� In addition to
•  Data decomposition errors
•  Functional decomposition errors

� The Client
•  The GUI interacting with the programmer

� The Call Center
•  A central messaging hub (running on the cluster) for
�  Routing messages from the MPI program to The Client
�  Routing commands from The Client to the MPI program

� Bridges
•  A relay application for passing data between The

Client and The Call Center, when The Call Center is
not directly accessible (cluster behind firewall)

� The Runtime
•  A libraries with wrapper code for the MPI functions

(talks to The Call Center)

Home
Firewall

Login Server
Cluster Login
Server

Cluster

Login from Home to Cluster not
Directly possible

Home
Firewall

Login Server
Cluster Login
Server

Cluster

•  Client runs at home
•  Bridges on the servers in between home
 and the cluster
•  Call Center on the cluster
•  MPI processes on the cluster

Client

MPI

Call
Center

Bridge

Bridge

MPI
MPI

MPI

� The user provides a connection path and
credentials on all machines

� The user provides a connection path and
credentials on all machines

� The system initiates SSH connections to
each configured computer and launches
a Bridge or The Call Center.

� Each component then connects to each
other via TCP.

� Include a special mpi.h header file
� MPI calls are caught by wrapper

functions
� Upon start up, each node creates a

callback connection to The Call Center
�  Data passed to MPI functions is sent

back.

An MPI session can be run in 3 modes:
�  Play

• Just run like regular MPI
�  Record (Record all messages)

• Record all messages
�  Replay

• Use recorded messages to play back

� The Runtime behaves like regular MPI
•  Nothing is saved to disk
•  Nothing is read from disk
•  Messages and parameters ARE sent back to The

Client

�  The Runtime
•  Saves messages and parameters to a log file
•  Executes the actual MPI call
•  Saves the result

�  The Runtime does not execute any real
MPI calls.
•  All data is supplied from log files.
•  No actual communication takes place
•  Guarantees the same run as when the log file

was recorded

� Mixed mode is special
•  Some processes execute real MPI calls
•  Some replay from log file

�  Sometimes its necessary to execute MPI calls if
communicating with someone who is executing real MPI
calls; E.g. to avoid buffer overflow

�  Validation is done on real values and log file values

� The Runtime sends back 2 debugging
messages per MPI command
•  A PRE message indicating that an MPI command

is about to be executed
•  A POST message indicating that an MPI

command completed
� Console messages are routed per node

to the appropriate window.

� Debugging data gets displayed within
the Console, Messages, or MPI tabs

� The Console Tab displays anything that
the user’s code wrote to stdout.

�  The Messages Tab
displays messages
as they come

�  Matches Send/
Receive pairs
between nodes.

�  Messages without a
corresponding Send
or Receive message
get highlighted in
red.

� The MPI tab displays all
MPI commands
•  in the order they were executed
•  along with their parameters.

� Commands statuses
(success, fail, or blocked)
are displayed with icons in
the Status Column.

� Buffer values can
be requested and
inspected.

� GDB can be
attached to any
node and controlled
with the GDB
Control Panel.

� The source code to The Distributed
Application Debugger can be found on
GitHub at:

�  https://github.com/mjones112000/
DistributedApplicationDebugger

