
Communicating Process Architectures 2013
P.H. Welch et al. (Eds.)
Open Channel Publishing Ltd., 2013
© 2013 The authors and Open Channel Publishing Ltd. All rights reserved.

217

The Distributed Application Debugger

Michael Quinn JONES 1 and Jan Bækgaard PEDERSEN

Department of Computer Science, University of Nevada, Las Vegas, NV, USA

Abstract In this paper we introduce a tool for debugging parallel programs which
utilize the popular MPI (message passing interface) C library. The tool is called The
Distributed Application Debugger and introduces distinct components around the code
being debugged in order to play, record, and replay sessions of the user’s code re-
motely. The GUI component incorporates the popular GDB debugger for stepping
through code line by line as it runs on the distributed cluster as well as an analysis tool
for stepping through the executed portions of code after the session has completed.
While the system is composed of multiple components, the logistics of coordinating
them is managed without user interaction; requiring the user only to provide the loca-
tion of the program to debug before starting.

Keywords. distributed, debugger, debugging, parallel, MPI, TCP

Introduction

Anyone who has developed software before will likely agree that bugs will be encountered
along the way. No matter how careful you are, logic errors, memory mismanagement, race
conditions, inaccurate execution path assumptions and a whole host of other issues will be
encountered from time to time. These issues are acceptable, understandable and expected
when designing software. As a result of the popularity of sequential programs, and the com-
mon understanding that debugging will always be part of their development, many excep-
tional debugging resources have been created to help the developer analyze and step through
sequential code.

Developing parallel programs which run on distributed computer clusters introduces ad-
ditional challenges to those present in traditional sequential programs. When debugging par-
allel programs, one needs to be able to inspect both the sequential code executing on each
node and track the flow of messages being passed back and forth between them in order to in-
fer where a problem actually lies. One such framework for distributed programming is called
MPI [1]. It stands for Message Passing Interface (MPI) and is a C library which utilizes the
power of distributing work across processors which communicate with each other by passing
messages.

The tool introduced in this paper, and described in greater detail in [2], known as The
Distributed Application Debugger, was developed to debug code which runs in parallel within
all versions of MPI including MPI-1, MPI-2, and MPI-3. Among other things, the tool gives
the user a centralized and organized space to examine the output of each node while being
able to also inspect and match the messages being passed between them. It provides them with
a way to not only replay a recorded session but also to halt a session in order to step through
each node’s execution while inspecting all the variables of a system. Finally, because clusters
of computers are often housed a universities or super computer centers around the world,

1Corresponding Author: Michael Quinn Jones, University of Nevada Las Vegas, 4505 Maryland Parkway,
Las Vegas, NV, 89154, United States of America. E-mail: mjones112000@gmail.com.

218 M. Jones and J.B. Pedersen / The Distributed Application Debugger

the tool is fundamentally structured to run remotely and behind any number of impeding
computer servers that needed to be logged into first before being able to access the actual
computer cluster.

1. Related Work and Motivation

The Distributed Application Debugger bases much of its foundation from two sets of related
work. First was the results from two surveys given to two different sets of graduate students at
the University of Nevada, Las Vegas over the course of two years. The purpose of the surveys
was in response to research by Pancake [3] who suggests that tools for parallel programming
and debugging are often found to be unhelpful for users because their developers do not
spend enough time trying to understand what the root problems that their users really need
addressed are. The surveys, reported in [4] and [5], attempted to classify bugs found by
students learning to program with MPI into 5 distinct categories. The first four categories
were based on the the Partitioning and Communication aspects of the parallel construction
model known as PCAM [6].

Partitioning deals with the task of partitioning both the data and functionality of the al-
gorithm being implemented. It can be further sub-categorized as Data Decomposition, which
covers developing code structured to deal with managing memory, modeling data structures
etc., and Functional Decomposition which deals with the organizational side of defining the
responsibilities of each node and establishing roles for architectures such as pipelining and
master/slave relationships. The second category, Communication, is the task of implementing
interprocess communication. It can also be broken down into two sub-categories: Messaging
which deals with correctly addressing individual send and receive calls between destination
and source nodes, and Protocol Specifications which deals with the overall communication
pattern.

The survey asked the students to report each time they encountered a bug while develop-
ing their projects for the semester. The bug report asked them to estimate the time they spent
on it and to classify it as a Data Decomposition, Functional Decomposition, Messaging, Pro-
tocol Specifications or a fifth category, Sequential, type bug. In both surveys, the Sequential
type, which deals with the traditional bugs found in sequential programs such as mistakes
with conditionals, method calls, pointers, pre and post conditions, and algorithm modeling to
name a few, made up the vast majority of bugs encountered while writing parallel programs
as displayed in Figure 1.

The second motivational related work were previous tools presented by Tribou [7] and
Basu [8]. These tools, built to debug PVM [9] and LAM-MPI [10] parallel programming
libraries respectively, both focus on debugging from a multilevel approach as introduced
in [11]. This approach focuses on allowing the user to first inspect the code from a Sequential
level by organizing print statements together by issuing node, as shown in Figure 12, and al-
lowing the user to attach GDB to their program as they would debug any sequential program.
Secondly, users are able to inspect their code from a Message level which allows users to
inspect data that was sent in a message and then compare it to the data that was received. Fi-
nally, the tool introduced a third level of debugging, the Protocol level which concerns itself
with the messaging system as a whole by matching send and receive pairs and alerting the
users when a message was not matched at all.

While the graduate student surveys and the tools introduced by Tribou and Basu influ-
enced the layout and features included in the Distributed Application Debugger, the need
for a new tool for debugging MPI programs became apparent when the results of the survey
of graduate students showed that most of their debugging was done using print statements.
Although commercial debuggers, described in Section 2, are available that can monitor dis-

M. Jones and J.B. Pedersen / The Distributed Application Debugger 219

Figure 1. Error classifications from a survey [5] of graduate students taking a parallel programming class.

tributed processes at the petascale level, research by [12] found that 80 percent of develop-
ers used less then 4 processes when debugging their code. With this in mind we felt that a
debugging tool focused on the common debugging needs of its target audience, rather than
on extreme scalability, could still be very effective. The tool consists of debugging messages,
detailed at great detail in [2], sent between the components detailed in Section 3. It includes
features allowing the users to play, record, and replay their code running in a distributed
system with a front end which allows them to analyze it in a sequential way.

2. Other Tools

The Open MPI Project’s frequently asked questions website [13] characterizes how to debug
applications running in parallel as a difficult question to answer. In their words

”Debugging in serial can be tricky: errors, uninitialized variables, stack smashing, ...
etc. Debugging in parallel adds multiple different dimensions to this problem: a greater
propensity for race conditions, asynchronous events, and the general difficulty of try-
ing to understand N processes simultaneously executing – the problem becomes quite
formidable.”

The project recommends two enterprise level debuggers, DDT (short for the Distributed
Debugging Tool) by Allinea Software [14] and TotalView by Rogue Wave Software [15], to
aid in the complicated task of debugging MPI programs. Because of this endorsement, we
felt that it was important to touch on some of their features and how they may be a better tool
of choice at times than the Distributed Application Debugger.

DDT and TotalView have many features in common. Both GUIs are very debugger-
centric in the way that the view is always focused on source code and the node specific
view is simply the line of the source code currently being executed for any specific node.
Because of this, other features, such as a graphical views of the messages being sent, are done
with pop up windows. The Distributed Application Debugger took great lengths to not have
views presented in pop ups so that the user is not tasked with juggling them. The Distributed
Application Debugger by contrast, is more of an analysis tool which integrates a debugging
feature when needed.

Both DDT and TotalView offer great features that allow inspection of the code at both
the process level and the thread level. They display their message stacks in graphical form,

220 M. Jones and J.B. Pedersen / The Distributed Application Debugger

whereas the Distributed Application Debugger displays its messages in tabular form. Also,
both not only are able to record and replay MPI sessions, but also allow the user to ’rewind’
a session, whereas the Distributed Application Debugger always goes forward. Most impres-
sively, they both can scale to over 100,000 processes which the Distributed Application De-
bugger would not be able to presently. This scalability comes with a large price, however,
with DDT costing over $600 for an academic or government workstation license, and To-
talView costing in the range of $1,000.00.

The Distributed Application Debugger’s strengths lie in its simplicity. It can be config-
ured to run remotely, and does not require any applications to be running on the remote ma-
chines prior to the session beginning. It copies, compiles and launches any component needed
in the communication line outlined in Figure 6 as part of its start-up process. It also leverages
the extremely popular and powerful GDB debugger with which most students are already
familiar. This cuts down on its learning curve and further assists the students in focusing on
their parallel programs as just a set of running sequential programs. The Distributed Appli-
cation Debugger’s layout presents a useful layout for viewing 2 or 3 nodes at a time because
their data are displayed side by side without have to switch between them, while DDT and
TotalView display the main code and require the user to request from which node they want
to see data. The Distributed Application Debugger’s weakness is in its scalability of process-
ing messages across many processes. The processing time for a sample program which dis-
tributed 800 messages across 8 nodes each passing 100 messages, for instance, took only 3
seconds to process. The processing time for the same sample program distributed between
80 nodes each passing just 10 messages, however, took 37 seconds.

Figures 2 and 3 display the main front end GUI for DDT and TotalView respectively.

Figure 2. The GUI display of Allinea Software’s DDT application.

3. Architecture

This section focuses on the architecture of the Distributed Application Debugger which is
broken into 4 distinct components focused on giving the ability to instantiate and debug MPI

M. Jones and J.B. Pedersen / The Distributed Application Debugger 221

Figure 3. The GUI display of Rogue Wave Software’s TotalView application.

programs remotely. The first of the components is a graphical user interface known as The
Client. The Client, displayed in Figure 4, allows the users to input their remote credentials,
instantiate a connection to a machine within a distributed cluster, and then initiate debugging
sessions on their parallel programs until they choose to disconnect from the cluster. Each
node of the distributed system conveys debugging data in its own panel which consists of a
Console tab displaying output to that node’s standard out, a Messages tab displaying all
sent and received messages by that node, and an MPI tab which displays every MPI command
run on that node along with its parameter values (as illustrated in Figure 5). More details
regarding the debugging information presented in these panels are described in Section 5.

Figure 4. A debugging session configured for two nodes with both displayed.

222 M. Jones and J.B. Pedersen / The Distributed Application Debugger

Figure 5. The extra information displayed in the Command Details panel of each node.

Figure 6. The system connected via TCP sockets.

The second and third components of the system are The Bridge and The Call Center
which are depicted in Figure 6. The Bridge is a relay component meant to move data without
inspecting it. The Bridge reads from one TCP port, the ’A’ side, and writes to a second TCP
port, the ’B’ side. It also reads from the ’B’ side and likewise writes what is read to the
’A’ side. It is important to note that The Bridge is not necessary in the case that the parallel
cluster is accessible directly from The Client but, in the case that the cluster is housed on a
machine whose network is not accessible publicly, becomes crucial in connecting The Client
to the cluster. The third component, The Call Center, however, is a crucial component in
order to make debugging possible. The Call Center is a program which runs outside of the
MPI system and must be run on a computer within the cluster. Its listens for commands
from The Client in order to start a debugging session, and is responsible for starting and
retrieving debugging sessions for The Client and relaying status information back to it. The
connection from The Client to the remote Call Center is done in a two step process. First,

M. Jones and J.B. Pedersen / The Distributed Application Debugger 223

Figure 7. Compile time changes made from including The Runtime’s mpi.h file.

after the user has supplied credentials of which machines to connect to (as shown in the
configuration section of Figure 4), The Client uses the order in which these credentials are
entered to SSH into each destination machine in sequence, copy component libraries to the
directory specified as the ’Transfer Directory’ in the configuration section, compile them
and then launch the appropriate component (Another Bridge or the Call Center). The last
destination gets the Call Center launched on it and all of the other ones get a Bridge. After
each of these nodes has either a Bridge or The Call Center running, The Client makes a TCP
connection to the first node, which makes a connection to the second node etc., until The
Client and The Call Center are connected via TCP either directly or through a sequence of
Bridges as illustrated in Figure 6.

The last component of the architecture is The Runtime. The Runtime is a C library that
redirects the user’s MPI code to a set of intermediary methods which connect back to the
Call Center and relay debugging information on behalf of the code being debugged. In order
to incorporate The Runtime, the user needs to include a local MPI header file that contains
macros which change the file’s MPI calls at compile time from the true MPI functions to The
Runtime’s methods (This is illustrated in Figure 7). When the user starts a new MPI debug-
ging session from The Client, The Bridges relay data to The Call Center, which launches an
MPI session and then relays debugging data from The Runtime as displayed in Figure 8. The
system’s Bridge and Call Center applications also clean themselves up upon detecting that
the program that they are reading from or the program that they are writing to has closed their
socket connections. This reliably helps the system close in series when the user disconnects
The Client from the session or if one of the components should crash.

It should be noted that the concept of each component cleaning itself up is one reason
why The Bridge component was developed to relay messages which could have essentially
been implemented by network administrators configuring port forwarding on their routers.
When The Client closes its TCP connection, each Bridge detects that its input connection
has closed and then properly closes their outgoing TCP connections in series until The Call
Center detects that its incoming TCP connection has closed and can then properly clean
itself up as well. If port forwarding has been used, when The Client closes its outgoing TCP

224 M. Jones and J.B. Pedersen / The Distributed Application Debugger

Figure 8. The system connected fully connected from The Client to the MPI nodes via The Call Center.

connection to an intermediary node, The Call Center would not get any more messages, but
also would not know that it had been disconnected, and thus not know that the session is over
and it should terminate itself.

4. Supported Commands

The Distributed Application Debugger does not support all of the 300 commands found
within the MPI library [16], but does support 12 core commands making analyzing the ini-
tializing, message passing, synchronizing and finalizing of a typical MPI program possible.
Table 1 lists the commands available for debugging within the Distributed Application De-
bugger along with their signatures.

Table 1. The MPI commands supported by the Distributed Application Debugger.

Command Description
MPI Init(int *argc, char ***argv) Initializes the MPI environment
MPI Comm rank(MPI Comm comm, int *rank) Determines the rank of the process in

the cluster
MPI Comm size(MPI Comm comm, int *size) Determines the size of the cluster
MPI Send(void *buf, int count, MPI Datatype datatype, int dest,
int tag, MPI Comm comm)

Performs a blocking send

MPI Recv(void *buf, int count, MPI Datatype datatype, int source,
int tag, MPI Comm comm, MPI Status *status)

Blocking receive for a message

MPI Isend(void *buf, int count, MPI Datatype datatype, int dest,
int tag, MPI Comm comm, MPI Request *request)

Begins a nonblocking send

MPI Irecv(void *buf, int count, MPI Datatype datatype, int source,
int tag, MPI Comm comm, MPI Request *request)

Begins a nonblocking receive

MPI Probe(int source, int tag, MPI Comm comm, MPI Status *sta-
tus)

Blocking test for a message

MPI Iprobe(int source, int tag, MPI Comm comm, int *flag,
MPI Status *status)

Nonblocking test for a message

MPI Wait(MPI Request *request, MPI Status *status) Waits for an MPI request to complete
MPI Barrier(MPI Comm comm) Blocks until all processes in the com-

municator have reached this routine.
int MPI Finalize(void) Terminates MPI execution environ-

ment.

M. Jones and J.B. Pedersen / The Distributed Application Debugger 225

5. Features

The Distributed Application Debugger introduces several features for inspecting data col-
lected from The Runtime. First a (debugging) session is run in one of three modes: PLAY,
RECORD, or REPLAY. PLAY is a standard MPI session in which The Runtime executes each line
of the real MPI code and sends back the line number, though without the source file name,
the parameters, and the result of each command run on each command.

Although one may think that PLAY mode would be the only mode necessary in order to
run the debugger in order to inspect results, research by Leblanc and Mellor-Crummey [17]
prompted us to add two other modes: RECORD and REPLAY. Leblanc and Mellor-Crummey il-
lustrated that since parallel programs often include nodes passing messages asynchronously,
that the execution behavior of a parallel program in response to a fixed input can be nonde-
terministic. Given this information we felt that it was crucial that the Distributed Application
Debugger be able to record the execution of an MPI session and allow the user to both in-
spect it by hand and replay it by re-executing the code. During RECORD, the Call Center runs
like it does in PLAY but also records an XML log file of all the data sent back to The Client
during the session (illustrated in Figure 10). The data contains the name of the RECORD ses-
sion, along with the number of nodes on which then program was executed, the host file used
(which nodes on the cluster participated in the execution), the location of the executable, and
the parameters passed to it. As seen in Figure 9, these recorded session are available to the
user and can be recalled to run in the third and most useful debugging mode, REPLAY.

Figure 9. The names of the recorded sessions available for replay.

Nodes run in REPLAY mode do not execute MPI commands, but rather reload the results
of each MPI command from the log files saved during a RECORD session. Running in REPLAY

mode has several advantages. First, while in REPLAY mode, the user is able to playback the
results of a session that has been recorded in exactly the same way as when it was executed
(and recorded) before. This feature becomes especially helpful for users who are investigating
exceptional cases which may be difficult to reproduce due to race conditions or other asyn-
chronous factors. Secondly, the user has the ability to run a ’mixed mode’ replay, in which
designated nodes actually invoke the MPI framework (and send and receive actual messages)
while the other nodes continue recalling their values from the log files. This allows the user
to systematically narrow down which node or nodes may be causing the error being investi-
gated. When a session is running in mixed mode replay, however, each node must consider
if it will just relay back the results from the recorded log file, or if it must execute the actual
MPI commands. As an example, the simple command MPI Comm size command does not
affect any other nodes and thus does not have to ever be issued to the real MPI framework
from a node running in REPLAY mode. MPI Recv, however, must consider if the sender is
replaying from a log file, or if it is a node that is invoking the real MPI framework. In the
case that they are both replaying, the results from the MPI Recv may just be read from the
log file and sent back to The Call Center. If, however, the sender is actually issuing real MPI
commands the receiving node must execute the MPI Recv command so that the buffers of
the MPI system do not fill up and cause the application to freeze. If a node running in REPLAY

226 M. Jones and J.B. Pedersen / The Distributed Application Debugger

<MPI SIZE rank =” 0 ” commandId=” 3 ” da teTime =”Mon Mar 04 0 8 : 5 5 : 1 5 2013 ”>
<p a r a m e t e r s>

<comm>1140850688</comm>
</ p a r a m e t e r s>
<r e t u r n v a l u e >0</ r e t u r n v a l u e >

</MPI SIZE>

<MPI SEND rank =” 0 ” commandId=” 4 ” da teTime =”Mon Mar 04 0 8 : 5 5 : 1 5 2013 ”>
<p a r a m e t e r s>

<buf>
<va lue >0</ va lue>
<va lue >−2147483648</ va lue>
<va lue >2147483647</ va lue>
<va lue >356456</ va lue>
<va lue >765</ va lue>
<va lue >68378376</ va lue>
<va lue >67787</ va lue>
<va lue >17636</ va lue>
<va lue >585356</ va lue>
<va lue >253636</ va lue>

</ buf>
<count >10</ count>
<d a t a t y p e >MPI INT</ d a t a t y p e >
<d e s t >1</ d e s t>
<t ag >10</ t ag>
<comm>1140850688</comm>

</ p a r a m e t e r s>
<r e t u r n v a l u e >0</ r e t u r n v a l u e >

</MPI SEND>

<MPI RECV rank =” 0 ” commandId=” 5 ” da teTime =”Mon Mar 04 0 8 : 5 5 : 1 5 2013 ”>
<p a r a m e t e r s>

<buf>
<va lue>H</ va lue>
<va lue>e</ va lue>
<va lue>l </ va lue>
<va lue>l </ va lue>
<va lue>o</ va lue>
<va lue> </ va lue>
<va lue>W</ va lue>
<va lue>o</ va lue>
<va lue>r </ va lue>
<va lue>l </ va lue>
<va lue>d</ va lue>
<va lue ></va lue>

</ buf>
<count >12</ count>
<d a t a t y p e >MPI CHAR</ d a t a t y p e >
<s r c >1</ s r c>
<t ag >10</ t ag>
<comm>1140850688</comm>
<s t a t u s >

<MPI SOURCE>1</MPI SOURCE>
<MPI TAG>10</MPI TAG>
<MPI ERROR>0</MPI ERROR>

</ s t a t u s >
</ p a r a m e t e r s>
<r e t u r n v a l u e >0</ r e t u r n v a l u e >

</MPI RECV>

Figure 10. A portion of the values recorded within a log file from a RECORD session.

M. Jones and J.B. Pedersen / The Distributed Application Debugger 227

Figure 11. A message for which no POST has been received.

mode does issue a real MPI command, it will compare the results of the command to that of
the values recorded in the log file: if a discrepancy is found, a warning will be relayed back
to The Client, which will display a special symbol in the Status column of the MPI tab (see
Figure 11).

Within each node’s ’node panel’, The Client organizes the debugging data sent back
from The Runtime among three distinct tabs: the Console tab, the Messages tab, and the MPI
tab. The Console tab displays a dedicated area for monitoring the standard out of each
node. This allows the user to use print statements when needed. Such output is presented in
the order which it was produced by the node. This is illustrated in Figure 12.

The Messages tab displays each message sent and received and matches sends and re-
ceived as shown in Figure 13. When the user is in RECORD or REPLAY mode, the Messages tab
also provides the option of recalling the buffer values which were sent or received in order to
further investigate the message content during the debugging session.

The MPI tab, which displays every MPI command executed during the session, shows
the order in which the MPI commands were executed while the code ran. An especially
useful detail featured on this tab is that The Runtime reports each MPI command with the
combination of a PRE message and a POST message. The PRE message indicates that an MPI
command is about to be executed and what parameters were passed to the method. When
the MPI command completes, The Runtime sends back a POST message which contains the
results of the MPI command. The MPI tab displays an entry for each PRE message received.
This informs the user about which MPI command is about to be executed, but the Status
will be shown as ’Incomplete’ until a corresponding POST message is received. This allows
a user who is debugging a program which is not completing, to view the line number and
parameters passed into the last command which started execution in order to investigate why
it did not finish (no POST message was ever received, so the MPI command never finished).

The Distributed Application Debugger offers two different types of filters to cut down
on the overwhelming amount of data that is present within each tab. The first type pertains to
identifying mismatched messages as described above. The messages tab offers a filter button,

, which removes all matched messages from the node’s messages tab. (A matched message

228 M. Jones and J.B. Pedersen / The Distributed Application Debugger

Figure 12. An MPI debugging session where GDB is attached to node 2.

Figure 13. Two nodes displaying automated message matching.

is a message for which The Client has received POST messages from both the sender and
receiver). Invoking this filter leaves the user with just the mismatched messages to investigate.
The second type is aimed at helping the user cut down on the number of commands displayed
within the Messages and MPI tabs. It is a drop-down which allows the users to check or
uncheck the commands that they want displayed within the tab (see Figure 14).

M. Jones and J.B. Pedersen / The Distributed Application Debugger 229

Figure 14. The MPI panel before and after a command filter was applied.

Figure 15. A Runtime node with an extra connection to the Call Center from GDB.

Finally, the Distributed Application Debugger incorporates the popular sequential com-
mand line debugging tool GDB [18]. The Client allows the user to attach GDB to any of the
running nodes regardless of the mode in which the session is running. When the Call Center
detects that a node is to be run with GDB, it instructs The Runtime to attach GDB to the
selected nodes through a series of process forkings, and then waits for an additional con-
nection back from the Bridging nodes controlling GDB. This is illustrated in Figure 15. The
Client can then supply command line instructions to the Call Center which will route these
commands to the Bridging Process controlling the GDB process. The Bridging Process then

230 M. Jones and J.B. Pedersen / The Distributed Application Debugger

writes the commands to the GDB’s stdin (standard in). The Call Center routes, in addition
to the standard data described, additional messages back from The Runtime. This additional
data is the stdout (standard out) from all GDB processes (which contains other debugging
data such as line numbers, variables’ values and breakpoint information) which The Client
can present to the user as displayed in Figure 12.

6. Conclusion

The Distributed Application Debugger has many features for debugging distributed MPI ap-
plications. It works remotely from home, even when the parallel cluster is not accessible di-
rectly. It graphically displays the nodes of a cluster in a way that represents both the sequen-
tial nature of the code being executing within each process, as well as the parallel nature of
the messages being passed between them. It reliably handles all of the messages which are
passed back within any given session to give valuable debugging data to the user about the
MPI commands that are starting and completing as well as all of the data being printed to
standard out. It offers features for recording and replaying MPI sessions which can help
programmers focus on a problem that may be hard to recreate. It offers buffer value inspec-
tion to aid in debugging common sequential bugs along with message matching to cut down
on the time for message error debugging. Finally it seamlessly integrates GDB to encourage
alternatives to inefficient print statements.

7. Future Work

Some work should be done to extend the number of commands supported by the Distributed
Application Debugger in the future. While the 12 commands it currently supports, presented
in Table 1, are a start, MPI programs which implement commands outside of this initial scope
will not get the full debugging features of the application at this time.

The next logical progression for the Distributed Application Debugger would be to inte-
grate a development environment within it to compliment its debugging features. Integrated
Development Environments (IDE), like Eclipse [19] or Microsoft Visual Studio [20] have
become very popular with developers as a place that they feel comfortable both developing
and debugging their programs in. In the current system, the user is expected to develop their
code as they would normally do so, and to attach the debugger when they encounter bugs
and need more data to resolve them. The system should offer a command line feature to take
advantage of the persistent SSH session maintained with the cluster so that the user could
add, update and delete file and directory names. In the future an interface with popular source
control software such as Subversion [21] would be useful as well to let users index the various
versions of their project files.

References

[1] Jack Dongarra. MPI: A Message Passing Interface Standard. The International Journal of Supercomputers
and High Performance Computing, 1994.

[2] Michael Q. Jones. The Distributed Application Debugger. M.Sc. Thesis, University of Nevada, Las Vegas,
United States, May 2013.

[3] Cherri M. Pancake. Why Is There Such a Mis-Match between User Need and Parallel Tool Production?
Keynote address, 1993 Parallel Computing System: A Dialog between Users and Developers., April 1993.

[4] Jan B. Pedersen. Classification of Programming Errors in Parallel Message Passing Systems. In Proceed-
ings of Communicating Process Architectures 2006 (CPA’06) IOS Press, September 2006.

[5] Jan B. Pedersen and Michael Q. Jones. Error Classifications for Parallel message Passing Programs: A
Case Study. Proceedings of Parallel and Distributed Processing techniques and Applications (PDPTA’12),
July 2012.

M. Jones and J.B. Pedersen / The Distributed Application Debugger 231

[6] Ian Foster. Designing and Building Parallel Programs: Concepts and tools for parallel software engineer-
ing. Addison Wesley, 1995.

[7] Erik H. Tribou. Millipede: A Graphical Tool for Debugging Distributed Systems with a Multilevel Ap-
proach. M.Sc. Thesis, University of Nevada, Las Vegas, United States, August 2005.

[8] Hoimonti Basu. Interactive Message Debugger for Parallel Message Passing Programs Using LAM-MPI.
M.Sc. Thesis, University of Nevada, Las Vegas, United States, December 2005.

[9] Parallel Virtual Machine, Oak Ridge National Laboratory. http: // www. csm. ornl. gov/ pvm , 2011.
[10] LAM/MPI Parallel Computing. http: // www. lam-mpi. org , 2012.
[11] Jan B. Pedersen. Multilevel Debugging of Parallel Message Passing Systems. PhD Thesis, University of

British Columbia, Vancouver, British Columbia, Canada, June 2003.
[12] Susanne M. Balle and Robert T. Hood. Global Grid Forum User Program Development Tools Survey.

Global Grid Forum, 2004.
[13] The Open MPI Project. FAQ: Debugging applications in parallel. http: // www. open-mpi. org/ faq/

?category= debugging , 2013.
[14] Allinea Software. DDT product page. http: // www. allinea. com/ products/ ddt , 2013.
[15] Rogue Wave Software. TotalView product page. http: // www. roguewave. com/ products/

totalview. aspx , 2013.
[16] Mathematics Argonne National Laboratory and Computer Science Division. Web pages for MPI Routines.

http: // www. mcs. anl. gov/ research/ projects/ mpi/ www/ www3 , 2013.
[17] Thomas J. Leblanc and John M. Mellor-Crummey. Debugging Parallel Programs with Instant Replay.

IEEE Transactions on Computers, April 1987.
[18] GDB - The GNU Debugger. http: // www. gnu. org/ directory/ gdb. html , 2013.
[19] The Eclipse Foundation. http: // www. eclipse. org/ , 2013.
[20] Microsoft Visual Studio. http: // msdn. microsoft. com/ vstudio/ , 2013.
[21] Apache Subversion. http: // subversion. apache. org , 2013.

232 M. Jones and J.B. Pedersen / The Distributed Application Debugger

