
ProcessJ: A Possible Future
of Process-Oriented Design

Jan Bækgaard Pedersen (UNLV)
Marc L. Smith (Vassar)

CPA-2013
25-28 August 2013

What do we have to do ….
�  Question: What do we have to do to

�  spread the word about/use of process oriented design?

�  make the experience more easily accessible?
�  convince the distributed programming community that it

actually is a good idea?
�  (This might include hostage taking)

�  Show that it can actually be used for HPC?

What do we have to do ….
�  Answer:

�  Easy to learn language with the right semantics
�  Syntax of a familiar language (business as usual)

�  Safer semantics (but you can’t do those bad things!)

�  Incorporation into online teaching tools
�  Accessible from anywhere

�  Easy to use in classrooms and teaching settings

�  Educational material
�  Finally someone will write “the book” (Peter?!)

�  Supporting course material (videos, …)

A B
Prog.

language Compiler Runtime

IDE/GUI Process
repo.

CSP
scripts

Notes

Learning
material

Books Lecture
material

Course
templates

Slides

Videos

Web tool
(teaching)

Te
ch

n
ic

al

E
d
u
ca

ti
on

al

A B
B uses A

A makes B

A B
B is based on A

Executable FDR
verifier

New parts

Existing
tools

Legends

Cloud
storage

A B
Prog.

language Compiler Runtime

IDE/GUI Process
repo.

CSP
scripts

Notes

Learning
material

Books Lecture
material

Course
templates

Slides

Videos

Web tool
(teaching)

Te
ch

n
ic

al

E
d
u
ca

ti
on

al

A B
B uses A

A makes B

A B
B is based on A

Executable FDR
verifier

New parts

Existing
tools

Legends

Cloud
storage

What should
these be?

New Language (again)
�  Why not just provide a library for C/Java?

�  C: Too general – let you do bad things on purpose
�  Pointers

�  Shared memory

�  …

�  Java/JVM: Threading model of runtime too coarse
�  Speed?

�  Those pesky objects with wait and notify….

�  If the programmer does not promise to behave
100% things will definitely go wrong.

�  Programmer must stick to the “CSP Model”

New Language (again)
�  Perhaps a new syntax with a pre-processor and a

source to source translator
�  A possibility – with some checking

�  New language might more easily achieve and
incorporate what we want
�  Integration of CSP generation

�  Might require a separate parser anyway

New Language (again)
�  New language with the whole package (and more)

�  “known” syntax (like Java-ish)

�  Has communication primitives with CSP semantics
�  Synchronous channel communication

�  Barriers

�  Alternations

�  Parallel composition

�  Mobility (pi-calculus)

�  Has C/Java semantics for all other sequential language
constructs

�  Has no shared memory abilities/pointers

�  Fast runtime system with multi-core scheduler

A B
ProcessJ
language

ProcessJ
compiler

Runtime
(ccsp)

IDE/GUI Process
repo.

CSP
scripts

Notes

Learning
material

Books Lecture
material

Course
templates

Slides

Videos

Web tool
(teaching)

Te
ch

n
ic

al

E
d
u
ca

ti
on

al

A B
B uses A

A makes B

A B
B is based on A

Executable FDR
verifier

New parts

Existing
tools

Legends

Cloud
storage

ProcessJ
language

ProcessJ
compiler

Runtime
(ccsp)

IDE/GUI Process
repo.

CSP
scripts

Notes

Learning
material

Books Lecture
material

Course
templates

Slides

Videos

Web tool
(teaching)

Te
ch

n
ic

al

E
d
u
ca

ti
on

al

Executable FDR
verifier

Cloud
storage

Education is Everything
�  Process-Oriented Design

�  We must teach it…

�  …if we want students to learn it

�  The longer we wait
�  The harder it is to teach
�  The harder it is to learn

�  The longer we wait
�  The less natural it feels
�  The lower our chance of success

Language is Everything
�  Forget about ProcessJ for a moment…

and programming languages

�  Programming languages Natural languages

�  The language we speak shapes our thoughts

�  Teach foreign languages too late

 children unlikely to become multilingual

Programming Language is
Everything

�  The language we learn to program in shapes how
we solve problems

�  Teach concurrent languages too late
students unlikely to become parallel programmers

�  We may say we care more about concurrency and
process-oriented design more than any language…

�  …but without an accessible process-oriented
language, concurrency remains inaccessible

The Wrong Debate(s)!
�  The CS Education community has been debating

the wrong things:
�  FP vs OOP ?

�  Objects first vs Objects early vs Objects later vs
Objects late ?

�  What about: Sequential vs Concurrent ?
�  The debate that hasn’t happened (yet!)

�  Institutional bias toward sequential!
�  We teach it like we learned it

Race[condition]ism!
�  Conventional wisdom:

�  Concurrency is hard!
�  Hard to write (from an ingrained sequential mindset)
�  Hard to test (too many possible interleavings!)
�  Hard to debug (Heisenbugs)

�  In short: Hard to reason about!

�  Conventional Wisdom is wrong!

�  CW applies to particular models of concurrency
�  Thread s and Locks with shared memory
�  Asynchronous message passing

Special Sequential Interests
�  Compositional blind spot!

�  Sequential composition (in Java or your favorite OOL)
�  Data composes (i.e., data structures)

�  Code composes (i.e., code blocks)

�  Data and Methods compose (i.e., classes)

�  Classes compose (i.e., packages/libraries)

�  Packages compose (i.e., frameworks)

�  Concurrent Composition?
�  Threads don’t compose group of threads

�  Asynchronous message passing larger collection
of objects and message buffers

Process-Oriented
Abstraction is Everything

�  Compositional / Concurrency Abstraction

�  Processes compose explicitly:
�  Sequentially

�  Parallel
�  Choice (alternation)

�  The composition of two or more processes is a
process! (which can in turn be further composed)

�  Reason about processes at an appropriate level of
abstraction (internal hiding)

Process-Oriented Design
Makes All the Difference

�  Lowest level processes are sequential
CSP, after all, stands for
Communicating Sequential Processes

�  Parallel composition is just another choice for
composition, alongside sequential (;) composition!

�  With the right language and syntax, Process-
Oriented design could be taught:
First?
Early?
Later?
Late?

The earlier the better—let’s not debate this!

ProcessJ is Everything

Timing is Everything
�  ACM/IEEE-CS Joint Task Force for Computing

Curricula. Computer Science Curricula 2013,
Ironman Draft
�  includes for the first time Parallel Programming in

the Core [undergraduate] Curriculum

�  new Knowledge Area (KA): Parallel and Distributed
Computing

�  Concurrency is no longer an elective topic!

Context is Everything
(from the Ironman draft)

“Parallel computing: Among the many changes to the Body
of Knowledge compared to previous reports is a new
Knowledge Area in Parallel and Distributed Computing. An
alternative structure for the Body of Knowledge would
place relevant topics in other Knowledge Areas: parallel
algorithms with algorithms, programming constructs in
software-development focused areas, multi-core design
with computer architecture, and so forth. We chose instead
to provide guidance on the essential parallelism topics in
one place. Some, but not all, curricula will likely have
courses dedicated to parallelism, at least in the near
term.”

From a Research
Perspective

NSF Call for Proposals:

 “New programming languages and language
mechanisms that support new computational
models, raise the level of abstraction, and lower the
barrier of entry for parallel and concurrent
programming. Parallel and concurrent languages
that have programmability, verifiability, and
scalable performance as design goals. Of particular
interest are languages that abstract away from the
traditional imperative programming model found in
most sequential programming languages.”

ProcessJ
language

ProcessJ
compiler

Runtime
(ccsp)

IDE/GUI Process
repo.

CSP
scripts

Notes

Learning
material

Books Lecture
material

Course
templates

Slides

Videos

Web tool
(teaching)

Te
ch

n
ic

al

E
d
u
ca

ti
on

al

Executable FDR
verifier

Cloud
storage

Support is Everything
�  We must help make it easier for faculty to consider

adopting Process-Oriented Design in their courses

�  The Web Tool will be the portal to supporting
materials, including
�  Learning material: notes, book(s), lectures
�  Course templates
�  Slides and videos

ProcessJ
language

ProcessJ
compiler

Runtime
(ccsp)

IDE/GUI Process
repo.

CSP
scripts

Notes

Learning
material

Books Lecture
material

Course
templates

Slides

Videos

Web tool
(teaching)

Te
ch

n
ic

al

E
d
u
ca

ti
on

al

Executable FDR
verifier

Cloud
storage

ProcessJ Language
�  ProcessJ has Java-like syntax

�  Without objects

�  With records and arrays
�  CSP primitives:

�  Synchronous channels

�  Alternation

�  Barriers

�  Protocols

�  ….

�  All the good stuff we know from occam

ProcessJ Language
�  Java like statements for while, do, for etc.

�  with Java/C semantics

�  Channel communication, alternation etc.
�  with CSP semantics

�  Process Mobility
�  pi-calculus
�  Polymorphic resumption interfaces

ProcessJ Example
proc void Producer (chan<int>.write out) {
 int x = 42;
 while (true) {
 while (x < 1000) {
 out.write (x);
 x++;
 }
 while (x > 0) {
 out.write (x);
 x--;
 }
}

ProcessJ Example
proc void Producer (chan<int>.write out) {
 int x = 42;
 while (true) {
 while (x < 1000) {
 out.write (x);
 x++;
 }
 while (x > 0) {
 out.write (x);
 x--;
 }
}

Writing end of a channel
carrying integers;
named out.

ProcessJ Example
proc void Producer (chan<int>.write out) {
 int x = 42;
 while (true) {
 while (x < 1000) {
 out.write (x);
 x++;
 }
 while (x > 0) {
 out.write (x);
 x--;
 }
}

Write the value of x to
the channel out.

ProcessJ Example
proc void Producer (chan<int>.write out) {
 int x = 42;
 while (true) {
 while (x < 1000) {
 out.write (x);
 x++;
 }
 while (x > 0) {
 out.write (x);
 x--;
 }
}

ProcessJ Example
proc void Monitor (chan<int>.read in) {
 int last = in.read ();
 while (true) {
 int x;
 x = in.read ();
 if (x == last) {
 ... system failure detected
 }
 last = x;
 }
}

ProcessJ Example
proc void Monitor (chan<int>.read in) {
 int last = in.read ();
 while (true) {
 int x;
 x = in.read ();
 if (x == last) {
 ... system failure detected
 }
 last = x;
 }
}

Reading end of a channel
carrying integers;
named in.

ProcessJ Example
proc void Monitor (chan<int>.read in) {
 int last = in.read ();
 while (true) {
 int x;
 x = in.read ();
 if (x == last) {
 ... system failure detected
 }
 last = x;
 }
}

Reading from the
channel named in

ProcessJ Example
proc void Monitor (chan<int>.read in) {
 int last = in.read ();
 while (true) {
 int x;
 x = in.read ();
 if (x == last) {
 ... system failure detected
 }
 last = x;
 }
}

ProcessJ Example
proc void main() {
 chan<int> c;
 par {
 Producer (c.write);
 Monitor (c.read);
 }
}

ProcessJ Example
proc void main() {
 chan<int> c;
 par {
 Producer (c.write);
 Monitor (c.read);
 }
}

Declare a channel
carrying integers

ProcessJ Example
proc void main() {
 chan<int> c;
 par {
 Producer (c.write);
 Monitor (c.read);
 }
}

In parallel run
Producer and
Monitor

ProcessJ Example
proc void main() {
 chan<int> c;
 par {
 Producer (c.write);
 Monitor (c.read);
 }
}

ProcessJ Example

proc void main() {
 chan<int> c;
 par {
 Producer (c.write);
 Monitor (c.read);
 }
}

proc void Producer (chan<int>.write out) {
 int x = 42;
 while (true) {
 while (x < 1000) {
 out.write (x);
 x++;
 }
 while (x > 0) {
 out.write (x);
 x--;
 }
}

proc void Monitor (chan<int>.read in) {
 int last = in.read ();
 while (true) {
 int x;
 x = in.read ();
 if (x == last) {
 ... system failure detected
 }
 last = x;
 }
}

ProcessJ
language

ProcessJ
compiler

Runtime
(ccsp)

IDE/GUI Process
repo.

CSP
scripts

Notes

Learning
material

Books Lecture
material

Course
templates

Slides

Videos

Web tool
(teaching)

Te
ch

n
ic

al

E
d
u
ca

ti
on

al

Executable FDR
verifier

Cloud
storage

ProcessJ Compiler
�  New compiler written in C/C++ using the CCSP

runtime.

�  Other back ends:
�  JavaScript for online teaching tool
�  MPI

�  Generates CSP-M for FDR 3 (;-)) checking

ProcessJ
language

ProcessJ
compiler

Runtime
(ccsp)

IDE/GUI Process
repo.

CSP
scripts

Notes

Learning
material

Books Lecture
material

Course
templates

Slides

Videos

Web tool
(teaching)

Te
ch

n
ic

al

E
d
u
ca

ti
on

al

Executable FDR
verifier

Cloud
storage

GUI for ProcessJ
�  Process oriented programming is well suited for

graphical programming
�  Processes are nodes

�  Channels are arcs

�  Processes can consist of other processes which
can consist of other processes etc.
�  Processes are building blocks for other processes
�  We have a “Lego” catalogue of well known processes
�  Code reuse is as easy as drag and drop (and connect

external channels)

GUI for ProcessJ
�  GUI should integrate into

�  Process repository

�  Online Cloud Storage

�  GUI should produce CSP based on process layout
�  And perhaps also documentation

�  Visual occam is a graphical programming interface
(M.Sc. Thesis project) – proof of concept.
�  Works for occam
�  Written in Java

GUI – Visual occam

ProcessJ
language

ProcessJ
compiler

Runtime
(ccsp)

IDE/GUI Process
repo.

CSP
scripts

Notes

Learning
material

Books Lecture
material

Course
templates

Slides

Videos

Web tool
(teaching)

Te
ch

n
ic

al

E
d
u
ca

ti
on

al

Executable FDR
verifier

Cloud
storage

ProcessJ Process
Repository

�  Like the Apple App Store, but with source
�  Free ;-)

�  For developers/programmers

�  ProcessJ code can be shared
�  Annotated with CSP assertions certificate

�  Deadlock free, livelock free, ..

�  Programmer generated assertions

�  Example code for use can be associated

ProcessJ
language

ProcessJ
compiler

Runtime
(ccsp)

IDE/GUI Process
repo.

CSP
scripts

Notes

Learning
material

Books Lecture
material

Course
templates

Slides

Videos

Web tool
(teaching)

Te
ch

n
ic

al

E
d
u
ca

ti
on

al

Executable FDR
verifier

Cloud
storage

Cloud Storage
�  Online storage of ProcessJ code / CSP

�  Accessible through
�  Web interface (ProcessJ website)

�  GUI

�  Online Teaching Tool

�  Integrating well known storage sites like
�  GitHub

�  Google Drive

�  Dropbox

ProcessJ
language

ProcessJ
compiler

Runtime
(ccsp)

IDE/GUI Process
repo.

CSP
scripts

Notes

Learning
material

Books Lecture
material

Course
templates

Slides

Videos

Web tool
(teaching)

Te
ch

n
ic

al

E
d
u
ca

ti
on

al

Executable FDR
verifier

Cloud
storage

ProcessJ Online Teaching
Tool

�  Web tool (massive open online course)
�  Written in HTML 5

�  Contains
�  ProcessJ editor

�  Cloud Storage access

�  Process Repository access

�  Compilation done remotely – execution done locally
�  Remote compiler returns JavaScript and a JavaScript

CSP runtime.

�  Integrates teaching materials
�  Notes, videos, etc (like codingbat etc.)

ProcessJ Online Teaching
Tool

Aliasing Issues
�  Data structures for creating graphs etc are

important
�  If you can’t do what you normally do in the language no

one wants it!

�  Parallel usage checking might be hard (impossible)
to do at compile time

�  Maybe offer runtime checking (expensive, but if you want
all the bells and whistles, it will cost you!)

�  ????

Us and Them
(The Environment)

�  Paper arose from an NSF proposal (that did not get
funded) seeking

 “New programming languages and language mechanisms that support new
computational models, raise the level of abstraction, and lower the barrier of entry
for parallel and concurrent programming. Parallel and concurrent languages that
have programmability, verifiability, and scalable performance as design goals. Of
particular interest are languages that abstract away from the traditional imperative
programming model found in most sequential programming languages.”

�  Some of the comments might give an insight into what
‘they’ think
�  Shows us what the computing community thinks about

process oriented design
�  Might help us devise different strategies

Us and Them
(The Environment)

�  “At times, the proposal is talking about CSP as a
panacea. Unfortunately, this (in my opinion) reveals
ignorance of the richness of both the problem
space (types of applications) and the solution
space (known models for parallel or concurrent
computation), and thus undermines the credibility
of success. For example, try writing a well-
performing parallel matrix multiplication in CSP.”

Us and Them
(The Environment)

�  Matrix multiplication: 
 
for (i=0 ; i<n; i++) {  
 for (j=0; j<n; j++) {  
 C[i][j] = 0;  
 for (k=0; k<n; k++) {  
 C[i][j] += A[i][j]*B[j][k];  
 }  
 }  
}"

Us and Them
(The Environment)

�  ProcessJ parallel matrix multiplication: 
 
par for (i=0 ; i<n; i++) {  
 par for (j=0; j<n; j++) {  
 C[i][j] = 0;  
 for (k=0; k<n; k++) {  
 C[i][j] += A[i][j]*B[j][k];  
 }  
 }  
}"

�  Or a systolic array of n*n processes

Us and Them
(The Environment)

�  “The inclusion of a graphical interface / IDE is a
nice idea, but orthogonal as a research problem.

�  “Graphical IDEs have been around forever, but have
never made it beyond the fringe. They tend to
survive only if supported by a monopolistic
proprietary owner.”
�  This shows a lack of understanding of the power of

programming-by-picture and the importance of
composability.

�  Learning curve cannot be too high (for the GUI)

�  Used in VLSI for decades!

Us and Them
(The Environment)

�  “Can’t you just use Google’s Go?”

Us and Them
(The Environment)

�  “Can’t you just use Google’s Go?”

�  Talk amongst yourselves;
I’ll give you a topic:

 “The future of Process Oriented Programming”

�  Discuss!!!

