
An Evaluation of Intel’s Restricted
Transactional Memory for CPAs

Communicating Process Architectures 2013

Fred Barnes

School of Computing, University of Kent, Canterbury

F.R.M.Barnes@kent.ac.uk

http://www.cs.kent.ac.uk/~frmb/

Contents

Intel’s new instructions (TSX).

what we get and how to use it.

Motivation.

Transactions and transactional memory.

Introduction

Intel’s New Processor Extensions

Intel’s latest processor microarchitecture, Haswell, adds
Transactional Synchronization Extensions (TSX).

Hardware Lock Elision (HLE).
Restricted Transactional Memory (RTM).

HLE provides two new instruction prefixes.

intended for use with existing exclusive lock type code.

RTM provides four new instructions.

a fairly powerful mechanism, but limited to the latest Intel CPUs
(and not the ‘K’ variety yet).

Introduction

Intel’s New Processor Extensions

Intel’s latest processor microarchitecture, Haswell, adds
Transactional Synchronization Extensions (TSX).

Hardware Lock Elision (HLE).
Restricted Transactional Memory (RTM).

HLE provides two new instruction prefixes.

intended for use with existing exclusive lock type code.

RTM provides four new instructions.

a fairly powerful mechanism, but limited to the latest Intel CPUs
(and not the ‘K’ variety yet).

Introduction

Intel’s New Processor Extensions

Intel’s latest processor microarchitecture, Haswell, adds
Transactional Synchronization Extensions (TSX).

Hardware Lock Elision (HLE).
Restricted Transactional Memory (RTM).

HLE provides two new instruction prefixes.

intended for use with existing exclusive lock type code.

RTM provides four new instructions.

a fairly powerful mechanism, but limited to the latest Intel CPUs
(and not the ‘K’ variety yet).

Introduction

Motivation

For a long time (prior to Haswell) the amount of memory that could
be atomically manipulated on x86 was limited to a single word (32
or 64 bits).

the most complex being compare-and-swap.
other platforms provide things like load-linked, store-conditional.

This has contributed to the development of:

entire classes of non-blocking wait-free and lock-free
algorithms [1, 2].
programs (multi-threaded or interrupt-driven) need to modify state
in a consistent way — e.g. chunks of linked data structures.

Perhaps an argument that global linked data structures are not the
best approach:

CPAs would advocate a process that encapsulates this state; other
processes interact via channels (issues: contention, interrupts).
The ideal fix is possibly an educational one, but as long as people use
sequential procedural languages on multicore, we have to live with it.

Introduction

Motivation

For a long time (prior to Haswell) the amount of memory that could
be atomically manipulated on x86 was limited to a single word (32
or 64 bits).

the most complex being compare-and-swap.
other platforms provide things like load-linked, store-conditional.

This has contributed to the development of:

entire classes of non-blocking wait-free and lock-free
algorithms [1, 2].
programs (multi-threaded or interrupt-driven) need to modify state
in a consistent way — e.g. chunks of linked data structures.

Perhaps an argument that global linked data structures are not the
best approach:

CPAs would advocate a process that encapsulates this state; other
processes interact via channels (issues: contention, interrupts).
The ideal fix is possibly an educational one, but as long as people use
sequential procedural languages on multicore, we have to live with it.

Introduction

Motivation

For a long time (prior to Haswell) the amount of memory that could
be atomically manipulated on x86 was limited to a single word (32
or 64 bits).

the most complex being compare-and-swap.
other platforms provide things like load-linked, store-conditional.

This has contributed to the development of:

entire classes of non-blocking wait-free and lock-free
algorithms [1, 2].
programs (multi-threaded or interrupt-driven) need to modify state
in a consistent way — e.g. chunks of linked data structures.

Perhaps an argument that global linked data structures are not the
best approach:

CPAs would advocate a process that encapsulates this state; other
processes interact via channels (issues: contention, interrupts).
The ideal fix is possibly an educational one, but as long as people use
sequential procedural languages on multicore, we have to live with it.

Introduction

Transactions and Transactional Memory

The concept of a transaction has been around for a long time.

probably since humans started interacting with each other.
but databases are where we see them most obviously.

In the DB context, four principles [3]:

atomicity: seen to happen as a single thing.
consistency: preserve system invariants.
isolation: non-interfering in other transactions.
durability: be persistent once committed.

For ourselves (system developers in general) most interested in
atomicity and consistency.

Introduction

Transactions and Transactional Memory

The concept of a transaction has been around for a long time.

probably since humans started interacting with each other.
but databases are where we see them most obviously.

In the DB context, four principles [3]:

atomicity: seen to happen as a single thing.
consistency: preserve system invariants.
isolation: non-interfering in other transactions.
durability: be persistent once committed.

For ourselves (system developers in general) most interested in
atomicity and consistency.

Introduction

Transactions and Transactional Memory

The concept of a transaction has been around for a long time.

probably since humans started interacting with each other.
but databases are where we see them most obviously.

In the DB context, four principles [3]:

atomicity: seen to happen as a single thing.
consistency: preserve system invariants.
isolation: non-interfering in other transactions.
durability: be persistent once committed.

For ourselves (system developers in general) most interested in
atomicity and consistency.

Introduction

Transactions and Transactional Memory

Transactional memory ideas have been around for a while:

First described by Herlihy and Moss in 1993 [4].
Some specialised hardware support appeared: IBM’s BlueGene/Q
and Sun Rock processors.

In the meantime, software transactional memory (STM) gained
some momentum.

providing better programming abstractions to manipulate shared
memory safely.
implementations in Haskell and (perhaps experimental) in Java.

Issues with STM: performance guarantees..

Introduction

Transactions and Transactional Memory

Transactional memory ideas have been around for a while:

First described by Herlihy and Moss in 1993 [4].
Some specialised hardware support appeared: IBM’s BlueGene/Q
and Sun Rock processors.

In the meantime, software transactional memory (STM) gained
some momentum.

providing better programming abstractions to manipulate shared
memory safely.
implementations in Haskell and (perhaps experimental) in Java.

Issues with STM: performance guarantees..

Introduction

Transactions and Transactional Memory

Transactional memory ideas have been around for a while:

First described by Herlihy and Moss in 1993 [4].
Some specialised hardware support appeared: IBM’s BlueGene/Q
and Sun Rock processors.

In the meantime, software transactional memory (STM) gained
some momentum.

providing better programming abstractions to manipulate shared
memory safely.
implementations in Haskell and (perhaps experimental) in Java.

Issues with STM: performance guarantees..

Introduction

Software Transactional Memory

Illustration: (what the programmer wants to write)

breaks horribly in an unsafe threaded environment.
solutions: add a lock (heavy or light).

What we really want to say is: do this atomically.

which is what STM provides (in theory).

Introduction

Software Transactional Memory

Illustration: (what the programmer wants to write)

void add to list (list t **lptr, list t *itm)
{

if (*lptr) {
(*lptr)->prev = itm;
itm->next = *lptr;

}
*lptr = itm;

}

breaks horribly in an unsafe threaded environment.
solutions: add a lock (heavy or light).

What we really want to say is: do this atomically.

which is what STM provides (in theory).

Introduction

Software Transactional Memory

Illustration: (what the programmer wants to write)

void add to list (list t **lptr, list t *itm)
{

if (*lptr) {
(*lptr)->prev = itm;
itm->next = *lptr;

}
*lptr = itm;

}

breaks horribly in an unsafe threaded environment.
solutions: add a lock (heavy or light).

What we really want to say is: do this atomically.

which is what STM provides (in theory).

Introduction

Software Transactional Memory

Illustration: (what the programmer wants to write)

void add to list (list t **lptr, list t *itm)
{

if (*lptr) {
(*lptr)->prev = itm;
itm->next = *lptr;

}
*lptr = itm;

}

lock t *list lock = create lock();

claim lock (list lock);

release lock (list lock);

breaks horribly in an unsafe threaded environment.
solutions: add a lock (heavy or light).

What we really want to say is: do this atomically.

which is what STM provides (in theory).

Introduction

Software Transactional Memory

Illustration: (what the programmer wants to write)

void add to list (list t **lptr, list t *itm)
{

if (*lptr) {
(*lptr)->prev = itm;
itm->next = *lptr;

}
*lptr = itm;

}

lock t *list lock = create lock();

claim lock (list lock);

release lock (list lock);

breaks horribly in an unsafe threaded environment.
solutions: add a lock (heavy or light).

What we really want to say is: do this atomically.

which is what STM provides (in theory).

Introduction

Software Transactional Memory

Illustration: (what the programmer wants to write)

void add to list (list t **lptr, list t *itm)
{

if (*lptr) {
(*lptr)->prev = itm;
itm->next = *lptr;

}
*lptr = itm;

}

atomic {

}

breaks horribly in an unsafe threaded environment.
solutions: add a lock (heavy or light).

What we really want to say is: do this atomically.

which is what STM provides (in theory).

Introduction

Software Transactional Memory

Nice idea in theory, but does not scale well.

in Moss’ “open nested transactions” (Java), some amount of effort
to avoid infinite retry.
not a totally correct solution either (but close!).

Can imagine how it works:

1 make a record of any shared memory state that is read inside the
‘atomic’ block.

2 execute the transaction, putting writes in a buffer (not changing the
global shared state).

3 at the end of the transaction, check all the things we read in step 1;
if the same (modulo changes in step 2) commit the changes
en-masse (locking required), else redo from start.

This sort of strategy cannot see A→ B → A changes.

could fix, but heading towards something which is significantly more
expensive and inconvenient than the locks we were trying to avoid in
the first place!

Introduction

Software Transactional Memory

Nice idea in theory, but does not scale well.

in Moss’ “open nested transactions” (Java), some amount of effort
to avoid infinite retry.
not a totally correct solution either (but close!).

Can imagine how it works:

1 make a record of any shared memory state that is read inside the
‘atomic’ block.

2 execute the transaction, putting writes in a buffer (not changing the
global shared state).

3 at the end of the transaction, check all the things we read in step 1;
if the same (modulo changes in step 2) commit the changes
en-masse (locking required), else redo from start.

This sort of strategy cannot see A→ B → A changes.

could fix, but heading towards something which is significantly more
expensive and inconvenient than the locks we were trying to avoid in
the first place!

Introduction

Software Transactional Memory

Nice idea in theory, but does not scale well.

in Moss’ “open nested transactions” (Java), some amount of effort
to avoid infinite retry.
not a totally correct solution either (but close!).

Can imagine how it works:

1 make a record of any shared memory state that is read inside the
‘atomic’ block.

2 execute the transaction, putting writes in a buffer (not changing the
global shared state).

3 at the end of the transaction, check all the things we read in step 1;
if the same (modulo changes in step 2) commit the changes
en-masse (locking required), else redo from start.

This sort of strategy cannot see A→ B → A changes.

could fix, but heading towards something which is significantly more
expensive and inconvenient than the locks we were trying to avoid in
the first place!

Hardware

Technical Detail

The RTM extensions provide four new instructions:
XBEGIN: initiates a transaction.

pointer to a fallback handler is given.
also valid with a transaction, permitting nesting.

XEND: completes a transaction, flushing changes to memory (if top).
XABORT: aborts the current transaction (with failure code for fallback
handler).
XTEST: updates status register to allow conditional branch to test for
“in transaction”.

Hardware

Restrictions

Because this is restricted transaction memory, some limitations:

X87 FP and MMX instructions not supported, but SSE and AVX are
(so not a huge issue, depending on generated code).
instructions that halt the processor (e.g. PAUSE, WAIT) not supported.
debugging instructions not supported (no breakpoints inside
transactions).
an interrupt within a transaction will cause the transaction to abort,
before the interrupt handler is run.
changes in privilege level (no kernel calls).
any exception (largely page-fault): all memory accessed during a
transaction must be mapped.

A lot of ways that a transaction can be aborted (including the
obvious — another core accessing the memory).

nevertheless, a significant feature!

Hardware

Restrictions

Because this is restricted transaction memory, some limitations:

X87 FP and MMX instructions not supported, but SSE and AVX are
(so not a huge issue, depending on generated code).
instructions that halt the processor (e.g. PAUSE, WAIT) not supported.
debugging instructions not supported (no breakpoints inside
transactions).
an interrupt within a transaction will cause the transaction to abort,
before the interrupt handler is run.
changes in privilege level (no kernel calls).
any exception (largely page-fault): all memory accessed during a
transaction must be mapped.

A lot of ways that a transaction can be aborted (including the
obvious — another core accessing the memory).

nevertheless, a significant feature!

Hardware

Nesting

Transactions can be nested, but not in a clever way.

processor maintains a transaction count; ‘XBEGIN’ increments,
‘XEND’ decrements.
transaction only commited to memory when last ‘XEND’ happens.
any conflict/etc. causes the outermost failure handler to be invoked.

Hardware

Transaction Failures

If a transaction is aborted (as defined earlier) all changes to the
processor’s state made within the transaction are discarded.

includes sources of exceptions: i.e. the exception handler is not
invoked.
does not include interrupts, which are handled after the state has
been discarded.

Means we need to be slightly careful.

do not want a continuous cycle of try-read, page-fault, abort,
try-read, page-fault, abort, ... (though unlikely)

Hardware

Transaction Failures

If a transaction is aborted (as defined earlier) all changes to the
processor’s state made within the transaction are discarded.

includes sources of exceptions: i.e. the exception handler is not
invoked.
does not include interrupts, which are handled after the state has
been discarded.

Means we need to be slightly careful.

do not want a continuous cycle of try-read, page-fault, abort,
try-read, page-fault, abort, ... (though unlikely)

Hardware

Transaction Failures

When aborted, the fallback (failure) handler is invoked, with EAX
containing some flags to indicate what happened.

As of July 2013, these were:

0 (xabort): an XABORT instruction aborted the transaction, 8-bit
code passed is available in EAX.
1 (retry): the transaction might succeed if retried.
2 (conflict): interference from another processor, core or hardware
thread caused the abort.
3 (overflow): overflow of buffers caused the abort.
4 (debug): a debug breakpoint was encountered.
5 (nested): transaction aborted within a nested transaction.

Hardware

Transaction Failures

When aborted, the fallback (failure) handler is invoked, with EAX
containing some flags to indicate what happened.

As of July 2013, these were:

0 (xabort): an XABORT instruction aborted the transaction, 8-bit
code passed is available in EAX.
1 (retry): the transaction might succeed if retried.
2 (conflict): interference from another processor, core or hardware
thread caused the abort.
3 (overflow): overflow of buffers caused the abort.
4 (debug): a debug breakpoint was encountered.
5 (nested): transaction aborted within a nested transaction.

Performance

Test Setup

Run on a Core i7-4770 processor at 3.4 GHz.

16 GiB RAM at 1600 MHz (9-9-9-24).
Ubuntu Linux 12.04.2 LTS with kernel 3.5.0-23-generic and stock
GCC 4.6.3.
CPU frequency scaling and “turbo boost” disabled.

RTM extensions accessed through inline assembler macros.

First attempts to buy the new Haswell CPU failed: the ‘K’
(overclockable) version does not support RTM!

Performance

Test Setup

Run on a Core i7-4770 processor at 3.4 GHz.

16 GiB RAM at 1600 MHz (9-9-9-24).
Ubuntu Linux 12.04.2 LTS with kernel 3.5.0-23-generic and stock
GCC 4.6.3.
CPU frequency scaling and “turbo boost” disabled.

RTM extensions accessed through inline assembler macros.

First attempts to buy the new Haswell CPU failed: the ‘K’
(overclockable) version does not support RTM!

Performance

Test Setup

Run on a Core i7-4770 processor at 3.4 GHz.

16 GiB RAM at 1600 MHz (9-9-9-24).
Ubuntu Linux 12.04.2 LTS with kernel 3.5.0-23-generic and stock
GCC 4.6.3.
CPU frequency scaling and “turbo boost” disabled.

RTM extensions accessed through inline assembler macros.

First attempts to buy the new Haswell CPU failed: the ‘K’
(overclockable) version does not support RTM!

Performance

Test Operations

For testing, we define four different operations:

read: load words from increasing memory locations.

write: store words to increasing memory locations.

cas: compare-and-swap words at increasing memory locations.

abortm: store words to increasing memory locations, aborting the
transaction after m words, and:
abortn: setup to do n writes, but abort before doing any.

Each of the above (minus abort) can operate in untransaction (u) or
transactional (x) mode; word size either 32-bit or 64-bit.

For each combination, test increasing numbers of
words-per-operation (operation size).

Tests done in a well-aligned memory region of 512 MiB, to minimise
effect of L2 and L3 caches.

e.g. 16384 operations done when operation-size is 32 KiB.

Performance

Test Operations

For testing, we define four different operations:

read: load words from increasing memory locations.

write: store words to increasing memory locations.

cas: compare-and-swap words at increasing memory locations.

abortm: store words to increasing memory locations, aborting the
transaction after m words, and:
abortn: setup to do n writes, but abort before doing any.

Each of the above (minus abort) can operate in untransaction (u) or
transactional (x) mode; word size either 32-bit or 64-bit.

For each combination, test increasing numbers of
words-per-operation (operation size).

Tests done in a well-aligned memory region of 512 MiB, to minimise
effect of L2 and L3 caches.

e.g. 16384 operations done when operation-size is 32 KiB.

Performance

Test Operations

For testing, we define four different operations:

read: load words from increasing memory locations.

write: store words to increasing memory locations.

cas: compare-and-swap words at increasing memory locations.

abortm: store words to increasing memory locations, aborting the
transaction after m words, and:
abortn: setup to do n writes, but abort before doing any.

Each of the above (minus abort) can operate in untransaction (u) or
transactional (x) mode; word size either 32-bit or 64-bit.

For each combination, test increasing numbers of
words-per-operation (operation size).

Tests done in a well-aligned memory region of 512 MiB, to minimise
effect of L2 and L3 caches.

e.g. 16384 operations done when operation-size is 32 KiB.

Performance

Test Operations

For testing, we define four different operations:

read: load words from increasing memory locations.

write: store words to increasing memory locations.

cas: compare-and-swap words at increasing memory locations.

abortm: store words to increasing memory locations, aborting the
transaction after m words, and:
abortn: setup to do n writes, but abort before doing any.

Each of the above (minus abort) can operate in untransaction (u) or
transactional (x) mode; word size either 32-bit or 64-bit.

For each combination, test increasing numbers of
words-per-operation (operation size).

Tests done in a well-aligned memory region of 512 MiB, to minimise
effect of L2 and L3 caches.

e.g. 16384 operations done when operation-size is 32 KiB.

Performance

Zero Size Operation Cost

Operation 32-bit time 64-bit time 32-bit cycles 64-bit cycles
u read 2.0ns 2.4ns 7 8
u write 2.1ns 2.1ns 7 7
u cas 2.0ns 2.0ns 7 7
x read 15ns 15ns 50 50
x write 15ns 15ns 50 50
x cas 15ns 15ns 49 49
x abortn 47ns 47ns 160 161
x abortm 47ns 47ns 161 161

Cost of invoking transaction mode appears to be 13ns (47 cycles).

Aborting is expensive: likely pipeline and cache flush.

infer: transactional operations are pipelined.

Performance

Zero Size Operation Cost

Operation 32-bit time 64-bit time 32-bit cycles 64-bit cycles
u read 2.0ns 2.4ns 7 8
u write 2.1ns 2.1ns 7 7
u cas 2.0ns 2.0ns 7 7
x read 15ns 15ns 50 50
x write 15ns 15ns 50 50
x cas 15ns 15ns 49 49
x abortn 47ns 47ns 160 161
x abortm 47ns 47ns 161 161

Cost of invoking transaction mode appears to be 13ns (47 cycles).

Aborting is expensive: likely pipeline and cache flush.

infer: transactional operations are pipelined.

Performance

Cost of Small-Size Operations

Clock-cycle times for small numbers of operations (32-bit):

Operation 1 word 2 3 4 5 6 7 8
u read 23 14 13 14 15 16 19 20
u write 29 26 25 22 22 22 22 23
u cas 39 59 74 93 113 132 151 170
x read 60 61 62 62 65 66 67 69
x write 62 59 59 59 59 59 60 60
x cas 60 64 66 71 73 78 77 80
x abortn 66 161 160 161 161 161 162 162
x abortm 170 175 173 175 179 182 182 181

Once a transaction reaches 2 words, equivalent cost to a
compare-and-swap.

beyond this, transactional operations more efficient than CAS (with
the added benefit of overall atomicity).

Performance

Cost of Small-Size Operations

Clock-cycle times for small numbers of operations (32-bit):

Operation 1 word 2 3 4 5 6 7 8
u read 23 14 13 14 15 16 19 20
u write 29 26 25 22 22 22 22 23
u cas 39 59 74 93 113 132 151 170
x read 60 61 62 62 65 66 67 69
x write 62 59 59 59 59 59 60 60
x cas 60 64 66 71 73 78 77 80
x abortn 66 161 160 161 161 161 162 162
x abortm 170 175 173 175 179 182 182 181

Once a transaction reaches 2 words, equivalent cost to a
compare-and-swap.

beyond this, transactional operations more efficient than CAS (with
the added benefit of overall atomicity).

Performance

Uncontended Transactions (32-bit read)

To determine the maximum practical size of a transaction:

0 5000 10000 15000 20000 25000 30000 35000
bytes/op

0

20

40

60

80

100

%

 x_read32

success
unknown
conflict-retry
overflow

Performance

Uncontended Transactions (32-bit write)

0 5000 10000 15000 20000 25000 30000 35000
bytes/op

0

20

40

60

80

100

%
 x_write32

success
unknown
conflict-retry
overflow

Performance

Uncontended Transactions (32-bit CAS)

0 5000 10000 15000 20000 25000 30000 35000
bytes/op

0

20

40

60

80

100

%
 x_cas32

success
unknown
conflict-retry
overflow

Performance

Uncontended Transactions: Observations

Up to around 10 KiB, performance degrades from success to
unknown failure.

likely due to OS context switching.

From 16 KiB, pronounced phase shift where success rapidly gives
way to overflow related aborts.

Despite no shared memory contention, conflict-retry accounts for
some of the failures.

either mis-reporting by the processor or caused by operations on
another core (e.g. page-table manipulations).

Largest stable transaction size is 16 KiB, with an 85% chance of
success.

on our particular test setup and with no contention.
transaction buffer is probably the L1 data cache, also used to shadow
modified registers.

Performance

Uncontended Transactions: Observations

Up to around 10 KiB, performance degrades from success to
unknown failure.

likely due to OS context switching.

From 16 KiB, pronounced phase shift where success rapidly gives
way to overflow related aborts.

Despite no shared memory contention, conflict-retry accounts for
some of the failures.

either mis-reporting by the processor or caused by operations on
another core (e.g. page-table manipulations).

Largest stable transaction size is 16 KiB, with an 85% chance of
success.

on our particular test setup and with no contention.
transaction buffer is probably the L1 data cache, also used to shadow
modified registers.

Performance

Uncontended Transactions: Observations

Up to around 10 KiB, performance degrades from success to
unknown failure.

likely due to OS context switching.

From 16 KiB, pronounced phase shift where success rapidly gives
way to overflow related aborts.

Despite no shared memory contention, conflict-retry accounts for
some of the failures.

either mis-reporting by the processor or caused by operations on
another core (e.g. page-table manipulations).

Largest stable transaction size is 16 KiB, with an 85% chance of
success.

on our particular test setup and with no contention.
transaction buffer is probably the L1 data cache, also used to shadow
modified registers.

Performance

Uncontended Transactions: Observations

Up to around 10 KiB, performance degrades from success to
unknown failure.

likely due to OS context switching.

From 16 KiB, pronounced phase shift where success rapidly gives
way to overflow related aborts.

Despite no shared memory contention, conflict-retry accounts for
some of the failures.

either mis-reporting by the processor or caused by operations on
another core (e.g. page-table manipulations).

Largest stable transaction size is 16 KiB, with an 85% chance of
success.

on our particular test setup and with no contention.
transaction buffer is probably the L1 data cache, also used to shadow
modified registers.

Performance

Transaction Performance (reading)

0 200 400 600 800 1000
bytes/op

0

2

4

6

8

10

12

14

16
b
y
te
s/
n
s

x_read32

x_read64

u_read32

u_read64

Performance

Transaction Performance (writing)

0 200 400 600 800 1000
bytes/op

0

2

4

6

8

10
b
y
te
s/
n
s

x_write32

x_write64

u_write32

u_write64

Performance

Transaction Performance (CASing)

0 200 400 600 800 1000
bytes/op

0

1

2

3

4

5

6
b
y
te
s/
n
s

x_cas32

x_cas64

u_cas32

u_cas64

Performance

Transaction Performance (comparison)

0 200 400 600 800 1000
bytes/op

0

2

4

6

8

10

12
b
y
te
s/
n
s

x_read64

x_write64

x_cas64

Performance

Transaction Performance: Observations

The sawtooth pattern observed is at 64-byte intervals: cache line.

not unexpected, since the cost of 68-byte read is the same as a
128-byte read.

Transactional reads reach 80% performance of plain reads.

suggests a fixed overhead for transactional reads.
not the case for writes, where the transaction cost is amortized early
on (300 bytes).

CAS is the most interesting:

use of the ‘LOCK’ instruction prefix (as our non-transactional CAS
does) has a significant overhead, compared with CAS in
transactional mode.

Performance

Transaction Performance: Observations

The sawtooth pattern observed is at 64-byte intervals: cache line.

not unexpected, since the cost of 68-byte read is the same as a
128-byte read.

Transactional reads reach 80% performance of plain reads.

suggests a fixed overhead for transactional reads.
not the case for writes, where the transaction cost is amortized early
on (300 bytes).

CAS is the most interesting:

use of the ‘LOCK’ instruction prefix (as our non-transactional CAS
does) has a significant overhead, compared with CAS in
transactional mode.

Performance

Transaction Performance: Observations

The sawtooth pattern observed is at 64-byte intervals: cache line.

not unexpected, since the cost of 68-byte read is the same as a
128-byte read.

Transactional reads reach 80% performance of plain reads.

suggests a fixed overhead for transactional reads.
not the case for writes, where the transaction cost is amortized early
on (300 bytes).

CAS is the most interesting:

use of the ‘LOCK’ instruction prefix (as our non-transactional CAS
does) has a significant overhead, compared with CAS in
transactional mode.

Performance

Transaction Aborting: Performance

0 200 400 600 800 1000
bytes/op

0

5

10

15

20

25
b
y
te
s/
n
s

x_abortn64

x_abortm64

x_cas64

Performance

Transaction Aborting: Observations

abortn, which aborts before doing any writes, has the expected
linear performance.

abortm, which writes before aborting, is expensive.

surpasses the cost of transactional CAS at around 600 bytes.

For small transactions, successful completion is significantly cheaper
than unsuccessful completion.

likely a result of restoring register state after unsuccessful
transactions, a cost not incurred by successful transactions.

Performance

Transaction Aborting: Observations

abortn, which aborts before doing any writes, has the expected
linear performance.

abortm, which writes before aborting, is expensive.

surpasses the cost of transactional CAS at around 600 bytes.

For small transactions, successful completion is significantly cheaper
than unsuccessful completion.

likely a result of restoring register state after unsuccessful
transactions, a cost not incurred by successful transactions.

Performance

Transaction Aborting: Observations

abortn, which aborts before doing any writes, has the expected
linear performance.

abortm, which writes before aborting, is expensive.

surpasses the cost of transactional CAS at around 600 bytes.

For small transactions, successful completion is significantly cheaper
than unsuccessful completion.

likely a result of restoring register state after unsuccessful
transactions, a cost not incurred by successful transactions.

Contention

Transaction Contention

As expected, contended reads (against reads) do not cause
transaction aborts — good!

In the next few slides, show the effect of multiple threads
interacting via shared memory, with and without transactions.

more in the paper!

Contention

Transaction Contention

As expected, contended reads (against reads) do not cause
transaction aborts — good!

In the next few slides, show the effect of multiple threads
interacting via shared memory, with and without transactions.

more in the paper!

Contention

Transaction Contention: Competing Writes

0 200 400 600 800 1000
bytes/op

0

20

40

60

80

100

%

 0:x_write32

success
unknown
conflict-retry
overflow

0 200 400 600 800 1000
bytes/op

0

20

40

60

80

100

%

 1:x_write32

success
unknown
conflict-retry
overflow

No conflicts for small sizes (scheduling), but beyond 192 bytes (4
cache lines), performance degrades rapidly.

slight bias towards thread 1, possibly scheduling artefact.

Contention

Transaction Contention: Competing Writes

0 200 400 600 800 1000
bytes/op

0

20

40

60

80

100

%

 0:x_write32

success
unknown
conflict-retry
overflow

0 200 400 600 800 1000
bytes/op

0

20

40

60

80

100

%

 1:x_write32

success
unknown
conflict-retry
overflow

No conflicts for small sizes (scheduling), but beyond 192 bytes (4
cache lines), performance degrades rapidly.

slight bias towards thread 1, possibly scheduling artefact.

Contention

Transaction Contention: Competing CAS

0 200 400 600 800 1000
bytes/op

0

20

40

60

80

100

%

 0:x_cas32

success
failure
unknown
conflict-retry
overflow

0 200 400 600 800 1000
bytes/op

0

20

40

60

80

100

%

 1:x_cas32

success
failure
unknown
conflict-retry
overflow

The additional failure line is where the transaction succeeded, but
the CAS failed.

because it got changed by the other thread already.

More overflows than before.

either mis-reported, or something other than L1 cache-size involved.

Contention

Transaction Contention: Competing CAS

0 200 400 600 800 1000
bytes/op

0

20

40

60

80

100

%

 0:x_cas32

success
failure
unknown
conflict-retry
overflow

0 200 400 600 800 1000
bytes/op

0

20

40

60

80

100

%

 1:x_cas32

success
failure
unknown
conflict-retry
overflow

The additional failure line is where the transaction succeeded, but
the CAS failed.

because it got changed by the other thread already.

More overflows than before.

either mis-reported, or something other than L1 cache-size involved.

Contention

Transaction Contention: Competing CAS

0 200 400 600 800 1000
bytes/op

0

20

40

60

80

100

%

 0:x_cas32

success
failure
unknown
conflict-retry
overflow

0 200 400 600 800 1000
bytes/op

0

20

40

60

80

100

%

 1:x_cas32

success
failure
unknown
conflict-retry
overflow

The additional failure line is where the transaction succeeded, but
the CAS failed.

because it got changed by the other thread already.

More overflows than before.

either mis-reported, or something other than L1 cache-size involved.

Contention

Transaction Contention: vs. Non-Transactional

Transactional vs. non-transactional write (always succeeds).

0 200 400 600 800 1000
bytes/op

0

20

40

60

80

100

%

 0:x_write32

success
unknown
conflict-retry
overflow

Shows less interference than two competing transactional writes.

area of interference from the non-transactional thread is at most 1
cache line.

Summary

Performance Summary

Setup and teardown cost for a transaction is approx. 40 cycles.

for common operations such as CAS, easily amortized in 2-3 words of
memory access.

Transactions (realistically) can be up to 16 KiB in size.

far from optimal here — for good performance, keep below 1 KiB.

No observable overhead on memory writes.

reads may incur up to 20% overhead.

Transaction aborts are expensive — 150 cycles, in addition to the
overheads of the failed transaction.

Summary

Performance Summary

Setup and teardown cost for a transaction is approx. 40 cycles.

for common operations such as CAS, easily amortized in 2-3 words of
memory access.

Transactions (realistically) can be up to 16 KiB in size.

far from optimal here — for good performance, keep below 1 KiB.

No observable overhead on memory writes.

reads may incur up to 20% overhead.

Transaction aborts are expensive — 150 cycles, in addition to the
overheads of the failed transaction.

Summary

Performance Summary

Setup and teardown cost for a transaction is approx. 40 cycles.

for common operations such as CAS, easily amortized in 2-3 words of
memory access.

Transactions (realistically) can be up to 16 KiB in size.

far from optimal here — for good performance, keep below 1 KiB.

No observable overhead on memory writes.

reads may incur up to 20% overhead.

Transaction aborts are expensive — 150 cycles, in addition to the
overheads of the failed transaction.

Summary

Performance Summary

Setup and teardown cost for a transaction is approx. 40 cycles.

for common operations such as CAS, easily amortized in 2-3 words of
memory access.

Transactions (realistically) can be up to 16 KiB in size.

far from optimal here — for good performance, keep below 1 KiB.

No observable overhead on memory writes.

reads may incur up to 20% overhead.

Transaction aborts are expensive — 150 cycles, in addition to the
overheads of the failed transaction.

Summary

Final Points

RTM is not simply a drop-in replacement for CAS-based algorithms.

like non-blocking / lock-free algorithms, no guarantee of progress.

Other uses include thread synchronisation, busy waiting, CCSP
channel and scheduler algorithms, ...

Summary

Acknowledgements

Carl Ritson did all the hard work – thanks Carl!

The EPSRC funded MirrorGC project (EP/H026975/1).

Faculty of Sciences research fund (for the hardware).

Sources for the benchmarks are available:
https://github.com/perlfu/rtm-bench

https://github.com/perlfu/rtm-bench

Summary

Questions?

References

References

[1] K. Fraser.
Practical lock-freedom.
PhD thesis, University of Cambridge, King’s College, September 2003.

[2] M. Herlihy.
Wait-free synchronization.
ACM Trans. Program. Lang. Syst., 13(1):124–149, 1991.

[3] T. Haerder and A. Reuter.
Principles of transaction-oriented database recovery.
ACM Comput. Surv., 15(4):287–317, December 1983.

[4] M. Herlihy and J.E.B. Moss.
Transactional memory: architectural support for lock-free data structures.
SIGARCH Comput. Archit. News, 21(2):289–300, May 1993.

	Introduction
	Hardware
	Performance
	Contention
	Summary
	References

