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Intel's New Processor Extensions

m Intel's latest processor microarchitecture, Haswell, adds
Transactional Synchronization Extensions (TSX).

m Hardware Lock Elision (HLE).
m Restricted Transactional Memory (RTM).

m HLE provides two new instruction prefixes.
m intended for use with existing exclusive lock type code.
m RTM provides four new instructions.

m a fairly powerful mechanism, but limited to the latest Intel CPUs
(and not the ‘K’ variety yet).
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Motivation

m For a long time (prior to Haswell) the amount of memory that could
be atomically manipulated on x86 was limited to a single word (32
or 64 bits).

m the most complex being compare-and-swap.
m other platforms provide things like load-linked, store-conditional.

m This has contributed to the development of:

m entire classes of non-blocking wait-free and lock-free
algorithms [1, 2].

m programs (multi-threaded or interrupt-driven) need to modify state
in a consistent way — e.g. chunks of linked data structures.

m Perhaps an argument that global linked data structures are not the
best approach:

m CPAs would advocate a process that encapsulates this state; other
processes interact via channels (issues: contention, interrupts).

m The ideal fix is possibly an educational one, but as long as people use
sequential procedural languages on multicore, we have to live with it.
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m The concept of a transaction has been around for a long time.
m probably since humans started interacting with each other.
m but databases are where we see them most obviously.

m In the DB context, four principles [3]:
m atomicity: seen to happen as a single thing.

consistency: preserve system invariants.

isolation: non-interfering in other transactions.

durability: be persistent once committed.

m For ourselves (system developers in general) most interested in
atomicity and consistency.
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Transactions and Transactional Memory

m Transactional memory ideas have been around for a while:
m First described by Herlihy and Moss in 1993 [4].
m Some specialised hardware support appeared: IBM’s BlueGene/Q
and Sun Rock processors.
m In the meantime, software transactional memory (STM) gained
some momentum.
m providing better programming abstractions to manipulate shared
memory safely.
m implementations in Haskell and (perhaps experimental) in Java.

m Issues with STM: performance guarantees..
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lock_t *list_lock = create_lock();
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Software Transactional Memory

m lllustration: (what the programmer wants to write)

void add-to_list (list_t #*lptr, list_t *itm)
{
atomic {
if (*lptr) {
(*1ptr)->prev = itm;
itm->next = *1ptr;

*1ptr = itm;

}

}

m breaks horribly in an unsafe threaded environment.
m solutions: add a lock (heavy or light).

m What we really want to say is: do this atomically.
m which is what STM provides (in theory).
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Software Transactional Memory

m Nice idea in theory, but does not scale well.

m in Moss' “open nested transactions” (Java), some amount of effort
to avoid infinite retry.

m not a totally correct solution either (but close!).

m Can imagine how it works:

make a record of any shared memory state that is read inside the
‘atomic’ block.

execute the transaction, putting writes in a buffer (not changing the
global shared state).

at the end of the transaction, check all the things we read in step 1;
if the same (modulo changes in step 2) commit the changes
en-masse (locking required), else redo from start.

m This sort of strategy cannot see A— B — A changes.

m could fix, but heading towards something which is significantly more
expensive and inconvenient than the locks we were trying to avoid in
the first place!



Technical Detail

m The RTM extensions provide four new instructions:
m XBEGIN: initiates a transaction.
m pointer to a fallback handler is given.
m also valid with a transaction, permitting nesting.
m XEND: completes a transaction, flushing changes to memory (if top).
m XABORT: aborts the current transaction (with failure code for fallback

handler).
m XTEST: updates status register to allow conditional branch to test for

“in transaction”.

Hardware
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Restrictions

m Because this is restricted transaction memory, some limitations:

m X87 FP and MMX instructions not supported, but SSE and AVX are
(so not a huge issue, depending on generated code).

m instructions that halt the processor (e.g. PAUSE, WAIT) not supported.

m debugging instructions not supported (no breakpoints inside
transactions).

m an interrupt within a transaction will cause the transaction to abort,
before the interrupt handler is run.

m changes in privilege level (no kernel calls).

m any exception (largely page-fault): all memory accessed during a
transaction must be mapped.
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Restrictions

m Because this is restricted transaction memory, some limitations:

m X87 FP and MMX instructions not supported, but SSE and AVX are
(so not a huge issue, depending on generated code).

m instructions that halt the processor (e.g. PAUSE, WAIT) not supported.

m debugging instructions not supported (no breakpoints inside
transactions).

m an interrupt within a transaction will cause the transaction to abort,
before the interrupt handler is run.

m changes in privilege level (no kernel calls).

m any exception (largely page-fault): all memory accessed during a
transaction must be mapped.

m A lot of ways that a transaction can be aborted (including the
obvious — another core accessing the memory).

m nevertheless, a significant feature!
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Nesting

m Transactions can be nested, but not in a clever way.
m processor maintains a transaction count; ‘XBEGIN' increments,
‘XEND' decrements.
m transaction only commited to memory when last ‘XEND’ happens.
m any conflict/etc. causes the outermost failure handler to be invoked.
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m If a transaction is aborted (as defined earlier) all changes to the
processor’s state made within the transaction are discarded.
m includes sources of exceptions: i.e. the exception handler is not
invoked.
m does not include interrupts, which are handled after the state has
been discarded.
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Transaction Failures

m If a transaction is aborted (as defined earlier) all changes to the
processor’s state made within the transaction are discarded.
m includes sources of exceptions: i.e. the exception handler is not
invoked.
m does not include interrupts, which are handled after the state has
been discarded.

m Means we need to be slightly careful.

m do not want a continuous cycle of try-read, page-fault, abort,
try-read, page-fault, abort, ... (though unlikely)
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Transaction Failures

m When aborted, the fallback (failure) handler is invoked, with EAX
containing some flags to indicate what happened.

m As of July 2013, these were:

m 0 (xabort): an XABORT instruction aborted the transaction, 8-bit
code passed is available in EAX.

1 (retry): the transaction might succeed if retried.

2 (conflict): interference from another processor, core or hardware
thread caused the abort.

3 (overflow): overflow of buffers caused the abort.

4 (debug): a debug breakpoint was encountered.

5 (nested): transaction aborted within a nested transaction.
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GCC 4.6.3.
m CPU frequency scaling and “turbo boost” disabled.
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Test Setup

m Run on a Core i7-4770 processor at 3.4 GHz.
= 16 GiB RAM at 1600 MHz (9-9-9-24).

m Ubuntu Linux 12.04.2 LTS with kernel 3.5.0-23-generic and stock
GCC 4.6.3.

m CPU frequency scaling and “turbo boost” disabled.
m RTM extensions accessed through inline assembler macros.

m First attempts to buy the new Haswell CPU failed: the ‘K’
(overclockable) version does not support RTM!



Performance

Test Operations

For testing, we define four different operations:



Test Operations

For testing, we define four different operations:

read: load words from increasing memory locations.
write: store words to increasing memory locations.
cas: compare-and-swap words at increasing memory locations.

abortm: store words to increasing memory locations, aborting the
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abortn: setup to do n writes, but abort before doing any.
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Test Operations

For testing, we define four different operations:
m read: load words from increasing memory locations.
m write: store words to increasing memory locations.
m cas: compare-and-swap words at increasing memory locations.

m abortm: store words to increasing memory locations, aborting the
transaction after m words, and:
abortn: setup to do n writes, but abort before doing any.

m Each of the above (minus abort) can operate in untransaction (u) or
transactional (x) mode; word size either 32-bit or 64-bit.

m For each combination, test increasing numbers of
words-per-operation (operation size).

m Tests done in a well-aligned memory region of 512 MiB, to minimise
effect of L2 and L3 caches.

m e.g. 16384 operations done when operation-size is 32 KiB.
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Operation  32-bit time  64-bit time  32-bit cycles  64-bit cycles

u_read 2.0ns 2.4ns 7 8
u_write 2.1ns 2.1ns 7 7
u_cas 2.0ns 2.0ns 7 7
x_read 15ns 15ns 50 50
X_write 15ns 15ns 50 50
x_cas 15ns 15ns 49 49
x_abortn 47ns 47ns 160 161

x_abortm 47ns 47ns 161 161
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Zero Size Operation Cost

Operation  32-bit time  64-bit time  32-bit cycles  64-bit cycles

u_read 2.0ns 2.4ns 7 8
u_write 2.1ns 2.1ns 7 7
u_cas 2.0ns 2.0ns 7 7
x_read 15ns 15ns 50 50
X_write 15ns 15ns 50 50
x_cas 15ns 15ns 49 49
x_abortn 47ns 47ns 160 161
x_abortm 47ns 47ns 161 161

m Cost of invoking transaction mode appears to be 13ns (47 cycles).
m Aborting is expensive: likely pipeline and cache flush.
m infer: transactional operations are pipelined.
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Cost of Small-Size Operations

Clock-cycle times for small numbers of operations (32-bit):

Operation 1 word 2 3 4 5 6 7 8

u_read 23 14 13 14 15 16 19 20
u_write 29 26 25 22 22 22 22 23
u_cas 39 59 74 93 113 132 151 170
x_read 60 61 62 62 65 66 67 69
x_write 62 59 59 59 59 59 60 60
x_cas 60 64 66 71 73 78 77 80
x_abortn 66 161 160 161 161 161 162 162

x_abortm 170 175 173 175 179 182 182 181
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Cost of Small-Size Operations

Clock-cycle times for small numbers of operations (32-bit):

Operation 1 word 2 3 4 5 6 7 8

u_read 23 14 13 14 15 16 19 20
u_write 29 26 25 22 22 22 22 23
u_cas 39 59 74 93 113 132 151 170
x_read 60 61 62 62 65 66 67 69
x_write 62 59 59 59 59 59 60 60
x_cas 60 64 66 71 73 78 77 80
x_abortn 66 161 160 161 161 161 162 162
x_abortm 170 175 173 175 179 182 182 181

m Once a transaction reaches 2 words, equivalent cost to a
compare-and-swap.
m beyond this, transactional operations more efficient than CAS (with
the added benefit of overall atomicity).



Uncontended Transactions (32-bit read)

m To determine the maximum practical size of a transaction:

100 ‘x_read3? ‘ ‘
P L .
L
80t i 1
6or — success 1
— unknown
o\o .
----- conflict-retry
40 - - overflow ]
20} |
"
0 5000 10000 20000 25000 30000 35000

bytes/op

Performance



Performance

Uncontended Transactions (32-bit write)
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Uncontended Transactions (32-bit CAS)
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unknown failure.
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Uncontended Transactions: Observations

m Up to around 10 KiB, performance degrades from success to
unknown failure.

m likely due to OS context switching.
m From 16 KiB, pronounced phase shift where success rapidly gives
way to overflow related aborts.
m Despite no shared memory contention, conflict-retry accounts for
some of the failures.
m either mis-reporting by the processor or caused by operations on
another core (e.g. page-table manipulations).
m Largest stable transaction size is 16 KiB, with an 85% chance of
success.

m on our particular test setup and with no contention.
m transaction buffer is probably the L1 data cache, also used to shadow
modified registers.
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Transaction Performance (reading)
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Transaction Performance (writing)
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Transaction Performance (CASing)
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Transaction Performance (comparison)
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Transaction Performance: Observations

m The sawtooth pattern observed is at 64-byte intervals: cache line.
m not unexpected, since the cost of 68-byte read is the same as a
128-byte read.
m Transactional reads reach 80% performance of plain reads.

m suggests a fixed overhead for transactional reads.
m not the case for writes, where the transaction cost is amortized early
on (300 bytes).

m CAS is the most interesting:

m use of the ‘'LOCK’ instruction prefix (as our non-transactional CAS
does) has a significant overhead, compared with CAS in
transactional mode.
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Transaction Aborting: Performance
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Transaction Aborting: Observations

m abortn, which aborts before doing any writes, has the expected
linear performance.

m abortm, which writes before aborting, is expensive.
m surpasses the cost of transactional CAS at around 600 bytes.

m For small transactions, successful completion is significantly cheaper
than unsuccessful completion.

m likely a result of restoring register state after unsuccessful
transactions, a cost not incurred by successful transactions.
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Transaction Contention

m As expected, contended reads (against reads) do not cause
transaction aborts — good!
m In the next few slides, show the effect of multiple threads
interacting via shared memory, with and without transactions.
m more in the paper!
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Transaction Contention: Competing Writes

100 ‘Ozx_wrlte32‘ 100 i 1:x_wr|te3% i
— success
unknown

80 1 8ol - conflict-retry | |
: - - overflow

60} 1 60}

< O T I T
a0f e 4 a0}
: — success
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- conflict-retry
- - overflow H
0 200 400 600 800 10 0 200 400 600 800 1000
bytes/op bytes/op

m No conflicts for small sizes (scheduling), but beyond 192 bytes (4
cache lines), performance degrades rapidly.

m slight bias towards thread 1, possibly scheduling artefact.
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Transaction Contention: Competing CAS

100 0:x_cas32 100 1:x_cas32
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Transaction Contention: Competing CAS
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m The additional failure line is where the transaction succeeded, but
the CAS failed.

m because it got changed by the other thread already.
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Transaction Contention: Competing CAS

100 0:x_cas32 100 1:x_cas32
— success — success
failure failure
80 - unknown | 80 -+ unknown |
- - conflict-retry - - conflict-retry
overflow overflow

'
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m The additional failure line is where the transaction succeeded, but
the CAS failed.

m because it got changed by the other thread already.
m More overflows than before.

m either mis-reported, or something other than L1 cache-size involved.
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Transaction Contention: vs. Non-Transactional

Transactional vs. non-transactional write (always succeeds).

0:x_write32

— success
— unknown
<<<<< conflict-retry | |
overflow

801

601

a0F

0 200 400 600 800 1000
bytes/op

m Shows less interference than two competing transactional writes.

m area of interference from the non-transactional thread is at most 1
cache line.
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Performance Summary

Setup and teardown cost for a transaction is approx. 40 cycles.

m for common operations such as CAS, easily amortized in 2-3 words of
memory access.

Transactions (realistically) can be up to 16 KiB in size.

m far from optimal here — for good performance, keep below 1 KiB.
m No observable overhead on memory writes.
m reads may incur up to 20% overhead.

Transaction aborts are expensive — 150 cycles, in addition to the
overheads of the failed transaction.
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Final Points

m RTM is not simply a drop-in replacement for CAS-based algorithms.
m like non-blocking / lock-free algorithms, no guarantee of progress.

m Other uses include thread synchronisation, busy waiting, CCSP
channel and scheduler algorithms, ...



Summary

Acknowledgements

m Carl Ritson did all the hard work — thanks Carl!
m The EPSRC funded MirrorGC project (EP/H026975/1).

Faculty of Sciences research fund (for the hardware).

m Sources for the benchmarks are available:
https://github.com/perlfu/rtm-bench


https://github.com/perlfu/rtm-bench

—




References

References

[1] K. Fraser
Practical lock-freedom.
PhD thesis, University of Cambridge, King's College, September 2003

[2] M. Herlihy.
Wait-free synchronization.
ACM Trans. Program. Lang. Syst., 13(1):124-149, 1991

[3] T. Haerder and A. Reuter.
Principles of transaction-oriented database recovery.
ACM Comput. Surv., 15(4):287-317, December 1983,

[4] M. Herlihy and J.E.B. Moss.
Transactional memory: architectural support for lock-free data structures.
SIGARCH Comput. Archit. News, 21(2):289-300, May 1993



	Introduction
	Hardware
	Performance
	Contention
	Summary
	References

