
Selective choice ‘feathering’ with XCHANs

Øyvind Teig

1



CPA-2013 at Edinburgh Napier University, Scotland

Autronica Fire and Security
Trondheim, Norway

http://www.teigfam.net/oyvind/pub/pub_details.html#FEATHERING
http://wotug.org/paperdb/

Øyvind Teig

Edinburgh, 27Aug2013

2

http://www.teigfam.net/oyvind/pub/pub_details.html%23FEATHERING
http://www.teigfam.net/oyvind/pub/pub_details.html%23FEATHERING
http://wotug.org/paperdb/
http://wotug.org/paperdb/


«Feathering»

• Semantics of a verb to uninterest

• Avoiding the uninteresting

• Taking uninterestedness seriously

3



Background of the XCHAN paper (2012)

• From discussions at Autronica
• Not implemented
• Goal for me was to try to merge asynchronous and 

synchronous "camps"..
• ..to arrive at a common methodology
• To make it "easier" to comply to SIL (Safety Integrity Level) 

approving according to IEC 61508 standard for safety 
critical systems

• Assumed implementation loosely based on implemented 
ideas with EGGTIMER and REPTIMER. ([9] CPA-2009 
paper)

(2012)

4



XCHAN =
x-channel + CHAN

x-channel

CHAN

Figure 1. XCHAN is CHAN plus x-channel

5



«preconf
irmed»

«classic
»

as opposed to occam-pi model of XCHAN(*) 

(*) Peter H. Welch.  An occam Model of XCHANs, 2013. 
https://www.cs.kent.ac.uk/research/groups/plas/wiki/An_occam_Model_of_XCHANs

This paper uses 

solution (from 2012 XCHAN paper)

6

https://www.cs.kent.ac.uk/research/groups/plas/wiki/An_occam_Model_of_XCHANs
https://www.cs.kent.ac.uk/research/groups/plas/wiki/An_occam_Model_of_XCHANs


XCHAN (...) OF BYTE my_xchan: 

Sender is notified as to its success or "failure"

7



XCHAN (...) OF BYTE my_xchan: 

Sender is notified as to its success on return of send:
- data moved to buffer
- data moved to receiver

8



XCHAN (...) OF BYTE my_xchan: 

Sender is notified as to its "failure" on return of send:
- buffer full
- receiver not present

9



XCHAN (...) OF BYTE my_xchan: 

Sender is notified as to its "failure" on return of send:
- buffer full
- receiver not present It always returns!

10



If "failed" to send on XCHAN:

11



If "failed" to send on XCHAN:

"Not sent" is no fault!

12



If "failed" to send on XCHAN:

"Not sent" is no fault!

But a contract to send later

13



If not sent on XCHAN:

- listen to x-channel (in an ALT or select)
- resend old or fresher value when it arrives
- this send will always succeed

14



If not sent:

- listen to x-channel (in an ALT or select)
- resend old or fresher value when it arrives
- this send will always succeed

"channel-ready-ch
annel"

15



If not sent:

- listen to x-channel (in an ALT or select)
- resend old or fresher value when it arrives
- this send will always succeed

This contract (design pattern) 
between sender and receiver 

must be adhered to

16



Ripping a term

ht
tp

://
w

w
w.

am
az

on
.co

m
/S

aw
ye

r-F
ea

th
er

-L
am

ina
te

d-
Ca

rb
on

-T
ou

rin
g/

dp
/B

00
83

CU
U

H
U

• «Turning an oar parallel to the water between pulls»
• But we can hear the oar whip the top of 

the small waves on its way saying 
“was there, but not interested”

• So we take the step to name barely 
touching the small waves as feathering

• And give feathering a new meaning

«Feathering»
(2013)

17

http://www.amazon.com/Sawyer-Feather-Laminated-Carbon-Touring/dp/B0083CUUHU
http://www.amazon.com/Sawyer-Feather-Laminated-Carbon-Touring/dp/B0083CUUHU


«Concurrent programs wait faster»

• Tony Hoare’s lecture from 2003

• Not waiting for a certain bus, 
but for correct destination..

• ..makes us «wait faster», but..

• XCHAN as a vehicle for a secondary problem
not mentioned in Hoare’s lecture: 

18



19



• What happens after the first possible bus has arrived
is not treated here 

• What happens with uninteresting buses while waiting,
we have specifically said is not of interest - but..

• ..why do we still have to relate to these bus arrivals 
afterwards?

Also for non-interesting buses!

20



• There is no way to avoid having to flush these 
messages!

• But we could have avoided sending them!

I said not-interesting buses!

21



• Sending unnecessarily is as bad as paying unnecessarily

• This is state of the art, also for occam!

• Simply because a blocked sender 
has only one way to unblock: to get rid of its message

You’re sitting on the first relevant bus,
but its conductor requires you to pay

for all the buses 
that stopped while you waited!

22



Figure 2. XCHAN (array of 3) and feathering, with only bus #1 as possible to ride

23



Feathering semantics (1/10)
1. Feathering semantics inherits XCHAN semantics

a. Output and input constructs limitations 
(next page)

b. This may not include buffered XCHAN: usability 
analysis needed

Suggestion 1-10

24



Where to use it

2. Receiver end of XCHAN in ALT, 
not single channel input. 

Sending end single channel output,
not part of an ALT with output guards
(XCHAN almost eq. to an output guard) 

Feathering semantics 

25



Feathering semantics 

3. Specified with a parameter in the 
XCHAN send call (not in examples here)

User control

26



Feathering semantics

4. Feathered status call reply to a sender
that is trying to send when a receiver
is in an ALT and the requested channel 
has been tagged by the receiver 
as not-interesting
(i.e. its pre-condition is FALSE)

Already not interested

27



Feathering semantics (5/10)

5. X-feathered status messaged response is sent to a 
sender on x-channel if it has been trying to send but got 
await_commit reply; when the receiver enters an ALT 
and the requested channel is being tagged as not-
interesting

a. Only if the ALT blocks - i.e. it is not immediately 
taken by another guard
(channel, timeout or SKIP)

b. None of the receivers will block indefinitely, 
commitment to listen on x-channel

Becoming not interested

28



Feathering semantics

6. Whenever a sender knows that a channel is 
feathered it shall obey the rule not to resend before 
an x-unfeathered message has been received on x-
channel

Usage rule

29



Feathering semantics

7. The x-unfeathered status is delivered to a feathered 
x-channel when the ALT is later on taken (by another 
guard) and ‘torn down’, in the same synchronous 
scheme as described above (5.a-b)

Perhaps interested next time, so..

30



Feathering semantics

8. The x-channel will only carry an x-unfeathered after a 
feathered situation

Only tell if it is in scope

31



Feathering semantics

9. The x-channel will only carry x-feathered or
x-committed after an await_commit status return on 
the initial sending call

Standard CHAN semantics if sent on first trial

32



Feathering semantics (last)

10. A receiver could possibly do a system call to learn if 
a message in fact did get rejected. This information 
could alternatively be delivered on an ”n-channel” 
that could be “parallel” with the XCHAN’s input on 
the receiver side. This probably is a complicating 
matter since type of channel is transparent on the 
receiver side. We will not discuss this here

33



Figure 3. Two mind map scenarios that show message avoidance

34



Listing 1. (2012) Overflow handling and output to buffered channels (ANSI C and macros)

01 while (TRUE) {
02   ALT();
03     ALT_SIGNAL_CHAN_IN (XCHAN_READY);      // data-less
04     ALT_CHAN_IN (CHAN_DATA_IN, Value);
05?  ALT_END(); // Delivers ThisChannelId:
06
07   switch (ThisChannelId) {
08     case XCHAN_READY: {                   // sending will succeed
09!      CP->Sent_Out = CHAN_OUT (XCHAN_DATA_OUT,Value);
10     } break;
11     case CHAN_DATA_IN: {
12       if (!CP->Sent_Out) {
13         ...  handle overflow (decide what value(s) to discard)
14       }
15       else {                               // sending may succeed:
16!        CP->Sent_Out = CHAN_OUT (XCHAN_DATA_OUT,Value); 
17       }
18     } break;
19     _DEFAULT_EXIT_VAL (ThisChannelId)
20   }
21 }

An XCHAN standard solution (code from 2012 paper)
ANSI C and macros!

35



01 CP->Tag = READY; // READY,SUCCESS,AWAIT_READY,FEATHERED
02 while (TRUE) {
03   PRIALT();
04     ALT_CHAN_IN (X_CHANNEL,X_Tag); // X_COMMITTED,
05                                    // X_FEATHERED,X_UNFEATHERED
06     ALT_CHAN_IN (CHAN_DATA_IN,Value);
07?  ALT_END(); // Delivers ThisChannelId
08
09   switch (ThisChannelId) {
10     case X_CHANNEL: { // After CHAN_OUT ret AWAIT_READY or FEATHERED  
11       if (X_Tag == X_FEATHERED) {
12         ...  handle not interested
13         CP->Tag = FEATHERED; // Stop
14       } else if (X_Tag == X_COMMITTED){ 
15!        CHAN_OUT (XCHAN_DATA_OUT,Value,NIL); // Will succeed
16         CP->Tag = READY; // Finished
17       } else { // == X_UNFEATHERED
18         CP->Tag = READY; // Finished 
19       }
20     } break;
21     case CHAN_DATA_IN: {
22       if ((CP->Tag == AWAIT_READY) or (CP->Tag == FEATHERED)) {
23         ...  handle overflow (decide what value(s) to discard)
24       } else { // CP->Tag = READY
25         CP->Tag = CHAN_OUT (XCHAN_DATA_OUT,Value,ALLOW_FEATHERING);
26         if (CP->Tag == SUCCESS) { 
27           CP->Tag = READY; // Finished
28         } else if (CP->Tag == FEATHERED) {
29           ...  handle not interested
30         } else { // CP->Tag == AWAIT_READY
31         }
32       }
33     } break;
34   }
35 }

Listing 1. Overflow and ‘feathered’ handling on an XCHAN (ANSI C and macros)

An XCHAN feathering solution (code)

36



01 CP->Tag = READY; // READY,SUCCESS,AWAIT_READY,FEATHERED
02 while (TRUE) {
03   PRIALT();
04     ALT_CHAN_IN (X_CHANNEL,X_Tag); // X_COMMITTED,
05                                    // X_FEATHERED,X_UNFEATHERED
06     ALT_CHAN_IN (CHAN_DATA_IN,Value);
07?  ALT_END(); // Delivers ThisChannelId
08
09   switch (ThisChannelId) {
10     case X_CHANNEL: { // After CHAN_OUT ret AWAIT_READY or FEATHERED  
11       if (X_Tag == X_FEATHERED) {
12         ...  handle not interested
13         CP->Tag = FEATHERED; // Stop
14       } else if (X_Tag == X_COMMITTED){ 
15!        CHAN_OUT (XCHAN_DATA_OUT,Value,NIL); // Will succeed
16         CP->Tag = READY; // Finished
17       } else { // == X_UNFEATHERED
18         CP->Tag = READY; // Finished 
19       }
20     } break;
21     case CHAN_DATA_IN: {
22       if ((CP->Tag == AWAIT_READY) or (CP->Tag == FEATHERED)) {
23         ...  handle overflow (decide what value(s) to discard)
24       } else { // CP->Tag = READY
25         CP->Tag = CHAN_OUT (XCHAN_DATA_OUT,Value,ALLOW_FEATHERING);
26         if (CP->Tag == SUCCESS) { 
27           CP->Tag = READY; // Finished
28         } else if (CP->Tag == FEATHERED) {
29           ...  handle not interested
30         } else { // CP->Tag == AWAIT_READY
31         }
32       }
33     } break;
34   }
35 }

Listing 1. Overflow and ‘feathered’ handling on an XCHAN (ANSI C and macros)

An XCHAN feathering solution (code)

37



Listing 2 - Feathering loss of semantic equivalence (occam)

01 ALT -- Feathering semantics hidden
02   condition.0 & in.0 ? x.0
03     ...  response 0
04   condition.1 & in.1 ? x.1
05     ...  response 1

10 IF -- No feathering:
11   condition.0 AND condition.1
12     ALT
13       in.0 ? x.0
14         ...  response 0
15       in.1 ? x.1
16         ...  response 1
17   condition.0 -- condition.1 must be FALSE
18     SEQ
19       in.0 ? x.0
20         ...  response 0
21   condition.1 -- condition.0 must be FALSE
22     SEQ
23       in.1 ? x.1
24         ...  response 1

occam semantic non-equivalence

However, the ALT in 
line 12 will never take 

part in any 
feathering, neither will 

the two SEQ blocks 
starting at lines 18 

and 22

Without feathering the two 
blocks of code (lines 1-5 and 
10-24) are equal

38



Asymmetry aspect 1

• Receiver defines when it is not interested (time 
window)

• But sender does not know about this (or 
anything at all) before it tries to send

39



Asymmetry aspect 2

• Sender gets to know that something had been 
deemed noninteresting by the receiver

• But receiver does not know that something 
consequently has not been sent

40



Pattern extends ALT up to a certain level only

• However, extra «symmetrifying» messaging for this 
will fast take us into application level publish-
subscribe pattern

• This is the price for keeping a «clean» ALT

41



Overhead 

• Uninterestingness is treated with application level 
receiver’s ALT transparently 

• Cycles saved should be more than cycles taken

• This will depend on message length

42



Abstraction 

• Not having to send and not having to treat not-
interesting messages is an «abstraction gain»

• «Cognitive message clutter» avoided

• Increases «non-determinsm»

43



Safe

• XCHAN with feathering is a safe concept:

• Overflow and dropping of uninteresting messages are 
both handled at application level 

• No overflow like malloc heap overflow, which causes 
restart

44



Selective choice ‘feathering’ with XCHANs

q u e s t i o n s ?

About the two pictures in the last slide

45



Front picture is a base of a structure in Porto Antico
in Genova, Italy. It holds a large tent, an elevator basket etc.

The last picture is from Museum Villa Croce Contemporary
in Genova, where we discovered a student uninteresting 

a text for a previous exhibition

Both © Øyvind Teig, 2013

Pictures

Thank you!

46


