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What is EPCC? 

• A leading European centre of novel and high-performance 

computing expertise based at the University of Edinburgh 

• Formed in 1990 and involved in: 

• Research 

• Collaboration 

• Training 

• Service provision 

• Technology transfer 

• Around 70 staff 

• Provide national services on behalf of RCUK 



Concurrent Programming and HPC 



HPC Architectures 

State of play and trends 



HPC == Parallel Computing  

• Scientific simulation and modelling drive the need for 

greater computing power. 

• Single systems can not be made that had enough 

resource for the simulations needed. 

• Making faster single chip is difficult due to both physical limitations 

and cost. 

• Adding more memory to single chip is expensive and leads to 

complexity. 

• Solution: parallel computing – divide up the work among 

numerous linked systems. 



Processors 
• Not many HPC processors any more 

• Use components designed for server and games industries 

• Exceptions: IBM Power, IBM BlueGene 

• Trends: 

• More concurrency – higher core counts per socket 

• Longer SIMD – vector-like instructions 

• Gating – to reduce power usage 

• Stabilisation of clock speeds – no increase but the downwards trend 

has slowed (at least for multicore processors) 

• Splitting into a number of classes 

• Complex multicore (2-3 GHz, Intel Xeon, IBM Power, AMD Opeteron) 

• Simpler manycore (1-2 GHz, Intel Xeon Phi IBM BG) 

• Heterogeneous processing (AMD Fusion, NVIDIA Denver) 

 



Accelerators 

• NVIDIA GPGPU and Intel Xeon Phi 
• Even more FP SIMD capability than CPUs 

• Simplified memory architectures (no NUMA, limited cache) 

• Simplified logic – limited support for branching, etc. 

• Usually linked to CPU via PCI express 
• Separate memory spaces – makes it difficult to get high 

performance 

• Some systems support socket-mounting of accelerators 
• Move from multi-core to many-core 

• Trend for convergence of CPU and accelerator 
technologies 

 



Memory 

• Amount of memory per processing element is generally 

reducing 

• Memory is expensive both in terms of cost and power 

• Often in a NUMA setup which can cause difficulties in extracting 

best performance 

• Trends: 

• Memory performance is increasing: reduction in latency, increase in 

bandwidth… 

• …but not as quickly as increases in concurrency 

• Accelerators are leading to a simplification of memory architecture 

but adding more constraints on realising performance 



IO  

• Local disk is being abandoned in favour of global, parallel 

filesystems 

• Often designed for high performance writing of a small 

number of large files – other modes do not give best 

performance 

• Trend is to larger parallel filesystems with more aggregate 

bandwidth 

• Moving data is now one of the most expensive operations 

• Lot of interest in mobile compute – bring the compute to the data 

• HPC systems must be collocated with long-term data storage  



Interconnects 

• Various interconnect technologies are converging on 

common hardware performance 

• Not much difference between commodity (Infiniband) and 

proprietary (Cray, IBM) hardware  

• Differences now come in the topologies, software stack, and 

support for alternative parallel models 

• Trends: 

• Moving network interfaces directly on to silicon 

• Using spare cores, hardware threads to support/control 

communications (core specialisation) 



National Services in Edinburgh 



HECToR 



Modelling dinosaur gaits 
Dr Bill Sellers, University of Manchester 

Fractal-based models of turbulent flows 
Christos Vassilicos & Sylvain Laizet,  

Imperial College 

Dye-sensitised solar cells 
F. Schiffmann and J. VandeVondele 
University of Zurich 
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HECToR Changes 

Phase 1 

(‘07-’09) 

Phase 2a 

(‘09-’10) 

Phase 2b 

(‘10-’11) 

Phase 3 

(‘11-now) 

Cabinets 60 60 20 30 

Cores 11,328 22,656 44,544 90,112 

Clock Speed 2.8 GHz 2.3 GHz 2.1 GHz 2.3 GHz 

Cores/Node 2 4 24 32 

Memory/Node 6 GB 

(3 GB/core) 

8 GB 

(2 GB/core) 

32 GB 

(1.3 GB/core) 

32 GB 

(1 GB/core) 

Interconnect 6 μs 

2 GB/s 

6 μs 

2 GB/s 

1 μs 

5 GB/s 

1 μs 

5 GB/s 



HECToR Jobs 
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Example: CP2K Development 

J. VandeVondele, ETHZ 





DiRAC BlueGene/Q 



BlueGene/Q: Co-design 
• 18 core, 1.6 GHz BGQ Chip, quad DP SIMD instructions, 

4 hardware threads per core 

• Low-latency, high-bandwidth interconnect: 5D torus 

• Designed in collaboration with Quantum Chromodynamics 

researchers 

• Runs QCD applications extremely well… 

• …but it can be difficult to get good performance for other 

applications 

• Non-commodity processors actually cause a problem 

here: 

• Compilers are not as well developed and key to getting 

performance is being able to generate SIMD instructions 

 



HPC Software Development 

Challenges for now and the future 



Exposing Parallelism 

• To be able to exploit modern HPC systems you need to 

be able to expose all levels of parallelism in your code: 

• SIMD/vector Instructions 

• Multicore (shared-memory) 

• Distributed memory 

• Data decomposition over distributed memory is the really 

hard part 

• Compilers do a good job of exploiting SIMD instructions and shared 

memory 

• Very hard for compilers to do the high-level analysis required so 

this is done by hand 



Parallel Programming Models 

• MPI is still dominant model 

• Performance is not ideal but it is very flexible – almost any 

combination of task and/or data parallelism can be implemented 

• Very portable – it is well supported on all HPC machines 

• Hybrid MPI+OpenMP has proven to be a useful model to 

get performance but introduces a lot of complexity 

• Which thread passes messages? 

• Process/thread placement becomes very important  

• Trends: 

• Domain-specific languages 

• Autotuning 

• Single-sided communications 

 



Legacy Code 

• Some HPC codes are older than me - there is a lot of time 

and expertise invested. 

• Should these be rewritten from scratch? 

• Can we improve the fundamental dependencies (e.g. MPI, PETSc, 

ScaLAPACK) to allow them to scale on modern/future 

architectures? 

• How can you encourage communities to migrate to new codes? 

• The parallel programming model and decomposition is 

often implicitly assumed throughout the code 

• Difficult to refactor or add additional levels of parallelism 

• Much effort spent in new parallel models but single 

biggest gain would be MPI improvement 



Other Issues 

• Memory Efficiency: 

• Amount of memory per core is decreasing but often want to run 

more complex simulations 

• Need to use multithreading to increase memory available without 

wasting compute resources 

• Accelerators: 

• Still need hand-crafted code to exploit them efficiently 

• How can we make these resources generally useful 

• Parallel IO: 

• 10,000 processes reading/writing at once? 

• How can you checkpoint PB of data? 



Final Thoughts 



2013 2017 2020 

System Perf. 34 PFlops 100-200 PFlops 1 EFlops 

Memory 1 PB 5 PB 10 PB 

Node Perf. 200 GFlops 400 GFlops 1-10 TFlops 

Concurrency 64 O(300) O(1000) 

Interconnect BW 40 GB/s 100 GB/s 200-400 GB/s 

Nodes 100,000 500,000 O(Million) 

I/O 2 TB/s 10 TB/s 20 TB/s 

MTTI Days Days O(1 Day) 

Power 20 MW 20 MW 20 MW 

What will future systems look like? 



Summary 

• Advances in hardware are outstripping ability of software 

to keep up 

• Hardware currently talking about exascale… 

• …struggling to get most codes to tera-/peta-scale 

• All about parallelism 

• High level parallelism is still constructed by hand. Efforts to expose 

this to the compiler underway. 

• Need to be memory efficient 

• Think carefully about data distribution 

• Is legacy code working or do you need to start over? 



Any questions? 

a.turner@epcc.ed.ac.uk 


