
Mutually Assured
Destruction

(or the Joy of Sync)

Mutually Assured Mutually Assured
DestructionDestruction

(or the Joy of Sync)(or the Joy of Sync)
tt

Peter Welch (phw@kent.ac.uk),
Jan Bækgaard Pedersen (matt.pedersen@unlv.edu)

Frederick R.M. Barnes (frmb@kent.ac.uk)

CPA 2013 Fringe, Napier University, 25 August, 2013

t t plus nonplus non--blocking barriers and performance blocking barriers and performance ……

25-Aug-2013 Copyright P.H.Welch, (2013) 2

The Joy of SyncThe Joy of SyncThe Joy of Sync
Process oriented design ...Process oriented design ...

Synchronous communications Synchronous communications ……

Synchronous Synchronous barriers barriers ……

Mutually assured destructionMutually assured destruction ……

NonNon--blocking barriers blocking barriers ……

PerformancePerformance ……

25-Aug-2013 Copyright P.H.Welch, (2013) 3

foo

bar

m
e
r
g
e

serverserver

(a) a network of three processes, connected by four (a) a network of three processes, connected by four
internal (hidden) and three external channels.internal (hidden) and three external chan

(b) three processes sharing the writing end(b) three processes sharing the writing end
of a channel to a server process.nels. of a channel to a server process.

s (0)s (0) s (7)s (7)...

...p (0) p (n-1)

(c) three processes sharing the writing end of a channel(c) three processes sharing the writing end of a channel
to a bank of servers sharing the reading end.to a bank of servers sharing the reading end.

(d) n processes enrolled on a shared barrier (any process (d) n processes enrolled on a shared barrier (any process
synchronising must wait for all to synchronise).synchronising must wait for all to synchronise).

25-Aug-2013 Copyright P.H.Welch, (2013) 4

foo

bar

m
e
r
g
e

aa bb

cc

dd

inin

leftleft

rightright

(a) a network of three processes, connected by four (a) a network of three processes, connected by four
internal (hidden) and three external channels.internal (hidden) and three external channels.

CHAN BYTE a, b, c, d:CHAN BYTE a, b, c, d:
PARPAR

foofoo (in?, left!, a?, b!, c!)(in?, left!, a?, b!, c!)
bar (a!, b?, d!)bar (a!, b?, d!)
merge (c?, d?, right!)merge (c?, d?, right!)

CHAN BYTE a, b, c, d:CHAN BYTE a, b, c, d:

25-Aug-2013 Copyright P.H.Welch, (2013) 5

thingthing

foo

bar

m
e
r
g
e

aa bb

cc

dd

inin

leftleft

rightright process process
abstractionabstraction

PROC thing (CHAN INT in?, left!, right!)PROC thing (CHAN INT in?, left!, right!)

::

CHAN BYTE a, b, c, d:CHAN BYTE a, b, c, d:
PARPAR

foofoo (in?, left!, a?, b!, c!)(in?, left!, a?, b!, c!)
bar (a!, b?, d!)bar (a!, b?, d!)
merge (c?, d?, right!)merge (c?, d?, right!)

CHAN BYTE a, b, c, d:CHAN BYTE a, b, c, d:

25-Aug-2013 Copyright P.H.Welch, (2013) 6

inin

foo

bar

m
e
r
g
e

aa bb

cc

dd

thingthing

leftleft

process process
abstractionabstraction

rightright

CHAN BYTE a, b, c, d:CHAN BYTE a, b, c, d:
PARPAR

foofoo (in?, left!, a?, b!, c!)(in?, left!, a?, b!, c!)
bar (a!, b?, d!)bar (a!, b?, d!)
merge (c?, d?, right!)merge (c?, d?, right!)

CHAN BYTE a, b, c, d:CHAN BYTE a, b, c, d:
PROC thing (CHAN INT in?, left!, right!)PROC thing (CHAN INT in?, left!, right!)

::

25-Aug-2013 Copyright P.H.Welch, (2013) 7

process process
abstractionabstraction

inin

rightrightleftleft
thingthing

PROC thing (CHAN INT in?, left!, right!)PROC thing (CHAN INT in?, left!, right!)

Like foofoo, barbar and mergemerge previously, thingthing is a process that can
be used as a component in another network.

Concurrent systems have structure – networks within networks.
We must be able to express this! And we can … ☺☺ ☺☺ ☺☺

25-Aug-2013 Copyright P.H.Welch, (2013) 8

serverserver
cc

(b) three processes sharing the writing end(b) three processes sharing the writing end
of a channel to a server process.of a channel to a server process.

PARPAR
circle (c!)circle (c!)
triangle (c!)triangle (c!)
square (c!)square (c!)
server (c?)server (c?)

SHARED ! CHAN SOME.SERVICE c:SHARED ! CHAN SOME.SERVICE c:

25-Aug-2013 Copyright P.H.Welch, (2013) 9

PARPAR
PARPAR

circle (c!)circle (c!)
triangle (c!)triangle (c!)
square (c!)square (c!)

PAR i = 0 FOR 8PAR i = 0 FOR 8
s (i, c?)s (i, c?)

SHARED CHAN ANOTHER.SERVICE c:SHARED CHAN ANOTHER.SERVICE c:

s (0)s (0) s (7)s (7)...
cc

(c) three processes sharing the writing end of a channel(c) three processes sharing the writing end of a channel
to a bank of servers sharing the reading end.to a bank of servers sharing the reading end.

25-Aug-2013 Copyright P.H.Welch, (2013) 10

PAR i = 0 FOR n ENROLL bPAR i = 0 FOR n ENROLL b
p (i, b)p (i, b)

BARRIER b:BARRIER b:

...p (0) p (n-1)

bb

(d) n processes enrolled on a shared barrier (any process (d) n processes enrolled on a shared barrier (any process
synchronising must wait for all to synchronise).synchronising must wait for all to synchronise).

25-Aug-2013 Copyright P.H.Welch, (2013) 11

The Joy of SyncThe Joy of SyncThe Joy of Sync
Process oriented design ...Process oriented design ...

Synchronous communications Synchronous communications ……

Synchronous Synchronous barriers barriers ……

Mutually assured destructionMutually assured destruction ……

NonNon--blocking barriers blocking barriers ……

PerformancePerformance ……

25-Aug-2013 Copyright P.H.Welch, (2013) 12

Synchronised CommunicationSynchronisedSynchronised CommunicationCommunication

(A (c) || B (c))(A (c) || B (c)) \\ {c}{c}

cAA BB

BB may readread from cc at any time, but has to wait for a writewrite.

c ? x

AA may writewrite on cc at any time, but has to wait for a readread.

c ! 42

25-Aug-2013 Copyright P.H.Welch, (2013) 13

Synchronised CommunicationSynchronisedSynchronised CommunicationCommunication

(A (c) || B (c))(A (c) || B (c)) \\ {c}{c}

cAA BB

Only when both AA and BB are ready can the communication
proceed over the channel cc.

c ? xc ! 42

25-Aug-2013 Copyright P.H.Welch, (2013) 14

Synchronised CommunicationSynchronisedSynchronised CommunicationCommunication
c BBAA

�� BenefitBenefit
�Once the writer has written, it knowsknows the reader has read

�� CarefulCareful
�Writer blocks if reader is not ready
� Lots of deadlock possibilities

OK: plenty of other processes to OK: plenty of other processes to
run and ultrarun and ultra--fast context switch fast context switch
(comparable to a procedure call)(comparable to a procedure call)

OK: work with (a small set of) OK: work with (a small set of)
synchronisation patterns for which synchronisation patterns for which
we have proven safety theoremswe have proven safety theorems

25-Aug-2013 Copyright P.H.Welch, (2013) 15

Simple Deadlock ExampleSimple Deadlock ExampleSimple Deadlock Example
c

d
AA BB

If there is no discipline on when AA and BB communicate, then
AA may commit to output on cc, followed by BB on dd … or vice-
versa. Either way, neither are listening and both are stuck.
Same happens if both commit to input.

/ / / / /

25-Aug-2013 Copyright P.H.Welch, (2013) 16

Client-Server PatternClientClient--Server PatternServer Pattern
request

reply
clientclient serverserver

clientclient : makes a requestrequest any time, then commits to taking replyreply.

serverserver : always accepts a requestrequest (within some bounded time),
then always makes a replyreply (within some bounded time). It may
make requests itself, as a clientclient to other serversservers.

No deadlock is now possible from No deadlock is now possible from
this clientthis client--server relationship.server relationship. ☺ ☺ ☺ ☺ ☺

25-Aug-2013 Copyright P.H.Welch, (2013) 17

Client-Server PatternClientClient--Server PatternServer Pattern

clientclient serverserver

clientclient : makes a requestrequest any time, then commits to taking replyreply.

serverserver : always accepts a requestrequest (within some bounded time),
then always makes a replyreply (within some bounded time). It may
make requests itself, as a clientclient to other serversservers.

SymbologySymbology:: this representsthis represents
a clienta client--server relation. It points server relation. It points toto the the

server and allows a server and allows a 22--wayway conversationconversation
(initiated by the client)(initiated by the client)

25-Aug-2013 Copyright P.H.Welch, (2013) 18

Client-Server PatternClientClient--Server PatternServer Pattern
A serverserver may have many clientsclients …

Only one clientclient at a time converses with the serverserver . They form
an orderly queue. Still no deadlock possible – and no clientclient
starvation. No polling on the queue, so no livelock either.

25-Aug-2013 Copyright P.H.Welch, (2013) 19

Client-Server TheoremClientClient--Server TheoremServer Theorem
A clientclient--serverserver system that has no cycles in its clientclient--serverserver
relations is deadlock, livelock and starvation free.

25-Aug-2013 Copyright P.H.Welch, (2013) 20

The Joy of SyncThe Joy of SyncThe Joy of Sync
Process oriented design ...Process oriented design ...

Synchronous communications Synchronous communications ……

Synchronous Synchronous barriers barriers ……

Mutually assured destructionMutually assured destruction ……

NonNon--blocking barriers blocking barriers ……

PerformancePerformance ……

25-Aug-2013 Copyright P.H.Welch, (2013) 21

BarriersBarriersBarriers
The occamoccam--ππ BARRIERBARRIER type corresponds to a multiway CSPCSP
eventevent, though some higher level design patterns (such as
resignationresignation) have been built in.

bb

worker (0) worker (1) worker (n-1)···

Basic CSPCSP semantics apply. When a process synchronisessynchronises
on a barrier, it blocks until all other processes enrolledenrolled on
the barrier have also synchronisedsynchronised. Once the barrier has
completed (i.e. all enrolledenrolled processes have synchronisedsynchronised),
all blocked processes are rescheduled for execution.

25-Aug-2013 Copyright P.H.Welch, (2013) 22

BarriersBarriersBarriers
The occamoccam--ππ BARRIERBARRIER type corresponds to a multiway CSPCSP
eventevent, though some higher level design patterns (such as
resignationresignation) have been built in.

bb

worker (0) worker (1) worker (n-1)···

BARRIERBARRIER bb::
PARPAR i = 0 FOR n i = 0 FOR n ENROLLENROLL bb
worker (i, worker (i, bb))

The number of processes enrolled on
an in-scope barrier is unchanged by a

non-enrolling PAR – but only one of
its components may reference it.

The number of processes enrolled on
an in-scope barrier is unchanged by a

non-enrolling PARPAR – but only one of
its components may reference it.

A PARPAR construct must
explicitly ENROLLENROLL its

components on barriers

25-Aug-2013 Copyright P.H.Welch, (2013) 23

BarriersBarriersBarriers
Processes may synchronise on more than one barrier:

cc
bb

worker (0) worker (1) worker (n-1)···

BARRIERBARRIER bb,, cc::
PARPAR i = 0 FOR n i = 0 FOR n ENROLLENROLL bb, , cc
worker (i, worker (i, bb, , cc))

To synchronise on a barrier:

orSYNCSYNC bb SYNCSYNC cc

25-Aug-2013 Copyright P.H.Welch, (2013) 24

BarriersBarriersBarriers

PROC worker (VAL INT id,PROC worker (VAL INT id, BARRIER bBARRIER b,, cc))
... ... local declarations / initialisationlocal declarations / initialisation
WHILE runningWHILE running
SEQSEQ
SYNC bSYNC b
... ... observe neighbourhood phaseobserve neighbourhood phase
SYNC cSYNC c
... ... change neighbourhood phasechange neighbourhood phase

::

Barriers are commonly used to synchronise multiple phasesphases
of computation between a set of processes. Within each
phase, other synchronisations (channel / barrier) may take
place:

All workers do this All workers do this
together together –– all see the all see the

same thing same thing ……

All workers do this All workers do this
together together –– may need may need

to negotiate to negotiate ……

25-Aug-2013 Copyright P.H.Welch, (2013) 25

PROC worker (VAL INT id,PROC worker (VAL INT id, BARRIER bBARRIER b,, cc))
... ... local declarations / initialisationlocal declarations / initialisation
WHILE runningWHILE running
SEQSEQ
SYNC bSYNC b
... ... observe neighbourhood phaseobserve neighbourhood phase
SYNC cSYNC c
... ... change neighbourhood phasechange neighbourhood phase

::

PROC worker (VAL INT id,PROC worker (VAL INT id, BARRIER aBARRIER a))
... ... local declarations / initialisationlocal declarations / initialisation
WHILE runningWHILE running
SEQSEQ
SYNC aSYNC a
... ... observe neighbourhood phaseobserve neighbourhood phase
SYNC aSYNC a
... ... change neighbourhood phasechange neighbourhood phase

::

Of course, only oneone barrier is actually needed to synchronise
the phases in this example:

BarriersBarriersBarriers

All workers do this All workers do this
together together –– all see the all see the

same thing same thing ……

All workers do this All workers do this
together together –– may need may need

to negotiate to negotiate ……

But it’s safer programming for

each phase to be synchronised

by its own barrier …

25-Aug-2013 Copyright P.H.Welch, (2013) 26

Barriers – SafetyBarriers Barriers –– SafetySafety

occamoccam--ππ BARRIERBARRIER synchronisationsynchronisation is is safesafe in the sense that in the sense that
enrollmentenrollment and and resignationresignation are automatically managed. A are automatically managed. A
process may process may synchronisesynchronise on a on a BARRIERBARRIER if and only if it is if and only if it is
enrolledenrolled..

Try to break this rule … your program won’t compile. There
are zero memory and run-time costs to enforce it. ☺
Try to break this rule … your program won’t compile. There
are zero memory and run-time costs to enforce it. ☺☺

25-Aug-2013 Copyright P.H.Welch, (2013) 27

The Joy of SyncThe Joy of SyncThe Joy of Sync
Process oriented design ...Process oriented design ...

Synchronous communications Synchronous communications ……

Synchronous Synchronous barriers barriers ……

Mutually assured destructionMutually assured destruction ……

NonNon--blocking barriers blocking barriers ……

PerformancePerformance ……

25-Aug-2013 Copyright P.H.Welch, (2013) 28

Mutually Assured DestructionMutually Assured DestructionMutually Assured Destruction
Two processes are given, at the same time, their own Two processes are given, at the same time, their own
task to complete; we are satisfied with the completion task to complete; we are satisfied with the completion
of either one of them; whichever process finishes first of either one of them; whichever process finishes first
interrupts the other and reports its completion; the one interrupts the other and reports its completion; the one
that is interrupted abandons its task and reports that that is interrupted abandons its task and reports that
fact.fact.

Such requirements are common in control systems, Such requirements are common in control systems,
robotics, erobotics, e--commerce, modelcommerce, model--checking, checking, ……

–– Drive rover vehicle forwards Drive rover vehicle forwards targettarget meters.meters.
–– Look out for Look out for MartiansMartians..
–– Stop and report when either is achieved.Stop and report when either is achieved.

e.g.e.g.

25-Aug-2013 Copyright P.H.Welch, (2013) 29

aa

bb

MADsystemMADsystem

motorSensormotorSensor cameraSensorcameraSensor

moveReportmoveReport searchReportsearchReport
moveCommandmoveCommand searchCommandsearchCommand

monitor monitor
(move)(move)

monitor monitor
(search)(search)

–– Drive rover vehicle forwards Drive rover vehicle forwards targettarget meters.meters.
–– Look out for Look out for MartiansMartians..
–– Stop and report when either is achieved.Stop and report when either is achieved.

e.g.e.g.

25-Aug-2013 Copyright P.H.Welch, (2013) 30

PROTOCOLPROTOCOL REPORTREPORT
CASECASE

meme ---- task completedtask completed
she she ---- task abandonedtask abandoned

::

killMekillMe

killYoukillYou

sensorsensor

reportreport
commandcommand

monitor monitor
(mode)(mode)

PROTOCOLPROTOCOL KILLKILL
CASECASE

killkill
::

INTINT

INTINT

25-Aug-2013 Copyright P.H.Welch, (2013) 31

killMekillMe

killYoukillYou

sensorsensor

commandcommandreportreport

sensorsensor

commandcommand

monitor monitor
(mode)(mode)

PROC monitor (VAL INT mode, CHAN INT command?, sensor?,PROC monitor (VAL INT mode, CHAN INT command?, sensor?,
CHAN REPORT CHAN REPORT reportreport!,!,
CHAN KILL CHAN KILL killYoukillYou!, !, killMekillMe?)?)

::

service (mode, target, sensor?, report!,service (mode, target, sensor?, report!,
killYoukillYou!, !, killMekillMe?)?)

SKIPSKIP

WHILE TRUEWHILE TRUE
PRI ALTPRI ALT

INT target:INT target:
command ? target command ? target ---- service requestedservice requested

INT x:INT x:
sensor ? x sensor ? x ---- accept and discardaccept and discard

25-Aug-2013 Copyright P.H.Welch, (2013) 32

killMekillMe

killYoukillYou

sensorsensor

reportreport commandcommand

monitor monitor
(mode)(mode)

PROC service (VAL INT mode, target, CHAN INT sensor?,PROC service (VAL INT mode, target, CHAN INT sensor?,
CHAN REPORT CHAN REPORT reportreport!,!,
CHAN KILL CHAN KILL killYoukillYou!, !, killMekillMe?)?)

... local state and initialisation... local state and initialisation
INITIAL BOOL running IS TRUE:INITIAL BOOL running IS TRUE:
WHILE runningWHILE running

PRI ALTPRI ALT
killMekillMe ? kill? kill
... report ... report ‘‘sheshe’’ and exit loopand exit loop

INT x:INT x:
sensor ? xsensor ? x
... process x... process x

::

25-Aug-2013 Copyright P.H.Welch, (2013) 33

killMekillMe

killYoukillYou

sensorsensor

reportreport commandcommand

monitor monitor
(mode)(mode)

killMekillMe ? kill? kill
SEQSEQ

report ! shereport ! she
running := FALSErunning := FALSE

25-Aug-2013 Copyright P.H.Welch, (2013) 34

PROC service (VAL INT mode, target, CHAN INT sensor?,PROC service (VAL INT mode, target, CHAN INT sensor?,
CHAN REPORT CHAN REPORT reportreport!,!,
CHAN KILL CHAN KILL killYoukillYou!, !, killMekillMe?)?)

... local state and initialisation... local state and initialisation
INITIAL BOOL running IS TRUE:INITIAL BOOL running IS TRUE:
WHILE runningWHILE running

PRI ALTPRI ALT
killMekillMe ? kill? kill
... report ... report ‘‘sheshe’’ and exit loopand exit loop

INT x:INT x:
sensor ? xsensor ? x
... process x... process x

::

killMekillMe

killYoukillYou

sensorsensor

reportreport commandcommand

monitor monitor
(mode)(mode)

25-Aug-2013 Copyright P.H.Welch, (2013) 35

killYoukillYou

killMekillMe

sensorsensor

reportreport commandcommand

monitor monitor
(mode)(mode)

INT x:INT x:
sensor ? xsensor ? x

SEQSEQ
.... update local state with x (depends on mode).. update local state with x (depends on mode)
IFIF
... task complete... task complete

SEQSEQ
killYoukillYou ! kill! kill
report ! mereport ! me
running := FALSErunning := FALSE

TRUETRUE
SKIPSKIP

::

25-Aug-2013 Copyright P.H.Welch, (2013) 36

aa

bb

MADsystemMADsystem

motorSensormotorSensor cameraSensorcameraSensor

moveReportmoveReport searchReportsearchReport
moveCommandmoveCommand searchCommandsearchCommand

monitor monitor
(move)(move)

monitor monitor
(search)(search)

PROC PROC MADsystemMADsystem (CHAN INT (CHAN INT moveCommandmoveCommand?, ?, searchCommandsearchCommand?,?,
CHAN INT CHAN INT motorSensormotorSensor?, ?, cameraSensorcameraSensor?, ?,
CHAN REPORT CHAN REPORT moveReportmoveReport!, !, searchReportsearchReport!)!)

CHAN KILL a, b:CHAN KILL a, b:
PARPAR

monitor (move, monitor (move, moveCommandmoveCommand?, ?, motorSensormotorSensor?,?,
moveReportmoveReport!, b!, a?)!, b!, a?)

monitor (search, monitor (search, searchCommandsearchCommand?, ?, cameraSensorcameraSensor?,?,
searchReportsearchReport!, a!, b?)!, a!, b?)

::

25-Aug-2013 Copyright P.H.Welch, (2013) 37

average sensor data interval = 10 ms (randomised)average sensor data interval = 10 ms (randomised)
average sensor inputs per service = 100 (randomised)Soak TestingSoak TestingSoak Testing average sensor inputs per service = 100 (randomised)

MADsystemMADsystem

motorSensormotorSensor cameraSensorcameraSensor

moveReportmoveReport searchReportsearchReport
moveCommandmoveCommand searchCommandsearchCommand

motorSimmotorSim cameraSimcameraSim

controllerSimcontrollerSim

Ran for 30 days (approx. 2.5m trials): P A S S E DRan for 30 days (approx. 2.5m trials): P A S S E DRan for 30 days (approx. 2.5m trials): P A S S E D

25-Aug-2013 Copyright P.H.Welch, (2013) 38

average sensor data interval = 10 ms (varying)average sensor data interval = 10 ms (varying)
average sensor inputs per service = 100 (varying)In ServiceIn ServiceIn Service average sensor inputs per service = 100 (varying)

MADsystemMADsystem

motorSensormotorSensor cameraSensorcameraSensor

moveReportmoveReport searchReportsearchReport
moveCommandmoveCommand searchCommandsearchCommand

// // //Ran for 2 years (approx. 64m trials): D E A D L O C K E DRan for 2 years (approx. 64m trials): D E A D L O C K E DRan for 2 years (approx. 64m trials): D E A D L O C K E D

25-Aug-2013 Copyright P.H.Welch, (2013) 39

Should have asked for a model check …Should have asked for a model check Should have asked for a model check ……

✗VERIFY VERIFY DEADLOCK.FREEDEADLOCK.FREE MADsystemMADsystem

MADsystemMADsystem

motorSensormotorSensor cameraSensorcameraSensor

moveReportmoveReport searchReportsearchReport
moveCommandmoveCommand searchCommandsearchCommand

A trace leading to deadlock is provided:A trace leading to deadlock is provided:

<moveCommand, motorSensor, searchCommand, cameraSensor><<moveCommandmoveCommand, , motorSensormotorSensor, , searchCommandsearchCommand, , cameraSensorcameraSensor>>

25-Aug-2013 Copyright P.H.Welch, (2013) 40

Should have asked for a model check …Should have asked for a model check Should have asked for a model check ……

A trace leading to deadlock is provided:A trace leading to deadlock is provided:

<moveCommand, motorSensor, searchCommand, cameraSensor><<moveCommandmoveCommand, , motorSensormotorSensor, , searchCommandsearchCommand, , cameraSensorcameraSensor>>

aa

bb

MADsystemMADsystem

motorSensormotorSensor cameraSensorcameraSensor

moveReportmoveReport searchReportsearchReport
moveCommandmoveCommand searchCommandsearchCommand

monitor monitor
(move)(move)

monitor monitor
(search)(search)

25-Aug-2013 Copyright P.H.Welch, (2013) 41

<moveCommand, motorSensor,
searchCommand, cameraSensor>
<<moveCommandmoveCommand, , motorSensormotorSensor, ,
searchCommandsearchCommand, , cameraSensorcameraSensor>>

killMekillMe

killYoukillYou

sensorsensor

reportreport commandcommand

PROC monitor (VAL INT mode, CHAN INT command?, sensor?,PROC monitor (VAL INT mode, CHAN INT command?, sensor?,
CHAN REPORT CHAN REPORT reportreport!,!,
CHAN KILL CHAN KILL killYoukillYou!, !, killMekillMe?)?)

::

service (mode, target, sensor?, report!,service (mode, target, sensor?, report!,
killYoukillYou!, !, killMekillMe?)?)

SKIPSKIP

WHILE TRUEWHILE TRUE
PRI ALTPRI ALT

INT target:INT target:
command ? target command ? target ---- service requestedservice requested

INT x:INT x:
sensor ? x sensor ? x ---- accept and discardaccept and discard

sensorsensor

commandcommand

monitor monitor
(mode)(mode)

<moveCommand, motorSensor,
searchCommand, cameraSensor>
<<moveCommandmoveCommand, , motorSensormotorSensor, ,
searchCommandsearchCommand, , cameraSensorcameraSensor>>

25-Aug-2013 Copyright P.H.Welch, (2013) 42

killMekillMe

killYoukillYou

sensorsensor

reportreport commandcommand

monitor monitor
(mode)(mode)

<moveCommand, motorSensor,
searchCommand, cameraSensor>
<<moveCommandmoveCommand, , motorSensormotorSensor, ,
searchCommandsearchCommand, , cameraSensorcameraSensor>>
<moveCommand, motorSensor,
searchCommand, cameraSensor>
<<moveCommandmoveCommand, , motorSensormotorSensor, ,
searchCommandsearchCommand, , cameraSensorcameraSensor>>

PROC service (VAL INT mode, target, CHAN INT sensor?,PROC service (VAL INT mode, target, CHAN INT sensor?,
CHAN REPORT CHAN REPORT reportreport!,!,
CHAN KILL CHAN KILL killYoukillYou!, !, killMekillMe?)?)

... local state and initialisation... local state and initialisation
INITIAL BOOL running IS TRUE:INITIAL BOOL running IS TRUE:
WHILE runningWHILE running

PRI ALTPRI ALT
killMekillMe ? kill? kill
... report ... report ‘‘sheshe’’ and exit loopand exit loop

INT x:INT x:
sensor ? xsensor ? x
... process x... process x

::

25-Aug-2013 Copyright P.H.Welch, (2013) 43

killYoukillYou

killMekillMe

sensorsensor

reportreport commandcommand

monitor monitor
(mode)(mode)

<moveCommand, motorSensor,
searchCommand, cameraSensor>
<<moveCommandmoveCommand, , motorSensormotorSensor, ,
searchCommandsearchCommand, , cameraSensorcameraSensor>>

INT x:INT x:
sensor ? xsensor ? x

SEQSEQ
.... update local state with x (depends on mode).. update local state with x (depends on mode)
IFIF
... task complete... task complete

SEQSEQ
killYoukillYou ! kill! kill
report ! mereport ! me
running := FALSErunning := FALSE

TRUETRUE
SKIPSKIP

::

25-Aug-2013 Copyright P.H.Welch, (2013) 44

INT x:INT x:
sensor ? xsensor ? x

SEQSEQ
.... update local state with x (depends on mode).. update local state with x (depends on mode)
IFIF
... task complete... task complete

SEQSEQ
killYoukillYou ! kill! kill
report ! mereport ! me
running := FALSErunning := FALSE

TRUETRUE
SKIPSKIP

::

killYoukillYou

killMekillMe

sensorsensor

reportreport commandcommand

monitor monitor
(mode)(mode)

Kill WindowKill Window

If the kill windows of If the kill windows of
the two monitors the two monitors
overlap, both will try overlap, both will try
to kill the other to kill the other ––
resulting in deadlock.resulting in deadlock.

25-Aug-2013 Copyright P.H.Welch, (2013) 45

INT x:INT x:
sensor ? xsensor ? x

SEQSEQ
.... update local state with x (depends on mode).. update local state with x (depends on mode)
IFIF
... task complete... task complete

SEQSEQ
killYoukillYou ! kill! kill
report ! mereport ! me
running := FALSErunning := FALSE

TRUETRUE
SKIPSKIP

::

Kill WindowKill Window

average sensor data interval = 10 ms (randomised)average sensor data interval = 10 ms (randomised)
average sensor inputs per service = 100 (randomised)average sensor inputs per service = 100 (randomised)
ÎÎ
average service time = 1 secondaverage service time = 1 second
kill window = 100 nanoseconds (approx.)kill window = 100 nanoseconds (approx.)
ÎÎ
chance of kill window overlap (deadlock) = 1/10,000,000chance of kill window overlap (deadlock) = 1/10,000,000
ÎÎ
time before 50% chance of deadlock = 90 days (approx.)time before 50% chance of deadlock = 90 days (approx.)

average sensor data interval = 10 ms (randomised)average sensor data interval = 10 ms (randomised)
average sensor inputs per service = 100 (randomised)average sensor inputs per service = 100 (randomised)
ÎÎ
average service time = 1 secondaverage service time = 1 second
kill window = 100 nanoseconds (approx.)kill window = 100 nanoseconds (approx.)
ÎÎ
chance of kill window overlap (deadlock) = 1/10,000,000chance of kill window overlap (deadlock) = 1/10,000,000

average sensor data interval = 10 ms (randomised)average sensor data interval = 10 ms (randomised)
average sensor inputs per service = 100 (randomised)average sensor inputs per service = 100 (randomised)
ÎÎ
average service time = 1 secondaverage service time = 1 second
kill window = 100 nanoseconds (approx.)kill window = 100 nanoseconds (approx.)

average sensor data interval = 10 ms (randomised)average sensor data interval = 10 ms (randomised)
average sensor inputs per service = 100 (randomised)average sensor inputs per service = 100 (randomised)
ÎÎ
average service time = 1 secondaverage service time = 1 second

average sensor data interval = 10 ms (randomised)average sensor data interval = 10 ms (randomised)
average sensor inputs per service = 100 (randomised)average sensor inputs per service = 100 (randomised)

25-Aug-2013 Copyright P.H.Welch, (2013) 46

chance of kill window overlap (deadlock) = 1/10,000,000chance of kill window overlap (deadlock) = 1/10,000,000
This assumes each monitor runs on its own dedicated core This assumes each monitor runs on its own dedicated core ……
CCSP multicore scheduler dynamically CCSP multicore scheduler dynamically bacthesbacthes processes to cores processes to cores ……
If monitors are in the same batch, they will not deadlock If monitors are in the same batch, they will not deadlock ……

INT x:INT x:
sensor ? xsensor ? x

SEQSEQ
.... update local state with x (depends on mode).. update local state with x (depends on mode)
IFIF
... task complete... task complete

SEQSEQ
killYoukillYou ! kill! kill
report ! mereport ! me
running := FALSErunning := FALSE

TRUETRUE
SKIPSKIP

::

Kill WindowKill Window
chance of kill window overlap (deadlock) = 1/100,000,000 (approxchance of kill window overlap (deadlock) = 1/100,000,000 (approx.).)
ÎÎ
time before 50% chance of deadlock = 2 years (approx.)time before 50% chance of deadlock = 2 years (approx.)

25-Aug-2013 Copyright P.H.Welch, (2013) 47

Mutually Assured Destruction
(revised implementation)

Mutually Assured DestructionMutually Assured Destruction
(revised implementation)(revised implementation)

Communication between the monitors is mostly a Communication between the monitors is mostly a oneone--
wayway kill (from killer to killed). Deadlock happens when kill (from killer to killed). Deadlock happens when
both turn killer both turn killer –– twotwo--wayway communications.communications.

Idea:Idea: make communication between the monitors make communication between the monitors alwaysalways
twotwo--wayway –– either a either a killkill in both directions (should both in both directions (should both
tasks complete around the same time) or a tasks complete around the same time) or a killkill in one in one
direction followed by an direction followed by an ackack in the other (which will be in the other (which will be
most of the time).most of the time).

Claim:Claim: this eliminates all deadlock (at the cost of an extra this eliminates all deadlock (at the cost of an extra
ackack).).

25-Aug-2013 Copyright P.H.Welch, (2013) 48

PROTOCOLPROTOCOL REPORTREPORT
CASECASE

meme ---- task completedtask completed
she she ---- task abandonedtask abandoned

::

killMekillMe

killYoukillYou

sensorsensor

reportreport
commandcommand

monitor monitor
(mode)(mode)

PROTOCOLPROTOCOL KILLKILL
CASECASE

killkill
::

INTINT

INTINT

Previously …Previously Previously ……

25-Aug-2013 Copyright P.H.Welch, (2013) 49

killMekillMe

killYoukillYou

sensorsensor

reportreport
commandcommand

monitormonitor’’
(mode)(mode)

INTINT

INTINT

PROTOCOLPROTOCOL REPORTREPORT’’
CASECASE

meme ---- task completedtask completed
she she ---- task abandonedtask abandoned
bothboth ---- both completedboth completed

::

PROTOCOLPROTOCOL KILLKILL’’
CASECASE

killkill
ackack

::

25-Aug-2013 Copyright P.H.Welch, (2013) 50

killMekillMe

killYoukillYou

sensorsensor

commandcommandreportreport

sensorsensor

commandcommand

monitormonitor’’
(mode)(mode)

PROC monitorPROC monitor’’ (VAL INT mode, CHAN INT command?, sensor?,(VAL INT mode, CHAN INT command?, sensor?,
CHAN REPORTCHAN REPORT’’ report!,report!,
CHAN KILLCHAN KILL’’ killYoukillYou!, !, killMekillMe?)?)

::

serviceservice’’ (mode, target, sensor?, report!,(mode, target, sensor?, report!,
killYoukillYou!, !, killMekillMe?)?)

SKIPSKIP

WHILE TRUEWHILE TRUE
PRI ALTPRI ALT

INT target:INT target:
command ? target command ? target ---- service requestedservice requested

INT x:INT x:
sensor ? x sensor ? x ---- accept and discardaccept and discard

25-Aug-2013 Copyright P.H.Welch, (2013) 51

Previously …Previously Previously ……

killMekillMe

killYoukillYou

sensorsensor

reportreport commandcommand

monitor monitor
(mode)(mode)

PROC service (VAL INT mode, target, CHAN INT sensor?,PROC service (VAL INT mode, target, CHAN INT sensor?,
CHAN REPORT report!,CHAN REPORT report!,
CHAN KILL CHAN KILL killYoukillYou!, !, killMekillMe?)?)

... local state and initialisation... local state and initialisation
INITIAL BOOL running IS TRUE:INITIAL BOOL running IS TRUE:
WHILE runningWHILE running

PRI ALTPRI ALT
killMekillMe ? kill? kill
... report ... report ‘‘sheshe’’ and exit loopand exit loop

INT x:INT x:
sensor ? xsensor ? x
... process x... process x

::

25-Aug-2013 Copyright P.H.Welch, (2013) 52

killMekillMe

killYoukillYou

sensorsensor

reportreport commandcommand

monitormonitor’’
(mode)(mode)

PROC servicePROC service’’ (VAL INT mode, target, CHAN INT sensor?,(VAL INT mode, target, CHAN INT sensor?,
CHAN REPORTCHAN REPORT’’ report!,report!,
CHAN KILLCHAN KILL’’ killYoukillYou!, !, killMekillMe?)?)

... local state and initialisation... local state and initialisation
INITIAL BOOL running IS TRUE:INITIAL BOOL running IS TRUE:
WHILE runningWHILE running

PRI ALTPRI ALT
killMekillMe ? kill? kill
... ... ‘‘ackack’’ the kill, report the kill, report ‘‘sheshe’’ and exit loopand exit loop

INT x:INT x:
sensor ? xsensor ? x
... process x... process x

::

25-Aug-2013 Copyright P.H.Welch, (2013) 53

Previously …Previously Previously ……

killMekillMe

killYoukillYou

sensorsensor

reportreport commandcommand

monitor monitor
(mode)(mode)

killMekillMe ? kill? kill
SEQSEQ

report ! shereport ! she
running := FALSErunning := FALSE

25-Aug-2013 Copyright P.H.Welch, (2013) 54

killMekillMe

killYoukillYou

sensorsensor

reportreport commandcommand

monitormonitor’’
(mode)(mode)

killMekillMe ? kill? kill
SEQSEQ

killYoukillYou ! ! ackack
report ! shereport ! she
running := FALSErunning := FALSE

25-Aug-2013 Copyright P.H.Welch, (2013) 55

killMekillMe

killYoukillYou

sensorsensor

reportreport commandcommand

monitormonitor’’
(mode)(mode)

PROC servicePROC service’’ (VAL INT mode, target, CHAN INT sensor?,(VAL INT mode, target, CHAN INT sensor?,
CHAN REPORTCHAN REPORT’’ report!,report!,
CHAN KILLCHAN KILL’’ killYoukillYou!, !, killMekillMe?)?)

... local state and initialisation... local state and initialisation
INITIAL BOOL running IS TRUE:INITIAL BOOL running IS TRUE:
WHILE runningWHILE running

PRI ALTPRI ALT
killMekillMe ? kill? kill
... ... ‘‘ackack’’ the kill, report the kill, report ‘‘sheshe’’ and exit loopand exit loop

INT x:INT x:
sensor ? xsensor ? x
... process x... process x

::

25-Aug-2013 Copyright P.H.Welch, (2013) 56

Previously …Previously Previously ……

killYoukillYou

killMekillMe

sensorsensor

reportreport commandcommand

monitor monitor
(mode)(mode)

INT x:INT x:
sensor ? xsensor ? x

SEQSEQ
.... update local state with x (depends on mode).. update local state with x (depends on mode)
IFIF
... task complete... task complete

SEQSEQ
killYoukillYou ! kill! kill
report ! mereport ! me
running := FALSErunning := FALSE

TRUETRUE
SKIPSKIP

::

25-Aug-2013 Copyright P.H.Welch, (2013) 57

killYoukillYou

killMekillMe

sensorsensor

reportreport commandcommand

monitormonitor’’
(mode)(mode)

Each process knows what happened Each process knows what happened
in the other in the other –– potentially a very useful potentially a very useful
side benefit.side benefit.

INT x:INT x:
sensor ? xsensor ? x

SEQSEQ
.... update local state with x (depends on mode).. update local state with x (depends on mode)
IFIF
... task complete... task complete

SEQSEQ
PARPAR
killYoukillYou ! kill ! kill ---- send andsend and
killMekillMe ? CASE ? CASE ---- receive in parallelreceive in parallel

ackack
report ! mereport ! me

killkill
report ! bothreport ! both

running := FALSErunning := FALSE
TRUETRUE

SKIPSKIP
::

25-Aug-2013 Copyright P.H.Welch, (2013) 58

killYoukillYou

killMekillMe

sensorsensor

reportreport commandcommand

monitormonitor’’
(mode)(mode)

Key state information could easily be Key state information could easily be
piggypiggy--backed on thebacked on the killkill andand ackack
signals signals –– i.e. each process would i.e. each process would
know what the other found.know what the other found.

INT x:INT x:
sensor ? xsensor ? x

SEQSEQ
.... update local state with x (depends on mode).. update local state with x (depends on mode)
IFIF
... task complete... task complete

SEQSEQ
PARPAR
killYoukillYou ! kill ! kill ---- send andsend and
killMekillMe ? CASE ? CASE ---- receive in parallelreceive in parallel

ackack
report ! mereport ! me

killkill
report ! bothreport ! both

running := FALSErunning := FALSE
TRUETRUE

SKIPSKIP
::

25-Aug-2013 Copyright P.H.Welch, (2013) 59

Better ask for a model check …Better ask for a model check Better ask for a model check ……

aa

bb

MADsystemMADsystem’’

motorSensormotorSensor cameraSensorcameraSensor

moveReportmoveReport searchReportsearchReport
moveCommandmoveCommand searchCommandsearchCommand

monitormonitor’’
(move)(move)

monitormonitor’’
(search)(search)

✔VERIFY VERIFY DEADLOCK.FREEDEADLOCK.FREE MADsystemMADsystem’’ ☺☺ ☺☺ ☺☺

25-Aug-2013 Copyright P.H.Welch, (2013) 60

Soak TestingSoak TestingSoak Testing

MADsystemMADsystem’’

motorSensormotorSensor cameraSensorcameraSensor

moveReportmoveReport searchReportsearchReport
moveCommandmoveCommand searchCommandsearchCommand

motorSimmotorSim cameraSimcameraSim

controllerSimcontrollerSim

Only for confidence boosting – it will not deadlock
(assuming compiler, run-time kernel, microprocessor are OK)

Only for confidence boosting Only for confidence boosting –– it will not deadlockit will not deadlock
(assuming compiler, run(assuming compiler, run--time kernel, microprocessor are OK)time kernel, microprocessor are OK)

25-Aug-2013 Copyright P.H.Welch, (2013) 61

In ServiceIn ServiceIn Service

MADsystemMADsystem’’

motorSensormotorSensor cameraSensorcameraSensor

moveReportmoveReport searchReportsearchReport
moveCommandmoveCommand searchCommandsearchCommand

This will not deadlock
(assuming compiler, run-time kernel, microprocessor are OK)

This will not deadlockThis will not deadlock
(assuming compiler, run(assuming compiler, run--time kernel, microprocessor are OK)time kernel, microprocessor are OK)

25-Aug-2013 Copyright P.H.Welch, (2013) 62

Mutually Assured Destruction
(asynchronous channels?)

Mutually Assured DestructionMutually Assured Destruction
(asynchronous channels?)(asynchronous channels?)

aa

bb

MADsystemMADsystem

motorSensormotorSensor cameraSensorcameraSensor

moveReportmoveReport searchReportsearchReport
moveCommandmoveCommand searchCommandsearchCommand

monitor monitor
(move)(move)

monitor monitor
(search)(search)

If the channels were finitely buffered (with capacity greater thIf the channels were finitely buffered (with capacity greater than zero), the an zero), the
deadlock found with synchronous (i.e. zerodeadlock found with synchronous (i.e. zero--buffered) channels would not buffered) channels would not
happen happen –– both monitors would complete their kills, reports and service both monitors would complete their kills, reports and service
routines.routines.

25-Aug-2013 Copyright P.H.Welch, (2013) 63

Mutually Assured Destruction
(asynchronous channels?)

Mutually Assured DestructionMutually Assured Destruction
(asynchronous channels?)(asynchronous channels?)

aa

bb

MADsystemMADsystem

motorSensormotorSensor cameraSensorcameraSensor

moveReportmoveReport searchReportsearchReport
moveCommandmoveCommand searchCommandsearchCommand

monitor monitor
(move)(move)

monitor monitor
(search)(search)

If the channels were finitely buffered, deadlock is still possibIf the channels were finitely buffered, deadlock is still possible le –– but less but less
likely (exponentially) with increasing buffer size. Infinitely likely (exponentially) with increasing buffer size. Infinitely expandable expandable
buffer capacity would be needed to eliminate deadlock from the bbuffer capacity would be needed to eliminate deadlock from the basic asic
algorithm. For practical purposes, I would feel safe with a capalgorithm. For practical purposes, I would feel safe with a capacity of 3.acity of 3.

25-Aug-2013 Copyright P.H.Welch, (2013) 64

Mutually Assured Destruction
(asynchronous channels?)

Mutually Assured DestructionMutually Assured Destruction
(asynchronous channels?)(asynchronous channels?)

aa

bb

MADsystemMADsystem

motorSensormotorSensor cameraSensorcameraSensor

moveReportmoveReport searchReportsearchReport
moveCommandmoveCommand searchCommandsearchCommand

monitor monitor
(move)(move)

monitor monitor
(search)(search)

However, there is a nasty problem. If both monitors send a However, there is a nasty problem. If both monitors send a killkill, neither , neither
is taken and they remain lurking in the buffered channels. Some is taken and they remain lurking in the buffered channels. Some time in time in
the next service cycle, both will strike and the services will bthe next service cycle, both will strike and the services will be erroneously e erroneously
aborted.aborted.

25-Aug-2013 Copyright P.H.Welch, (2013) 65

Mutually Assured Destruction
(asynchronous channels?)

Mutually Assured DestructionMutually Assured Destruction
(asynchronous channels?)(asynchronous channels?)

aa

bb

MADsystemMADsystem

motorSensormotorSensor cameraSensorcameraSensor

moveReportmoveReport searchReportsearchReport
moveCommandmoveCommand searchCommandsearchCommand

monitor monitor
(move)(move)

monitor monitor
(search)(search)

This could be overcome by counting cycles and This could be overcome by counting cycles and sequence numberingsequence numbering the the
killkill signalssignals: just ignore any : just ignore any killkill with a number less than the current count. with a number less than the current count.
This adds complexity and runThis adds complexity and run--time overhead.time overhead.

25-Aug-2013 Copyright P.H.Welch, (2013) 66

Mutually Assured Destruction
(asynchronous channels?)

Mutually Assured DestructionMutually Assured Destruction
(asynchronous channels?)(asynchronous channels?)

aa

bb

MADsystemMADsystem

motorSensormotorSensor cameraSensorcameraSensor

moveReportmoveReport searchReportsearchReport
moveCommandmoveCommand searchCommandsearchCommand

monitor monitor
(move)(move)

monitor monitor
(search)(search)

Further, this only works if the processes engaged in Further, this only works if the processes engaged in MADMAD are in lockare in lock--step step
(which they are in this scenario, but not in general).(which they are in this scenario, but not in general).

This could be overcome by counting cycles and This could be overcome by counting cycles and sequence numberingsequence numbering the the
killkill signalssignals: just ignore any : just ignore any killkill with a number less than the current count. with a number less than the current count.

25-Aug-2013 Copyright P.H.Welch, (2013) 67

Mutually Assured Destruction
(asynchronous channels?)

Mutually Assured DestructionMutually Assured Destruction
(asynchronous channels?)(asynchronous channels?)

aa

bb

MADsystemMADsystem

motorSensormotorSensor cameraSensorcameraSensor

moveReportmoveReport searchReportsearchReport
moveCommandmoveCommand searchCommandsearchCommand

monitor monitor
(move)(move)

monitor monitor
(search)(search)

Alternatively, the mess could be sorted out by the Alternatively, the mess could be sorted out by the ControllerController process. process.
When/if it gets two When/if it gets two meme reports from the monitorsreports from the monitors, it tells each monitor (as part , it tells each monitor (as part
of its next command) to read and discard an incoming of its next command) to read and discard an incoming killkill. Again, this adds . Again, this adds
complexity complexity –– we shouldnwe shouldn’’t have a mess to clean up!t have a mess to clean up!

25-Aug-2013 Copyright P.H.Welch, (2013) 68

Mutually Assured Destruction
(asynchronous channels?)

Mutually Assured DestructionMutually Assured Destruction
(asynchronous channels?)(asynchronous channels?)

aa

bb

MADsystemMADsystem

motorSensormotorSensor cameraSensorcameraSensor

moveReportmoveReport searchReportsearchReport
moveCommandmoveCommand searchCommandsearchCommand

monitor monitor
(move)(move)

monitor monitor
(search)(search)

Alternatively, the mess could be sorted out by the Alternatively, the mess could be sorted out by the ControllerController process. process.
When/if it gets two When/if it gets two meme reports from the monitorsreports from the monitors, it tells each monitor (as part , it tells each monitor (as part
of its next command) to read and discard an incoming of its next command) to read and discard an incoming killkill. Further, this . Further, this
assumes a assumes a ControllerController, which processes engaged in , which processes engaged in MADMAD may not have.may not have.

Alternatively, the mess could be sorted out by the Alternatively, the mess could be sorted out by the ControllerController process. process.
When/if it gets two When/if it gets two meme reports from the monitorsreports from the monitors, it tells each monitor (as part , it tells each monitor (as part
of its next command) to read and discard an incoming of its next command) to read and discard an incoming killkill..

25-Aug-2013 Copyright P.H.Welch, (2013) 69

The Joy of SyncThe Joy of SyncThe Joy of Sync
Process oriented design ...Process oriented design ...

Synchronous communications Synchronous communications ……

Synchronous Synchronous barriers barriers ……

Mutually assured destructionMutually assured destruction ……

NonNon--blocking barriers blocking barriers ……

PerformancePerformance ……

25-Aug-2013 Copyright P.H.Welch, (2013) 70

Non-Blocking BarriersNonNon--Blocking BarriersBlocking Barriers
Recently (2012) introduced to MPI, Recently (2012) introduced to MPI, nonnon--blocking blocking
barrier synchronisationbarrier synchronisation seems, at first glance, a seems, at first glance, a
contradiction of terms contradiction of terms …… the whole point of a the whole point of a barrierbarrier is is
to to blockblock until all parties are there!until all parties are there!

When we have completed our work before aWhen we have completed our work before a barrierbarrier, ,
we normally synchronise on it we normally synchronise on it –– thereby notifying that thereby notifying that
we are there and waiting for the others.we are there and waiting for the others.

Recall Recall ……

25-Aug-2013 Copyright P.H.Welch, (2013) 71

BarriersBarriersBarriers
Repeat .
Repeat .
Repeat .

Processes may synchronise on more than one barrier:

cc
bb

worker (0) worker (1) worker (n-1)···

BARRIERBARRIER bb,, cc::
PARPAR i = 0 FOR n i = 0 FOR n ENROLLENROLL bb, , cc
worker (i, worker (i, bb, , cc))

To synchronise on a barrier:

orSYNCSYNC bb SYNCSYNC cc

25-Aug-2013 Copyright P.H.Welch, (2013) 72

PROC worker (VAL INT id,PROC worker (VAL INT id, BARRIER bBARRIER b,, cc))
... ... local declarations / initialisationlocal declarations / initialisation
WHILE runningWHILE running
SEQSEQ
SYNC bSYNC b
... ... observe neighbourhood phaseobserve neighbourhood phase
SYNC cSYNC c
... ... change neighbourhood phasechange neighbourhood phase

::

Barriers are commonly used to synchronise multiple phasesphases
of computation between a set of processes. Within each
phase, other synchronisations (channel / barrier) may take
place:

BarriersBarriersBarriers

All workers do this All workers do this
together together –– all see the all see the

same thing same thing ……

All workers do this All workers do this
together together –– may need may need

to negotiate to negotiate ……

Repeat .
Repeat .
Repeat .

25-Aug-2013 Copyright P.H.Welch, (2013) 73

Non-Blocking BarriersNonNon--Blocking BarriersBlocking Barriers
Recently (2012) introduced to MPI, Recently (2012) introduced to MPI, nonnon--blocking blocking
barrier synchronisationbarrier synchronisation seems, at first glance, a seems, at first glance, a
contradiction of terms contradiction of terms …… the whole point of a the whole point of a barrierbarrier is is
to to blockblock until all parties are there!until all parties are there!

When we have completed our work before aWhen we have completed our work before a barrierbarrier, ,
we normally synchronise on it we normally synchronise on it –– thereby notifying that thereby notifying that
we are there and waiting for the others.we are there and waiting for the others.

However, if there is something we can be getting on However, if there is something we can be getting on
with that does not disturb our fellow with that does not disturb our fellow synchroniserssynchronisers, ,
(e.g. preparatory work for the phase following the (e.g. preparatory work for the phase following the
barrierbarrier), it would be good to be able to do so. Only), it would be good to be able to do so. Only
when we need stuff that depends on the other when we need stuff that depends on the other
synchroniserssynchronisers,, should we have to wait for them.should we have to wait for them.

25-Aug-2013 Copyright P.H.Welch, (2013) 74

Blocking Barrier Sync (MPI)Blocking Barrier Sync (Blocking Barrier Sync (MPIMPI))

... ... phase 0 computationphase 0 computation
MPI_BarrierMPI_Barrier (b, ...);(b, ...); // wait for everyone ...// wait for everyone ...
... ... preparatory work for next phasepreparatory work for next phase
... ... phase 1 computationphase 1 computation

Blocking Barrier Sync (occam-π)Blocking Barrier Sync (Blocking Barrier Sync (occamoccam--π))
SEQSEQ
... phase 0 computation... phase 0 computation
SYNCSYNC bb ---- wait for everyone ...wait for everyone ...
... ... preparatory work for next phasepreparatory work for next phase
... ... phase 1 computationphase 1 computation

25-Aug-2013 Copyright P.H.Welch, (2013) 75

Non-Blocking Barrier Sync (MPI)NonNon--Blocking Barrier Sync (Blocking Barrier Sync (MPIMPI))

... ... phase 0 computationphase 0 computation
MPI_IBarrierMPI_IBarrier (b, ...);(b, ...); // hey, I// hey, I’’m done ...m done ...
... ... preparatory work for next phasepreparatory work for next phase
MPI_WBarrierMPI_WBarrier (b, ...);(b, ...); // I// I’’m waiting now ...m waiting now ...
... ... phase 1 computationphase 1 computation

Non-Blocking Barrier Sync (o-π)NonNon--Blocking Barrier Sync (Blocking Barrier Sync (oo--π))
SEQSEQ
... phase 0 computation... phase 0 computation
PARPAR

SYNC bSYNC b ---- hey, Ihey, I’’m done ...m done ...
... ... preparatory work for next phasepreparatory work for next phase

... phase 1 computation... phase 1 computation

25-Aug-2013 Copyright P.H.Welch, (2013) 76

Non-Blocking Barrier Sync (o-π)NonNon--Blocking Barrier Sync (Blocking Barrier Sync (oo--π))
SEQSEQ
... phase 0 computation... phase 0 computation
PARPAR

SYNC bSYNC b ---- hey, Ihey, I’’m done ...m done ...
... ... preparatory work for next phasepreparatory work for next phase

... phase 1 computation... phase 1 computation

The The SYNCSYNC registers that we have arrived at the barrier and lets all moveregisters that we have arrived at the barrier and lets all move
forward when the rest arrive. In parallel with the above, we getforward when the rest arrive. In parallel with the above, we get on with on with
our our preparatory workpreparatory work. . ☺☺

When our When our preparatory workpreparatory work is complete, if all the others have reachedis complete, if all the others have reached
the barrier, the the barrier, the SYNCSYNC will have completed will have completed –– so the so the PARPAR completes and we completes and we
immediately move on to immediately move on to phasephase 11. And we have not delayed the others. . And we have not delayed the others. ☺☺

When our When our preparatory workpreparatory work is complete, if not all the others have is complete, if not all the others have
reached the barrier, the reached the barrier, the SYNCSYNC will not have completed. We wait for the will not have completed. We wait for the
others at the others at the SYNCSYNC before moving on to before moving on to phasephase 11 –– as we must! as we must! ☺☺

25-Aug-2013 Copyright P.H.Welch, (2013) 77

Non-Blocking Barrier Sync (o-π)NonNon--Blocking Barrier Sync (Blocking Barrier Sync (oo--π))
SEQSEQ
... phase 0 computation... phase 0 computation
PARPAR

SYNC bSYNC b ---- hey, Ihey, I’’m done ...m done ...
... ... preparatory work for next phasepreparatory work for next phase

... phase 1 computation... phase 1 computation

The The SYNCSYNC registers that we have arrived at the barrier and lets all moveregisters that we have arrived at the barrier and lets all move
forward when the rest arrive. In parallel with the above, we getforward when the rest arrive. In parallel with the above, we get on with on with
our our preparatory workpreparatory work. . ☺☺

When our When our preparatory workpreparatory work is complete, if all the others have reachedis complete, if all the others have reached
the barrier, the the barrier, the SYNCSYNC will have completed will have completed –– so the so the PARPAR completes and we completes and we
immediately move on to immediately move on to phasephase 11. And we have not delayed the others. . And we have not delayed the others. ☺☺

When our When our preparatory workpreparatory work is complete, if not all the others have is complete, if not all the others have
reached the barrier, the reached the barrier, the SYNCSYNC will not have completed. We wait for the will not have completed. We wait for the
others at the others at the SYNCSYNC before moving on to before moving on to phasephase 11 –– as we must! as we must! ☺☺

Nothing new in occam
-π is needed for this.

Nothing new in

Nothing new in occamoccam
--π is needed for this.

is needed for this.

25-Aug-2013 Copyright P.H.Welch, (2013) 78

The Joy of SyncThe Joy of SyncThe Joy of Sync
Process oriented design ...Process oriented design ...

Synchronous communications Synchronous communications ……

Synchronous Synchronous barriers barriers ……

Mutually assured destructionMutually assured destruction ……

NonNon--blocking barriers blocking barriers ……

PerformancePerformance ……

25-Aug-2013 Copyright P.H.Welch, (2013) 79

P(1)P(1)

P(nP(n--1)1)

P(0)P(0)

P(2)P(2)

P(3)P(3)

Take a ring of Take a ring of nn processes processes ……

Each process connects to all Each process connects to all ……

In parallel, each process sends and In parallel, each process sends and
receives receives mm messages (e.g. its messages (e.g. its id id
numbernumber) to all, including itself) to all, including itself ……

ThatThat’’s s mnmn22 messages messages ……

How long per message?How long per message?

PerformancePerformancePerformance

25-Aug-2013 Copyright P.H.Welch, (2013) 80

* A. Bate: “Scalable Performance for Scala Message-Passing
Concurrency”, CPA 2013, pp. 113-132, Open Channel Publishing.
* A. Bate: * A. Bate: ““Scalable Performance for Scalable Performance for ScalaScala MessageMessage--Passing Passing
ConcurrencyConcurrency””, CPA 2013, pp. 113, CPA 2013, pp. 113--132, Open Channel Publishing.132, Open Channel Publishing.PerformancePerformancePerformance

Andrew’s “Say Hello to Everyone” Benchmark (v1) *

[[n][n]CHANn][n]CHAN INT c:INT c:

PAR i = 0 FOR nPAR i = 0 FOR n
PARPAR

PAR j = 0 FOR n PAR j = 0 FOR n ---- for each j in parallel,for each j in parallel,
SEQ k = 0 FOR m SEQ k = 0 FOR m ---- send m messages (i to j)send m messages (i to j)
c[i][jc[i][j] ! i] ! i

PAR j = 0 FOR n PAR j = 0 FOR n ---- for each j in parallel,for each j in parallel,
SEQ k = 0 FOR m SEQ k = 0 FOR m ---- receive m messages (j to i)receive m messages (j to i)
INT x:INT x:
SEQSEQ

c[j][ic[j][i] ? x] ? x
ASSERT (x = j) ASSERT (x = j) ---- sanity checksanity check

2n2n22 processesprocesses
mnmn22 messagesmessages

25-Aug-2013 Copyright P.H.Welch, (2013) 81

* A. Bate: “Scalable Performance for Scala Message-Passing
Concurrency”, CPA 2013, pp. 113-132, Open Channel Publishing.
* A. Bate: * A. Bate: ““Scalable Performance for Scalable Performance for ScalaScala MessageMessage--Passing Passing
ConcurrencyConcurrency””, CPA 2013, pp. 113, CPA 2013, pp. 113--132, Open Channel Publishing.132, Open Channel Publishing.PerformancePerformancePerformance

Andrew’s “Say Hello to Everyone” Benchmark (v2) *

[[n][n]CHANn][n]CHAN INT c:INT c:

PAR i = 0 FOR nPAR i = 0 FOR n
PARPAR

SEQ j = 0 FOR n SEQ j = 0 FOR n ---- for each j in series,for each j in series,
SEQ k = 0 FOR m SEQ k = 0 FOR m ---- send m messages (i to j)send m messages (i to j)
c[i][jc[i][j] ! i] ! i

SEQ j = 0 FOR n SEQ j = 0 FOR n ---- for each j in series,for each j in series,
SEQ k = 0 FOR m SEQ k = 0 FOR m ---- receive m messages (j to i)receive m messages (j to i)
INT x:INT x:
SEQSEQ

c[j][ic[j][i] ? x] ? x
ASSERT (x = j) ASSERT (x = j) ---- sanity checksanity check

2n processes2n processes
mnmn22 messagesmessages

25-Aug-2013 Copyright P.H.Welch, (2013) 82

Take a ring of Take a ring of NN processes processes ……

Each process connects to all Each process connects to all ……

In parallel, each process sends In parallel, each process sends
and receives and receives mm messages (e.g. messages (e.g.
its id) to all, including itself its id) to all, including itself ……

ThatThat’’s s mnmn22 messages messages ……

How long per message?How long per message?

PerformancePerformancePerformance

P(1)P(1)

P(nP(n--1)1)

P(0)P(0)

P(2)P(2)

P(3)P(3)

The following observations were made using KRoC 1.5.0-pre5,
Ubuntu 11.04 (natty) on an Intel i7 quad-core processor with
hyperthreading (i.e. 8 virtual cores), running at 2 MHz.

The benchmark timings were averaged from 10 separate runs,
with negligible variance.

The following observations were made using The following observations were made using KRoCKRoC 1.5.01.5.0--pre5, pre5,
UbuntuUbuntu 11.04 (natty) on an Intel i7 quad11.04 (natty) on an Intel i7 quad--core processor with core processor with
hyperthreadinghyperthreading (i.e. 8 virtual cores), running at 2 MHz.(i.e. 8 virtual cores), running at 2 MHz.

The benchmark timings were averaged from 10 separate runs, The benchmark timings were averaged from 10 separate runs,
with negligible variance.with negligible variance.

25-Aug-2013 Copyright P.H.Welch, (2013) 83

Take a ring of Take a ring of NN processes processes ……

Each process connects to all Each process connects to all ……

In parallel, each process sends In parallel, each process sends
and receives and receives mm messages (e.g. messages (e.g.
its id) to all, including itself its id) to all, including itself ……

ThatThat’’s s mnmn22 messages messages ……

How long per message?How long per message?

PerformancePerformancePerformance

P(1)P(1)

P(nP(n--1)1)

P(0)P(0)

P(2)P(2)

P(3)P(3)

1 core / 20,000 nodes / v21 core / 20,000 nodes / v2

25-Aug-2013 Copyright P.H.Welch, (2013) 84

In parallel, each process sends In parallel, each process sends
and receives and receives mm messages (e.g. messages (e.g.
its id) to all, including itself its id) to all, including itself ……

Take a ring of Take a ring of NN processes processes ……

Each process connects to all Each process connects to all ……

ThatThat’’s s mnmn22 messages messages ……

How long per message?How long per message?

PerformancePerformancePerformance

P(1)P(1)

P(nP(n--1)1)

P(0)P(0)

P(2)P(2)

P(3)P(3)

2 cores / 20,000 nodes / v22 cores / 20,000 nodes / v2

25-Aug-2013 Copyright P.H.Welch, (2013) 85

Take a ring of Take a ring of NN processes processes ……

Each process connects to all Each process connects to all ……

In parallel, each process sends In parallel, each process sends
and receives and receives mm messages (e.g. messages (e.g.
its id) to all, including itself its id) to all, including itself ……

ThatThat’’s s mnmn22 messages messages ……

How long per message?How long per message?

PerformancePerformancePerformance

P(1)P(1)

P(nP(n--1)1)

P(0)P(0)

P(2)P(2)

P(3)P(3)

4 cores / 20,000 nodes / v24 cores / 20,000 nodes / v2

25-Aug-2013 Copyright P.H.Welch, (2013) 86

Take a ring of Take a ring of NN processes processes ……

Each process connects to all Each process connects to all ……

In parallel, each process sends In parallel, each process sends
and receives and receives mm messages (e.g. messages (e.g.
its id) to all, including itself its id) to all, including itself ……

ThatThat’’s s mnmn22 messages messages ……

How long per message?How long per message?

PerformancePerformancePerformance

P(1)P(1)

P(nP(n--1)1)

P(0)P(0)

P(2)P(2)

P(3)P(3)

8 cores / 20,000 nodes / v28 cores / 20,000 nodes / v2

25-Aug-2013 Copyright P.H.Welch, (2013) 87

7777 nanoseconds77 nanosecondsnanoseconds

So … how long per message?So So …… how long per message?how long per message?

6,000 nodes …

(V2) 12,000 processes …

30 messages node-to-node …

1.08 billion messages …

8 cores …

6,0006,000 nodes nodes ……

(V2) (V2) 12,00012,000 processes processes ……

30 messages30 messages nodenode--toto--node node ……

1.08 billion1.08 billion messages messages ……

88 cores cores ……

PerformancePerformancePerformance

P(1)P(1)

P(nP(n--1)1)

P(0)P(0)

P(2)P(2)

P(3)P(3)

25-Aug-2013 Copyright P.H.Welch, (2013) 88

7 nanoseconds77 nanosecondsnanoseconds

So … how long per message?So So …… how long per message?how long per message?

10,000 nodes …

(V2) 20,000 processes …

30 messages node-to-node …

3 billion messages …

8 cores …

10,00010,000 nodes nodes ……

(V2) (V2) 20,00020,000 processes processes ……

30 messages30 messages nodenode--toto--node node ……

3 billion3 billion messages messages ……

88 cores cores ……

PerformancePerformancePerformance

P(1)P(1)

P(nP(n--1)1)

P(0)P(0)

P(2)P(2)

P(3)P(3)

25-Aug-2013 Copyright P.H.Welch, (2013) 89

8 nanoseconds88 nanosecondsnanoseconds

So … how long per message?So So …… how long per message?how long per message?

20,000 nodes …

(V2) 40,000 processes …

30 messages node-to-node …

12 billion messages …

8 cores …

20,00020,000 nodes nodes ……

(V2) (V2) 40,00040,000 processes processes ……

30 messages30 messages nodenode--toto--node node ……

12 billion12 billion messages messages ……

88 cores cores ……

PerformancePerformancePerformance

P(1)P(1)

P(nP(n--1)1)

P(0)P(0)

P(2)P(2)

P(3)P(3)

25-Aug-2013 Copyright P.H.Welch, (2013) 90

7777 nanoseconds77 nanosecondsnanoseconds

So … how long per message?So So …… how long per message?how long per message?

6,000 nodes …

(V2) 12,000 processes …

30 messages node-to-node …

1.08 billion messages …

8 cores …

6,0006,000 nodes nodes ……

(V2) (V2) 12,00012,000 processes processes ……

30 messages30 messages nodenode--toto--node node ……

1.08 billion1.08 billion messages messages ……

88 cores cores ……

PerformancePerformancePerformance

P(1)P(1)

P(nP(n--1)1)

P(0)P(0)

P(2)P(2)

P(3)P(3)

Repeat .

Repeat .

Repeat .

25-Aug-2013 Copyright P.H.Welch, (2013) 91

6,000 nodes …

(V2) 12,000 processes …

30 messages node-to-node …

1.08 billion messages …

8 cores …

6,0006,000 nodes nodes ……

(V2) (V2) 12,00012,000 processes processes ……

30 messages30 messages nodenode--toto--node node ……

1.08 billion1.08 billion messages messages ……

88 cores cores ……

7 nanoseconds77 nanosecondsnanoseconds

So … how long per message?So So …… how long per message?how long per message?

PerformancePerformancePerformance

6,000 nodes …

(V1) 72 million processes* …

30 messages node-to-node …

1.08 billion messages …

8 cores …

6,0006,000 nodes nodes ……

(V1) (V1) 72 million72 million processes* processes* ……

30 messages30 messages nodenode--toto--node node ……

1.08 billion1.08 billion messages messages ……

88 cores cores ……

14 nanoseconds1414 nanosecondsnanoseconds

* can’t get many more than this
(only 4 Gbytes currently addressable).

* can* can’’t get many more than thist get many more than this
(only 4 (only 4 GbytesGbytes currently addressable).currently addressable).

P(1)P(1)

P(nP(n--1)1)

P(0)P(0)

P(2)P(2)

P(3)P(3)

25-Aug-2013 Copyright P.H.Welch, (2013) 92

So … how long per message?So So …… how long per message?how long per message?

cores 1 2 4 8
per message per message
(nanoseconds)(nanoseconds) 34.534.5 17.617.6 10.210.2 7.07.0
speed upspeed up 1.01.0 2.02.0 3.43.4 4.94.9

6,000 nodes …

(V2) 12,000 processes …

30 messages node-to-node …

1.08 billion messages …

6,0006,000 nodes nodes ……

(V2) (V2) 12,00012,000 processes processes ……

30 messages30 messages nodenode--toto--node node ……

1.08 billion1.08 billion messages messages ……

PerformancePerformancePerformance

P(1)P(1)

P(nP(n--1)1)

P(0)P(0)

P(2)P(2)

P(3)P(3)

25-Aug-2013 Copyright P.H.Welch, (2013) 93

10,000 nodes …

(V2) 20,000 processes …

30 messages node-to-node …

3 billion messages …

10,00010,000 nodes nodes ……

(V2) (V2) 20,00020,000 processes processes ……

30 messages30 messages nodenode--toto--node node ……

3 billion3 billion messages messages ……

So … how long per message?So So …… how long per message?how long per message?

PerformancePerformancePerformance

cores 1 2 4 8
per message per message
(nanoseconds)(nanoseconds) 37.537.5 17.417.4 10.310.3 7.27.2
speed upspeed up 1.01.0 2.22.2 3.63.6 5.25.2

P(1)P(1)

P(nP(n--1)1)

P(0)P(0)

P(2)P(2)

P(3)P(3)

25-Aug-2013 Copyright P.H.Welch, (2013) 94

20,000 nodes …

(V2) 40,000 processes …

30 messages node-to-node …

12 billion messages …

20,00020,000 nodes nodes ……

(V2) (V2) 40,00040,000 processes processes ……

30 messages30 messages nodenode--toto--node node ……

12 billion12 billion messages messages ……

So … how long per message?So So …… how long per message?how long per message?

PerformancePerformancePerformance

cores 1 2 4 8
per message per message
(nanoseconds)(nanoseconds) 61.861.8 20.720.7 11.311.3 7.77.7
speed upspeed up 1.01.0 3.03.0 5.55.5 8.08.0

P(1)P(1)

P(nP(n--1)1)

P(0)P(0)

P(2)P(2)

P(3)P(3)

25-Aug-2013 Copyright P.H.Welch, (2013) 95

So … how long per message?So So …… how long per message?how long per message?

cores 1 2 4 8
per message per message
(nanoseconds)(nanoseconds) 34.534.5 17.617.6 10.210.2 7.07.0
speed upspeed up 1.01.0 2.02.0 3.43.4 4.94.9

6,000 nodes …

(V2) 12,000 processes …

30 messages node-to-node …

1.08 billion messages …

6,0006,000 nodes nodes ……

(V2) (V2) 12,00012,000 processes processes ……

30 messages30 messages nodenode--toto--node node ……

1.08 billion1.08 billion messages messages ……

PerformancePerformancePerformance

P(1)P(1)

P(nP(n--1)1)

P(0)P(0)

P(2)P(2)

P(3)P(3)

Repeat .

Repeat .

Repeat .

25-Aug-2013 Copyright P.H.Welch, (2013) 96

6,000 nodes …

(V2) 12,000 processes …

30 messages node-to-node …

1.08 billion messages …

6,0006,000 nodes nodes ……

(V2) (V2) 12,00012,000 processes processes ……

30 messages30 messages nodenode--toto--node node ……

1.08 billion1.08 billion messages messages ……

6,000 nodes …

(V1) 72 million processes* …

30 messages node-to-node …

1.08 billion messages …

6,0006,000 nodes nodes ……

(V1) (V1) 72 million72 million processes* processes* ……

30 messages30 messages nodenode--toto--node node ……

1.08 billion1.08 billion messages messages ……

So … how long per message?So So …… how long per message?how long per message?

PerformancePerformancePerformance

cores 1 2 4 8
per message per message
(nanoseconds)(nanoseconds) 120.0120.0 47.147.1 26.526.5 14.014.0
speed upspeed up 1.01.0 2.52.5 4.54.5 8.68.6

* can’t get many more than this
(only 4 Gbytes currently addressable).

* can* can’’t get many more than thist get many more than this
(only 4 (only 4 GbytesGbytes currently addressable).currently addressable).

P(1)P(1)

P(nP(n--1)1)

P(0)P(0)

P(2)P(2)

P(3)P(3)

25-Aug-2013 Copyright P.H.Welch, (2013) 97

Process oriented design ...Process oriented design ...

Synchronous communications Synchronous communications ……

Synchronous Synchronous barriers barriers ……

Mutually assured destructionMutually assured destruction ……

NonNon--blocking barriers blocking barriers ……

PerformancePerformance ……

The Joy of SyncThe Joy of SyncThe Joy of Sync

Any questions?

Any questions?

Any questions?

	Mutually Assured Destruction(or the Joy of Sync)
	Barriers
	Barriers
	Barriers
	Barriers
	Barriers
	Barriers – Safety
	Barriers
	Barriers
	Performance
	Performance
	Performance
	Performance
	Performance
	Performance
	Performance
	Performance
	Performance
	Performance
	Performance
	Performance
	Performance
	Performance
	Performance
	Performance

