Mutually Assured
Destruction’
(or the Joy of Sync)

Peter Welch (phw@kent.ac . uk),
Jan Baekgaard Pedersen (matt.pedersen@unlyv.edu)
Frederick R.M. Barnes (Frmb@kent.ac.uk)

CPA 2013 Fringe, Napier University, 25 August, 2013
. g P y g /

t plus non-blocking barriers and performance ...

The Joy of Sync

Process oriented design ...
Synchronous communications ...
Synchronous barriers ...
Mutually assured destruction ...
Non-blocking barriers ...

Performance ...

|

< foo —> m Q
e
9 » Server
bar —> €
(a) a network of three processes, connected by four (b) three processes sharing the writing end
internal (hidden) and three external channels. of a channel to a server process.

\ 4 \ 4

s - [s(@)

(c) three processes sharing the writing end of a channel (d) n processes enrolled on a shared barrier (any process
to a bank of servers sharing the reading end. synchronising must wait for all to synchronise).

inl

left
<€ foo

al b

ar

m

e

F —>._
right

9

e

(a) a network of three processes, connected by four
internal (hidden) and three external channels.

CHAN BYTE a, b, c, d:

PAR
foo (in?, left!, a?, b!, c!)
bar (a!, b?, d!)
merge (c?, d?, right!)

left
€

foo —> m
e
a b r >
T 1' g right Process
bar | O i abstraction
thing

PROC thing (CHAN INT in?, left!, right!)
CHAN BYTE a, b, c, d:
PAR
foo (in?, left!, a?, b!, c!)
bar (a!, b?, d!)
merge (c?, d?, right!)

left

thing

right Process

abstraction

PROC thing (CHAN INT in?, left!, right!)
CHAN BYTE a, b, c, d:
PAR
foo (in?, left!, a?, b!, c!)
bar (a!, b?, d!)
merge (c?, d?, right!)

in

left - right Process
y 09 > abstraction

 —

PROC thing (CHAN INT in?, left!, right!)

Like oo, bar and merge previously, thing is a process that can
be used as a component in another network.

Concurrent systems have structure — networks within networks.
We must be able to express this! And we can ... ©

QO

~ server
Cc

(b) three processes sharing the writing end
of a channel to a server process.

SHARED ! CHAN SOME.SERVICE c:
PAR

circle (c})

triangle (c})

square (c!)

server (c?)

SHARED CHAN ANOTHER.SERVICE c:
PAR
PAR
circle (c})
triangle (c!)
square (c!)
PAR i = 0 FOR 8
s (i, c?)

T Y

Cc

\ 4 \ 4

|S(O)\ \8(7)|

(c) three processes sharing the writing end of a channel
to a bank of servers sharing the reading end.

BARRIER b:
PAR i = O FOR n ENROLL b

p (i, b)

1 b 1

(d) n processes enrolled on a shared barrier (any process
synchronising must wait for all to synchronise).

The Joy of Sync

Process oriented design ...
Synchronous communications ...
Synchronous barriers ...
Mutually assured destruction ...
Non-blocking barriers ...

Performance ...

Synchronised Communication

A —> B
Cc?x

A may write on ¢ at any time, but has to wait for a read.

B may read from c at any time, but has to wait for a write.

@)IIB(C))\E

Synchronised Communication

A —> B
Cc?x

Only when both A and B are ready can the communication
proceed over the channel c.

@)IIB(C))\E

Synchronised Communication

C

A q B

- Benefit
¢ Once the writer has written, it knows the reader has read

OK: plenty of other processes to
run and ultra-fast context switch
(comparable to a procedure call

-« Careful
¢ Writer blocks if reader is not ready e
¢ Lots of deadlock possibilities

OK: work with (a small set of)
synchronisation patterns for which
we have proven safety theorems

Simple Deadlock Example

\ >
A B —
/ B d

If there is no discipline on when A and B communicate, then

A may commit to output on ¢, followed by Bon d ... or vice-
versa. Either way, neither are listening and both are stuck.

Same happens if both commit to input.

BB

Client-Server Pattern

<\ -
client
/7

request |

<€

client: makes a request any time, then commits to taking reply.

server: always accepts a request (within some bounded time),
then always makes a reply (within some bounded time). It may

reply

Server

make requests itself, as a client to other servers.

possible from

5 ©OOOOO

No deadlock is now
this client-server relationship.

Client-Server Pattern

client | Server —

\
/

client: makes a request any time, then commits to taking reply.

server: always accepts a request (within some bounded time),
then always makes a reply (within some bounded time). It may
make requests itself, as a client to other servers.

Symbology: this represents
a client-server relation. It points to the
server and allows a 2-way conversation
(initiated by the client)

Client-Server Pattern

A server may have many clients ...

A—fd;f*f_’

Only one client at a time converses with the server. They form
an orderly queue. Still no deadlock possible — and no client
starvation. No polling on the gqueue, so no livelock either.

Client-Server Theorem

A client-server system that has no cycles in its client-server
relations is deadlock, livelock and starvation free.

S S NN

S S

The Joy of Sync

Process oriented design ...
Synchronous communications ...
Synchronous barriers ...
Mutually assured destruction ...
Non-blocking barriers ...

Performance ...

Barriers

The occam-rt BARRIER type corresponds to a multiway CSP
event, though some higher level design patterns (such as
resignation) have been built in.

worker (0) worker (1) nEa worker (n-1)

_—

Basic cspP semantics apply. When a process synchronises
on a barrier, it blocks until all other processes enrolled on
the barrier have also synchronised. Once the barrier has
completed (i.e. all enrolled processes have synchronised),
all blocked processes are rescheduled for execution.

Barriers

The occam-rt BARRIER type corresponds to a multiway CSP
event, though some higher level design patterns (such as
resignation) have been built in.

worker (0) worker (1) nEa worker (n-1)
BARRIER b:
PAR 1 = O FOR n ENROLL b

worker (i, b) e

A PAR construct must
explicitly ENROLL its
components on barriers

The number of processes enrolled on

an in-scope barrier is unchanged by a |,,,ass***

non-enrolling PAR — but only one of
its components may reference it.

Barriers

Processes may synchronise on more than one barrier:

worker (0) worker (1) e worker (n-1)

BARRIER b, c:
PAR 1 = 0 FOR n ENROLL b, c
worker (i1, b, ©)

To synchronise on a barrier:

SYNC b or SYNC c

Barriers

Barriers are commonly used to synchronise multiple phases
of computation between a set of processes. Within each
phase, other synchronisations (channel/barrier) may take
place:

All workers do this

together — all see the
PROC worker (VAL INT id, BARRIER b, ©) same thing ...
-.-. [local declarations /7 initialisation
WHILE running
SEQ
SYNC b
... oObserve neighbourhood phase
SYNC c
... change neighbourhood phase

All'workers do this
together — may need

to negotiate ...

Barriers

Of course, only one barrier is actually needed to synchronise
the phases in this example:

All workers do this
together — all see the
PROC worker (VAL INT id, BARRIER a) same thing ...

-.-. [local declarations /7 initialisation
WHILE running
SEQ
SYNC a
-.. Observe neighbourhood phase
SYNC a
... Cchange neighbourhood phase

All' workers do this
together — may need

to negotiate ...

Barriers — Safety

occam-zx BARRIER synchronisation is safe in the sense that
enrollment and resignation are automatically managed. A
process may synchronise on a BARRIER if and only if it is

enrolled.

Try to break this rule ... your program won’t compile. There
are zero memory and run-time costs to enforce it. ©

The Joy of Sync

Process oriented design ...
Synchronous communications ...
Synchronous barriers ...
Mutually assured destruction ...
Non-blocking barriers ...

Performance ...

Mutually Assured Destruction

Two processes are given, at the same time, their own
task to complete; we are satisfied with the completion
of either one of them; whichever process finishes first
interrupts the other and reports its completion; the one
that is interrupted abandons its task and reports that
fact.

Such requirements are common in control systems,
robotics, e-commerce, model-checking, ...

— Drive rover vehicle forwards target meters.
€.J. | —Look out for Martians.
— Stop and report when either is achieved.

e.g.

motorSensor cameraSensor
A 4 \ 4
monitor < e monitor
(move) T (search)
A A
MADsystem
moveCommand searchCommand
moveReport searchReport
v v

— Drive rover vehicle forwards target meters.
— Look out for Martians.
— Stop and report when either is achieved.

INT

~
N
sensor
PROTOCOL KILL
){ CASE
monitor killMe _ kil
(mode) Nor ©]
INT
/"
,
command
report
fi\ v
\\\“~——— PROTOCOL REPORT

CASE
me —— task completed
she -- task abandoned

sensor

monitor killMe

(mode)

killYou o

report command

PROC monitor (VAL INT mode, CHAN INT command?, sensor?,
CHAN REPORT report!,
CHAN KILL killYou!, killMe?)
WHILE TRUE
PRI ALT
INT target:
command ? target -- service requested
service (mode, target, sensor?, report!,
killYou!, killMe?)
INT x:
sensor ? X -- accept and discard
SKIP

sensor

monitor killMe

(mode)

killYou o

report command

PROC service (VAL INT mode, target, CHAN INT sensor?,
CHAN REPORT report!,
CHAN KILL killYou!, killMe?)
.. local state and initialisation
INITIAL BOOL running IS TRUE:
WHILE running
PRI ALT
killMe ? kill
... report “she” and exit loop
INT x:
sensor ? X
--- process x

Sensor

killMe

monitor
(mode)

report

command

killMe ? kill
SEQ
report ! she
running := FALSE

killYou o

sensor

monitor killMe

(mode)

killYou o

report command

PROC service (VAL INT mode, target, CHAN INT sensor?,
CHAN REPORT report!,
CHAN KILL killYou!, killMe?)
.. local state and initialisation
INITIAL BOOL running IS TRUE:
WHILE running
PRI ALT
killMe ? kill
... report “she” and exit loop
INT x:
sensor ? X
--- process x

sensor

monitor killMe
(mode) KillYou =

report command

INT x:

sensor ? X

SEQ

-.- update local state with x (depends on mode)
IF

-.. task complete
SEQ
killYou ! kill
report ! me
running := FALSE
TRUE
SKIP

motorSensor

cameraSensor

monitor

(move)

MADsystem

monitor
(search)

moveReport

v

moveCommand
searchReport

v

searchCommand

PROC MADsystem (CHAN INT moveCommand?, searchCommand?,

PAR

CHAN INT motorSensor?, cameraSensor?,
CHAN REPORT moveReport!, searchReport!)
CHAN KILL a, b:

monitor (move, moveCommand?, motorSensor?,
moveReport!, b!, a?)
monitor (search, searchCommand?, cameraSensor?,
searchReport!, a!, b?)

- average sensor data interval = 10 ms (randomised)
Soak TeStmg average sensor inputs per service = 100 (randomised)

motorSim cameraSim
motorSensor cameraSensor
MADsystem
moveCommand searchCommand

moveReport searchReport

controllerSim

Ran for 30 days (approx. 2.5m trials): PASSED

: average sensor data interval = 10 ms (varying)
In Service average sensor inputs per service = 100 (varying)

motorSensor cameraSensor

MADsystem

moveCommand searchCommand
moveReport searchReport

Ran for 2 years (approx. 64m trials): DEADLOCKED ® ® ®

Should have asked for a model check ...

VERIFY DEADLOCK.FREE MADsystem X
motorSensor l l cameraSensor
MADsystem
moveCommand searchCommand
moveReport searchReport

A trace leading to deadlock is provided:

<moveCommand, motorSensor, searchCommand, cameraSensor>

Should have asked for a model check ...

A trace leading to deadlock is provided:

<moveCommand, motorSensor, searchCommand, cameraSensor>

motorSensor cameraSensor
A 4 \ 4
monitor < e monitor
(move) T (search)
A A
MADsystem
moveCommand searchCommand
moveReport searchReport
v v

sensor

killMe

(mode) LT ‘

monitor

report command <moveCommand, motorSensor,
searchCommand, cameraSensor>

PROC monitor (VAL INT mode, CHAN INT command?, sensor?,
CHAN REPORT report!,
CHAN KILL killYou!, killMe?)
WHILE TRUE
PRI ALT
INT target:
command ? target -- service requested
service (mode, target, sensor?, report!,
killYou!, killMe?)
INT x:
sensor ? X -- accept and discard
SKIP

sensor

monitor killMe

killYou o ‘

(mode)

report SETTER <moveCommand, motorSensor,
searchCommand, cameraSensor>

PROC service (VAL INT mode, target, CHAN INT sensor?,
CHAN REPORT report!,
CHAN KILL killYou!, killMe?)
.. local state and initialisation
INITIAL BOOL running IS TRUE:
WHILE running
PRI ALT
killMe ? kill
... report “she” and exit loop
INT x:
sensor ? X
-.-. process X

sensor

killMe

(mode) KillYou ~ l

monitor

report command <moveCommand, motorSensor,
searchCommand, cameraSensor>

INT x:
sensor ? X
SEQ
-.- update local state with x (depends on mode)
IF

-.. task complete
SEQ
killYou ! kill
report ! me
running := FALSE
TRUE
SKIP

If the kill windows of

sensor the two monitors
overlap, both will try
monitor killMe to kill the other —
(mode) KillYou — resulting in deadlock.

report | | command Kill Window

—d

7
INT x: -
sensor ? X
SEQ
--.- update local state with x (depends on mode)
IF

-.. task complete
SEQ
killYou ! kill
report ! me
running := FALSE
TRUE
SKIP

average sensor data interval = 10 ms (randomised)

average sensor inputs per service = 100 (randomised)
>

average service time = 1 second

kill window = 100 nanoseconds (approx.)

>

chance of kill window overlap (deadlock) = 1/10,000,000
>

time before 50% chance of deadlock = 90 days (approx.)

Kill Window

7

-.. task complete
SEQ
killYou ! kill
report ! me
running := FALSE
TRUE
SKIP

7
INT x: -
sensor ? X
SEQ
--.- update local state with x (depends on mode)
IF

chance of kill window overlap (deadlock) = 1/10,000,000
This assumes each monitor runs on its own dedicated core ...
CCSP multicore scheduler dynamically bacthes processes to cores ...
If monitors are in the same batch, they will not deadlock ...

chance of kill window overlap (deadlock) = 1/100,000,000 (approx.)
>

time before 50% chance of deadlock = 2 years (approx.) Kill Window
7
7
INT x: -
sensor ? X
SEQ

--.- update local state with x (depends on mode)
IF

-.. task complete
SEQ
killYou ! kill
report ! me
running := FALSE
TRUE
SKIP

Mutually Assured Destruction
(revised implementation)

Communication between the monitors is mostly a one-
way Kill (from killer to killed). Deadlock happens when
both turn killer — two-way communications.

Idea: make communication between the monitors always
two-way — either a ki 1 1 in both directions (should both
tasks complete around the same time) or a kil l in one
direction followed by an ack in the other (which will be

most of the time).

Claim: this eliminates all deadlock (at the cost of an extra
ack).

INT

Previously: ...

.
N
sensor
PROTOCOL KILL
)(CASE
monitor killMe _ kill
(mode) KilYou =]
INT
/"
7
command
report
K v
\\\“-——— PROTOCOL REPORT
CASE
me —— task completed

she -- task abandoned

INT

S

N\

Sensor

monitor”’

report

Qk v

\

killMe

7~ |

”~

INT

/“

PROTOCOL KILL”®
CASE
kill
ack

7
command

CASE
me
she
both

PROTOCOL REPORT®

—-— task completed
—- task abandoned
-— both completed

sensor

monitor’ killMe

(mode)

killYou o

report command

PROC monitor® (VAL INT mode, CHAN INT command?, sensor?,
CHAN REPORT® report!,
CHAN KILL” killYou!, killMe?)
WHILE TRUE
PRI ALT
INT target:
command ? target -- service requested
service’ (mode, target, sensor?, report!,
killYou!, killMe?)
INT x:
sensor ? X -- accept and discard
SKIP

sensor
monitor killMe
(mode) ivou
report command

Previeusly: ...

PROC service (VAL INT mode, target, CHAN INT sensor?,

CHAN REPORT report!,
CHAN KILL killYou!, killMe?)
.. local state and initialisation
INITIAL BOOL running IS TRUE:
WHILE running
PRI ALT
killMe ? kill
... report “she” and exit loop
INT x:
sensor ? X
-.-. process X

sensor

monitor’ killMe
killYou o

(mode)

report command

PROC service® (VAL INT mode, target, CHAN INT sensor?,
CHAN REPORT® report!,
CHAN KILL® killYou!, killMe?)
.. local state and initialisation
INITIAL BOOL running IS TRUE:
WHILE running
PRI ALT
killMe ? kill
... “ack” the kill, report “she’ and exit loop
INT x:
sensor ? X
--- process x

Sensor

killMe

monitor
(mode)

report

command

killYou o

Previously: ...

killMe ? kill
SEQ
report ! she
running := FALSE

Sensor

killMe

monitor”’
(mode)

report

command

killMe ? kill
SEQ
killYou ! ack
report ! she
running := FALSE

killYou >

sensor

monitor’ killMe
killYou o

(mode)

report command

PROC service® (VAL INT mode, target, CHAN INT sensor?,
CHAN REPORT® report!,
CHAN KILL® killYou!, killMe?)
.. local state and initialisation
INITIAL BOOL running IS TRUE:
WHILE running
PRI ALT
killMe ? kill
... “ack” the kill, report “she’ and exit loop
INT x:
sensor ? X
--- process x

sensor

Previously: ...

monitor killMe
(mode) KillYou =

report command

INT x:

sensor ? X

SEQ

-.- update local state with x (depends on mode)
IF

-.. task complete
SEQ
killYou ! kill
report ! me
running := FALSE
TRUE
SKIP

sensor

monitor’ | killMe Each process knows what happened
(mode) _ > in the other — potentially a very useful
_ jl killou side benefit.

report command
INT x:
sensor ? X
SEQ
-.- update local state with x (depends on mode)
IF
-.. task complete
SEQ
PAR
killYou ! kill -- send and
killMe ? CASE -- receive in parallel
ack

report ! me
kill
report ! both
running := FALSE
TRUE
SKIP

sensor

Key state information could easily be

monitor” killMe piggy-backed on the ki Il and ack
(mode) KillYou ~ signals — i.e. each process would
know what the other found.
report command
INT x:
sensor ? X
SEQ
-.- update local state with x (depends on mode)
IF
-.. task complete
SEQ
PAR
killYou ! kill -- send and
killMe ? CASE -- receive in parallel
ack
report ! me
kill
report ! both
running := FALSE
TRUE

SKIP

Better ask for a model check ...

motorSensor cameraSensor
\ 4 \ 4
monitor’ 2 monitor’
(move) 5) (search)
A A
MADsystem”
moveCommand searchCommand
moveReport searchReport
v v

VERIFY DEADLOCK.FREE MADsystem” J ©O00

Soak Testing

motorSim cameraSim
motorSensor cameraSensor
MADsystem?
moveCommand searchCommand
moveReport searchReport

controllerSim

Only for confidence boosting — it will not deadlock

(assuming compiler, run-time kernel, microprocessor are OK)

In Service

motorSensor cameraSensor

MADsystem?

moveCommand searchCommand
moveReport searchReport

This will not deadlock

(assuming compiler, run-time kernel, microprocessor are OK)

Mutually Assured Destruction
(asynchronous channels?)

motorSensor cameraSensor
\ 4 \ 4
monitor < e monitor
(move) T (search)
A A
MADsystem
moveCommand searchCommand
moveReport searchReport
v v

If the channels were finitely buffered (with capacity greater than zero), the
deadlock found with synchronous (i.e. zero-buffered) channels would not
happen — both monitors would complete their kills, reports and service

routines.

Mutually Assured Destruction
(asynchronous channels?)

motorSensor cameraSensor
\ 4 \ 4
monitor < e monitor
(move) T (search)
A A
MADsystem
moveCommand searchCommand
moveReport searchReport
v v

If the channels were finitely buffered, deadlock is still possible — but less
likely (exponentially) with increasing buffer size. Infinitely expandable
buffer capacity would be needed to eliminate deadlock from the basic
algorithm. For practical purposes, | would feel safe with a capacity of 3.

Mutually Assured Destruction
(asynchronous channels?)

motorSensor cameraSensor
\ 4 \ 4
monitor < e monitor
(move) T (search)
A A
MADsystem
moveCommand searchCommand
moveReport searchReport
v v

However, there is a nasty problem. If both monitors send a kil I, neither
Is taken and they remain lurking in the buffered channels. Some time in
the next service cycle, both will strike and the services will be erroneously

aborted.

Mutually Assured Destruction
(asynchronous channels?)

motorSensor cameraSensor
\ 4 \ 4
monitor < e monitor
(move) T (search)
A - A
MADsystem
moveCommand searchCommand
moveReport searchReport
v v

This could be overcome by counting cycles and sequence numbering the
ki Il signals: just ignore any ki I I with a number less than the current count.

This adds complexity and run-time overhead.

Mutually Assured Destruction
(asynchronous channels?)

motorSensor cameraSensor
\ 4 \ 4
monitor < e monitor
(move) T (search)
A A
MADsystem
moveCommand searchCommand
moveReport searchReport
v v

This could be overcome by counting cycles and sequence numbering the
ki Il signals: just ignore any ki I I with a number less than the current count.

Further, this only works if the processes engaged in MAD are in lock-step
(which they are in this scenario, but not in general).

Mutually Assured Destruction
(asynchronous channels?)

motorSensor cameraSensor
\ 4 \ 4
monitor < e monitor
(move) T (search)
A A
MADsystem
moveCommand searchCommand
moveReport searchReport
v v

Alternatively, the mess could be sorted out by the Control ler process.

Whenl/if it gets two me reports from the monitors, it tells each monitor (as part
of its next command) to read and discard an incoming kil 1. Again, this adds
complexity — we shouldn’t have a mess to clean up!

Mutually Assured Destruction
(asynchronous channels?)

motorSensor cameraSensor
\ 4 \ 4
monitor < e monitor
(move) T (search)
A A
MADsystem
moveCommand searchCommand
moveReport searchReport
v v

Alternatively, the mess could be sorted out by the Control ler process.
Whenl/if it gets two me reports from the monitors, it tells each monitor (as part
of its next command) to read and discard an incoming ki I . Further, this
assumes a Control ler, which processes engaged in MAD may not have.

The Joy of Sync

Process oriented design ...
Synchronous communications ...
Synchronous barriers ...
Mutually assured destruction ...
Non-blocking barriers ...

Performance ...

Non-Blocking Barriers

Recently (2012) introduced to MPI, non-blocking
barrier synchronisation seems, at first glance, a
contradiction of terms ... the whole point of a barrier Is

to block until all parties are there!

When we have completed our work before a barrier,
we normally synchronise on it — thereby notifying that
we are there and waiting for the others.

Barriers

Processes may synchronise on more than one barrier:

worker (0) worker (1) nEa worker (n-1)

BARRIER b, c:
PAR 1 = 0 FOR n ENROLL b, c
worker (i1, b, ©)

To synchronise on a barrier:

SYNC b or SYNC c

Barriers

Barriers are commonly used to synchronise multiple phases
of computation between a set of processes. Within each
phase, other synchronisations (channel/barrier) may take
place:

All workers do this

together — all see the
PROC worker (VAL INT id, BARRIER b, ©) same thing ...
-.-. [local declarations /7 initialisation
WHILE running
SEQ
SYNC b
... oObserve neighbourhood phase
SYNC c
... change neighbourhood phase

All' workers do this
together — may need

to negotiate ...

Non-Blocking Barriers

Recently (2012) introduced to MPI, non-blocking
barrier synchronisation seems, at first glance, a
contradiction of terms ... the whole point of a barrier Is
to block until all parties are there!

When we have completed our work before a barrier,
we normally synchronise on it — thereby notifying that
we are there and waiting for the others.

However, if there is something we can be getting on
with that does not disturb our fellow synchronisers,
(e.g. preparatory work for the phase following the
barrier), it would be good to be able to do so. Only
when we need stuff that depends on the other
synchronisers, should we have to wait for them.

Blocking Barrier Sync (MPI)

phase 0 computation

MPI_Barrier (b, ...); // wait for everyone ...
preparatory work for next phase
phase 1 computation

Blocking Barrier Sync (occam-w)

SEQ
phase 0 computation
SYNC b -- wait for everyone ...
preparatory work for next phase
phase 1 computation

Non-Blocking Barrier Sync (MPI)

phase 0 computation

MPI1_IBarrier (b, ...); // hey, 1°m done ...
preparatory work for next phase
MPI_WBarrier (b, ...); // 1I’m waiting now ...

phase 1 computation

Non-Blocking Barrier Sync (o-w)

SEQ
--- phase 0 computation
PAR
SYNC b -- hey, 1°m done ...
preparatory work for next phase
phase 1 computation

Non-Blocking Barrier Sync (o-w)

SEQ
--- phase 0 computation
PAR
SYNC b -- hey, 1’m done ...
-.- preparatory work for next phase
phase 1 computation

The SYNC registers that we have arrived at the barrier and lets all move

forward when the rest arrive. In parallel with the above, we get on with
our preparatory work. ©

When our preparatory work is complete, if all the others have reached
the barrier, the SYNC will have completed — so the PAR completes and we
immediately move on to phase 1. And we have not delayed the others. ©

When our preparatory work is complete, if not all the others have
reached the barrier, the SYNC will not have completed. We wait for the
others at the SYNC before moving on to phase 1 — as we must! ©

Non-Blocking Barrier Sync (o-w)

SEQ
--- phase 0 computation
PAR
SYNC b -- hey, 1’m done ...
--. preparatory work for next phase
phase 1 computation

The SYNC registers that we have arrived at the barrier and lets all move

reacred the barrier, the SYNC will not have completed. We wait for the
others at the SYNC before moving on to phase 1 — as we must! ©

The Joy of Sync

Process oriented design ...
Synchronous communications ...
Synchronous barriers ...
Mutually assured destruction ...
Non-blocking barriers ...

Performance ...

Performance

Take a ring of n processes ...

Each process connects to all ...

In parallel, each process sends and
receives m messages (e.g. its id
number) to all, including itself ...

That's mn2 messages ...

How long per message?

Performance

Andrew’s “Say Hello to Everyone” Benchmark (v1) *

[n][n]JCHAN INT c:
PAR © = 0 FOR n
PAR
PAR j = 0 FOR n
SEQ k = 0 FOR
c[illj] ! i
PAR j = 0 FOR n
SEQ k = 0 FOR
INT x:
SEQ
chlli] ?
ASSERT (x

I x

s
o/

2N? processes
mn? messages

-- for each j in parallel,
-- send m messages (i to j)

-- for each j in parallel,
-- receive m messages (j to i)

-- sanity check

Performance

formance for Scala Message-P

.JJIrJU

rorJrlJrr 013, pp. 113-132, Open Channel Publishing.

Andrew’s “Say Hello to Everyone” Benchmark (v2) *

[n]1[n]JCHAN INT c:

PAR i
PAR

SEQ
SE

= 0 FOR n

@)

I:!7¢II
e
=|IIO
O M= O T
o

o
T O w= T 0

o
O S = 035

= X |l
X Il ©

SEQ
chiilli] »
ASSERT (x

I x
s

2N processes
mn? messages

-- for each j in series,
-- send m messages (i to j)

-- for each j in series,
-- receive m messages (j to i)

-- sanity check

Performance

Take a ring of N processes ...

Each

In par
and re
its id)

The following observations were made using KRoC 1.5.0-pre5,
Ubuntu 11.04 (natty) on an Intel i7 quad-core processor with
hyperthreading (i.e. 8 virtual cores), running at 2 MHz.

The benchmark timings were averaged from 10 separate runs,
with negligible variance.

That's

How long per message?

mn2 messages ...

Monitor Edik

System | Processes |[Resources|| File Systems 1 COre / 20’000 nOdeS /V2

E CPU History

10D % wpo s

e R

I cPU1 11.9% [crFuz 0.0%
al Il crus 4.0% I crUG 5.0%

it‘ Memory and Swap History 2)
-

LD B wseereememrereeeee e e T TR T N RSP T TIPSR e [T P :

' Memory = Swap
6.2 GiB (80.9%) of 7.7 GiB 0 bytes (0.0%) of 7.9 GiB

H Network History

T bR
B KB -eeeeeeesoeeeesemes s sesmssnneeeeseee bR e e e
0.0 KiB/ e .f_\ s = e = e
&0 seconds 50 10 30 20 10]
Receiving 179 bytes/s sending 0 bytes/s
Total Received 42.9 MiB Total Sent 10.8 MiB

Monitor Edik

System | Processes |Resources|| File Systems 2 cores / 20’000 nOdeS /V
B 0 Y ’ A

E CPU History

R e \j ‘ S— :
0% e : s VA
B e e e S e R e = :
Ir 60 :5_ __________ 30 o
<. _P_F’£1_95.E}§6___::’ I cruz 5.0% [cru3 2.0% | cru4 3.0%
al <l I cpPus 109.9@_{::) I crus 0.0% I cru7 7.0% | crus 15.0%
jte Mememendswepmistoy 2)

' Memory = Swap
6.2 GiB (80.8%) of 7.7 GiB 0 bytes (0.0%) of 7.9 GiB

H Network History

T bR :
P O SO S et :
0.0 KiBs)-\-— - =
&0 seconds 50 10 30
Receiving 0 bytes/s sending 227 bytes/s
Total Received 42.8 MiB Total Sent 9.6 MiB

Monitor Edik

System | Processes ||[Resources|| File Systems

E CPU History
i —— —

al | crus 14.9%

it‘ Memory and Swap History 2)
-

LD B wseereememrereeeee e e s e T T T T T T N TN TP :

' Memory = Swap
6.2 GiB (80.7%) of 7.7 GiB 0 bytes (0.0%) of 7.9 GiB

H Network History

Receiving 356 bytes/s sending 0 bytes/s
Total Received 42.7 MiB Total Sent 9.6 MiB

Monitor Edik

System | Processes |[Resources|| File Systems 8 Cores / 20’000 nOdeS / V2

E CPU History

100 % - . \ i N §
503G -foorsnen e el b T e]
R T e e 5
«27__ Il crpu2 100.0% __>> <77 _ [l cPu3 100.0% __>>-~___ [HIl cPU4 100.0%__>
27”1 cpue 100.0% __> <777 I cPu7 99.0% -2+ 7 [cpus 100.0%_ >
it‘ Memory and Swap History 2)
U 100 SRR B S B S :

I &0 seconds 50 a0 30 20 10]

' Memory = Swap
6.2 GiB (80.7%) of 7.7 GiB 0 bytes (0.0%) of 7.9 GiB

H Network History

60 secomds

Receiving 0 bytes/s sending 0 bytes/s
Total Received 42.6 MiB Total Sent 9.5 MiB

Performance ¢

.

S0 ... MOW IoNg Per message?

6,000 nodes ...
(V2) 12,000 processes ...
30 messages node-to-node ...

1.08 billion messages ...

3 cores ...

/ naneseconads

Performance ¢

.

S0 ... MOW IoNg Per message?

10,000 nodes ...
(V2) 20,000 processes ...
30 messages node-to-node ...

3 billion messages ...

3 cores ...

/ naneseconads

.

S0 ... NOW' I0Ng PEr Message”

20,000 nodes ...
(V2) 40,000 processes ...
30 messages node-to-node ...

12 billion messages ...

38 cores ...

0)

O nanoseconas

.

S0 ... NOW I0Ng PEr MESSAJE?

6,000 nodes ...
(V2) 12,000 processes ...

1.08 billion messages ...

3 cores ...

30 messages node-to-node ...

/ naneseconads

* can't get many more than this
(only 4 Gbytes currently addressable).

Performance

.

S0 ... MOW IoNg Per message?

6,000 nodes ...
(V1) 72 million processes* ...
30 messages node-to-node ...

1.08 billion messages ...

38 cores ...

3

S0 ... NOW I0Ng PEr MESSAJE?

6,000 nodes ...
(V2) 12,000 processes ...

30 messages node-to-node ...

1.08 billion messages ...

cores 1 2

8
Qﬁ;nrg'sifos;%e 34.5 17.6 10.2 7.0

speed up 1.0 2.0 3.4 4.9

3

S0 ... NOW I0Ng PEr MESSAJE?

10,000 nodes ...
(V2) 20,000 processes ...

30 messages node-to-node ...

3 billion messages ...

cores 1
per message
(nanoseconds) 375

speed up 1.0

3

S0 ... NOW I0Ng PEr MESSAJE?

20,000 nodes ...
(V2) 40,000 processes ...

30 messages node-to-node ...

12 billion messages ...

cores 1 2

8
Qﬁ;nrg'sifos;%e 61.8 20.7 11.3 1.7

speed up 1.0 3.0 55 8.0

3

S0 ... NOW I0Ng PEr MESSAJE?

6,000 nodes ...
(V2) 12,000 processes ...

30 messages node-to-node ...

1.08 billion messages ...

cores 1 2

per message
(nanoseconds) 34.5 17.6

speed up 1.0 2.0

* can't get many more than this
(only 4 Gbytes currently addressable).

3

S0 ... MOW long per m 2%

6,000 nodes ...
(V1) 72 million processes* ...

30 messages node-to-node ...

1.08 billion messages ...

cores 1 2

8
p(fgnrg's‘(ifosﬁgf 120.0 47.1 26.5 14.0

speed up 1.0 2.5 4.5 8.6

The Joy of Sync

Process oriented design ...
Synchronous communications ...
Synchronous barriers ...

Mutually assured destruction ...

Non-blocking barriers ...

Performance ...

	Mutually Assured Destruction(or the Joy of Sync)
	Barriers
	Barriers
	Barriers
	Barriers
	Barriers
	Barriers – Safety
	Barriers
	Barriers
	Performance
	Performance
	Performance
	Performance
	Performance
	Performance
	Performance
	Performance
	Performance
	Performance
	Performance
	Performance
	Performance
	Performance
	Performance
	Performance

