OCPP An occam pre-processor

� TOC \o "1-2" �SYNTAX	� GOTOBUTTON _Toc395878152 � PAGEREF _Toc395878152 �1��

DESCRIPTION	� GOTOBUTTON _Toc395878153 � PAGEREF _Toc395878153 �1��

OUTPUT FORMAT	� GOTOBUTTON _Toc395878154 � PAGEREF _Toc395878154 �2��

FILE SPECIFICATIONS	� GOTOBUTTON _Toc395878155 � PAGEREF _Toc395878155 �3��

REGULAR EXPRESSIONS	� GOTOBUTTON _Toc395878156 � PAGEREF _Toc395878156 �4��

SOURCE DIRECTIVES	� GOTOBUTTON _Toc395878157 � PAGEREF _Toc395878157 �6��

#IFDEF <symbol>	� GOTOBUTTON _Toc395878158 � PAGEREF _Toc395878158 �6��

#IFNDEF <symbol>	� GOTOBUTTON _Toc395878159 � PAGEREF _Toc395878159 �6��

#IF <symbol>=<pattern>	� GOTOBUTTON _Toc395878160 � PAGEREF _Toc395878160 �6��

#IFN <symbol>=<pattern>	� GOTOBUTTON _Toc395878161 � PAGEREF _Toc395878161 �7��

#ELSE	� GOTOBUTTON _Toc395878162 � PAGEREF _Toc395878162 �7��

#ENDIF	� GOTOBUTTON _Toc395878163 � PAGEREF _Toc395878163 �7��

#ORDEF <symbol>	� GOTOBUTTON _Toc395878164 � PAGEREF _Toc395878164 �7��

#ORNDEF <symbol>	� GOTOBUTTON _Toc395878165 � PAGEREF _Toc395878165 �7��

#ANDDEF <symbol>	� GOTOBUTTON _Toc395878166 � PAGEREF _Toc395878166 �7��

#ANDNDEF <symbol>	� GOTOBUTTON _Toc395878167 � PAGEREF _Toc395878167 �8��

#OR <symbol>=<pattern>	� GOTOBUTTON _Toc395878168 � PAGEREF _Toc395878168 �8��

#ORN <symbol>=<pattern>	� GOTOBUTTON _Toc395878169 � PAGEREF _Toc395878169 �8��

#AND <symbol>=<pattern>	� GOTOBUTTON _Toc395878170 � PAGEREF _Toc395878170 �8��

#ANDN <symbol>=<pattern>	� GOTOBUTTON _Toc395878171 � PAGEREF _Toc395878171 �8��

#DEFINE <symbol>[=<value>]	� GOTOBUTTON _Toc395878172 � PAGEREF _Toc395878172 �9��

#UNDEF <symbol>	� GOTOBUTTON _Toc395878173 � PAGEREF _Toc395878173 �9��

#DEFSFROM "<definition indirect file>"	� GOTOBUTTON _Toc395878174 � PAGEREF _Toc395878174 �9��

TEXTUAL SUBSTITUTION	� GOTOBUTTON _Toc395878175 � PAGEREF _Toc395878175 �10��

#SUBST {<line of source code>}	� GOTOBUTTON _Toc395878176 � PAGEREF _Toc395878176 �10��

#DERIVE {<symbol>[=<value>]}	� GOTOBUTTON _Toc395878177 � PAGEREF _Toc395878177 �11��

#EXTRACT <symbol>=<d><regexp><d>[<d><replacement><d>]{<source text>}	� GOTOBUTTON _Toc395878178 � PAGEREF _Toc395878178 �12��

#REPLACE <symbol>=<d><regexp><d>[<d><replacement><d>]{<source text>}	� GOTOBUTTON _Toc395878179 � PAGEREF _Toc395878179 �12��

#TEMPLATE [<symbol>=]"<template file>" [...] ({<symbol>[=<value>]})	� GOTOBUTTON _Toc395878180 � PAGEREF _Toc395878180 �12��

#RETURN {<return value text>}	� GOTOBUTTON _Toc395878181 � PAGEREF _Toc395878181 �14��

#INDENT #OUTDENT	� GOTOBUTTON _Toc395878182 � PAGEREF _Toc395878182 �14��

DIAGNOSTICS	� GOTOBUTTON _Toc395878183 � PAGEREF _Toc395878183 �15��

#MDUMP ["<dump file>"]	� GOTOBUTTON _Toc395878184 � PAGEREF _Toc395878184 �15��

#MEMO {<message text>}	� GOTOBUTTON _Toc395878185 � PAGEREF _Toc395878185 �15��

#ERROR {[<code>] <message text>}	� GOTOBUTTON _Toc395878186 � PAGEREF _Toc395878186 �15��

#SHELL {<command line>}	� GOTOBUTTON _Toc395878187 � PAGEREF _Toc395878187 �16��

CONSTANT IMPORTATION	� GOTOBUTTON _Toc395878188 � PAGEREF _Toc395878188 �16��

#INTERPRET "<C header file>"	� GOTOBUTTON _Toc395878189 � PAGEREF _Toc395878189 �16��

COMMAND LINE OPTIONS	� GOTOBUTTON _Toc395878190 � PAGEREF _Toc395878190 �18��

-	� GOTOBUTTON _Toc395878191 � PAGEREF _Toc395878191 �18��

O <output file>	� GOTOBUTTON _Toc395878192 � PAGEREF _Toc395878192 �18��

D <symbol>[=<value>]	� GOTOBUTTON _Toc395878193 � PAGEREF _Toc395878193 �18��

DE <environment variable>	� GOTOBUTTON _Toc395878194 � PAGEREF _Toc395878194 �18��

DF <definition indirect file>	� GOTOBUTTON _Toc395878195 � PAGEREF _Toc395878195 �18��

U <symbol>	� GOTOBUTTON _Toc395878196 � PAGEREF _Toc395878196 �19��

RMC	� GOTOBUTTON _Toc395878197 � PAGEREF _Toc395878197 �19��

MIP	� GOTOBUTTON _Toc395878198 � PAGEREF _Toc395878198 �19��

DBG	� GOTOBUTTON _Toc395878199 � PAGEREF _Toc395878199 �19��

IRV	� GOTOBUTTON _Toc395878200 � PAGEREF _Toc395878200 �20��

T2	� GOTOBUTTON _Toc395878201 � PAGEREF _Toc395878201 �20��

PP <input file> (<occam compiler options>)	� GOTOBUTTON _Toc395878202 � PAGEREF _Toc395878202 �20��

Z	� GOTOBUTTON _Toc395878203 � PAGEREF _Toc395878203 �21��

SPECIAL INTERNAL MACROS	� GOTOBUTTON _Toc395878204 � PAGEREF _Toc395878204 �21��

FILES	� GOTOBUTTON _Toc395878205 � PAGEREF _Toc395878205 �23��

LIMITS	� GOTOBUTTON _Toc395878206 � PAGEREF _Toc395878206 �23��

ERRORS	� GOTOBUTTON _Toc395878207 � PAGEREF _Toc395878207 �23��

��NAME

ocpp

Occam pre-processor with comment-decorated output and mixed language programming support; version 3.002, 11th. September 1997, (c) M. I. Barlow. This software package may be freely used, copied and re-distributed by any party, for any purpose commercial or otherwise, provided that any fee charged does not exceed the cost of distribution, all the package’s component files and this message remain intact, and all recipients of copies agree to abide by the same conditions.

SYNTAX

ocpp [/D macro] [/DE envar] [/DF file] [/U macro] [/O outfile]

 [/RMC] [/MIP] [/DBG] [/IRV] [/T2] (infile | -)

ocpp [/D macro] [/DE envar] [/DF file] [/U macro]

[/DBG] [/T2] /PP infile [occam compiler options...]

ocpp /Z

DESCRIPTION

Occam source code and it's configuration language extensions do not normally provide a conditional compilation mechanism, except insofar as individual compilers may permit it via compile-time boolean constants, exploiting constant folding and dead-code elimination optimisations. The ocpp command provides this facility by dynamically commenting out sections of it's input file under the control of a set of directives which are themselves commented in the output. In doing this it uses a reserved comment style which allows it to re-process the output under different circumstances, or indeed to modify the input file in-place in a reversible manner. (Unless the user forces the issue; see the IRV command line option, pp. � PAGEREF IRV_option �20�). This ability also allows it to offer a facility to ‘chain’ the user’s occam compiler or configurer, effectively as if those programs had in-built pre-processors.

Because eliminated code is commented rather than removed the output file will always correspond line-for-line with the input, simplifying the interpretation of error messages generated by other tools which may subsequently be applied to it's output.

Code elimination is controlled by the presence or absence of symbol definitions ('Macros') at run time. Symbolic macros may be defined for a given run either on the command line, via an environment variable, in a “definition indirect file” or within the source code itself. The maximum permissible number and size of symbol strings is implementation dependent.

If a file called ocpp.rc exists in the same directory as the ocpp executable it is taken to be the global default definition indirect file and is read before anything else. Similarly, a local default file (also called ocpp.rc) may be placed in the current directory, and will be read after the global one, but before the command line arguments.

Ocpp also supports mixed occam and C development in two ways. Firstly, it is able to process suitably written C header files as if they were definition indirect files, to gather symbol definitions which can then affect processing of an occam source file. Secondly, it is able to read a sub-set of C's pre-processor definition syntax from a header file and render equivalent occam constants available for reference in it's output.

The source code to be modified will normally contain directives which employ macros to control the commenting out of code segments, with the generic format #IF[N][DEF] ... [#ELSE] ... #ENDIF. All these directives have a similar syntax to those already employed in occam code (#INCLUDE, #USE etc.) but do not conflict with them. Each directive must occur on a line of it's own and must constitute the first non-whitespace characters on the line, although trailing comments are permitted. Because their comment token is the same as occam's ocpp may also be applied to the SGS(r) toolset's librarian and linker indirect command files.

Macro symbols may, if necessary, be composed from any non-whitespace characters except for the OS's switch and directory separator; the equals sign ('=') also has a special meaning, and braces ('{' and '}') should be avoided. In practice it is probably best to stick with alphanumerics unless there is a specific need.

Two forms of macro may be used; in the first only a symbol is supplied and processing is governed according to whether that symbol is defined or undefined at the point in the input file at which it is encountered. In the second form both a name and a symbolic value are given, separated by the equals sign, as a single word containing no whitespace Eg: Type=INT32. Macros in this form may be used to perform textual substitutions in the output (see the #SUBST directive, pp. � PAGEREF SUBST_directive �10�), but are also considered to be defined, in the same sense as the first type, whatever their value field contains. Within the value field all characters are interpreted literally except the underbar ('_'), which is replaced by a space whenever ocpp recalls and uses the value.

A certain sub-set of macros, all with symbol names starting with "Ocpp" are reserved for special internal uses. Some are write-only; when the value of one is changed it will generally alter the behaviour of ocpp in some way. Others are read-only, returning status information and a few (those which mirror command line option settings) can be both read and written. An example is the special internal macro "OcppMacValSpcToken"; this is write-only and only the first three characters of the value passed are significant. It changes the token used to represent a space in macro value fields (as explained above) from it's default, the underbar ('_'), to whatever is supplied. If it is set to the empty string all characters in value fields will be interpreted literally. Note that it is useless to set it to 'space' itself, nor should you set it to the value it already has, as spaces are not allowed in value fields. This is tautological but true.

Finally, since many occam processes have similar structures but operate on data of different types a pre-processor ‘sub-routine’ facility is provided in the form of template files, which provide a limited facility to insert generic code into an occam source file, with arguments specific to the particular location.

OUTPUT FORMAT

Lines which are to be eliminated, according to the settings of defined macros and embedded directives are decorated at the same indentation level as the original text with the reserved comment, consisting of two hyphens, three colons and two spaces:

--::: original text of line

This comment style, if found in the input file will be removed before any other processing is attempted, allowing ocpp to re-process it's own output files without any intermediate clean-up operation. The style used may be changed by defining a new value for the special internal macro "OcppReservedComment"; only the first fifteen characters of the value passed are significant.

Lines which already begin with a comment are left alone, even when they occur within a block of text which is to be commented out. There are in fact three types of comment as far as ocpp is concerned; ordinary occam comments which it leaves strictly alone, reserved comments as shown above which it manipulates reversibly and it's own private comment style which is unconditionally removed from the output. The default private comment style is two hyphens followed by three forward slashes:

line_of_program_code --/// body_of_private_comment

This feature is useful for documenting the way that ocpp is intended to operate on a given input file without cluttering and confusing the output, but should generally be used in the trailing form shown above. Private comments on a line of their own are removed entirely and will destroy the one-to-one correspondence between line numbers in the input and output files. The private comment style may be changed by defining a new value for the special internal macro "OcppPrivateComment"; only the first fifteen characters of the value passed are significant.

Many occam programmers prefer to use a “folding editor”, which recognises two other reserved comment styles: The opening (“--{{{ ”) and closing (“--}}} ”) foldmarks. These are used by the editor to produce a display in which portions of code enclosed between such lines can be optionally hidden or revealed, promoting better internal organisation in files and rapid intuitive intra-file navigation. The principle is the similar to that of a directory structure within a disk volume. Ocpp does not interfere with such comments except in two particular circumstances: If the special internal macro “OcppFoldUpHashIFs” is set to ‘TRUE’ the reserved comment at the start of a #IF[N][DEF] line is replaced in the output with an opening foldmark and on #ENDIF lines by a closing one, improving code legibility in a folding editor. If it is ‘FALSE’ the standard ocpp reserved comment detailed above is used; setting it to ‘REVERT’ specifies that such foldmarks be used only if they were seen in the input file (the default behaviour).

N.B:	The date and time at which ocpp commences producing the output file are recorded in two read-only special internal macros, “OcppTodaysDate” and “OcppStartTime” allowing this information to be recorded in the file, using the #SUBST directive (see pp. � PAGEREF _Ref395637137 �10�).

file specifications

Four of ocpp's directives, and three of the occam compiler's native ones (#INCLUDE, #USE and #IMPORT) take arguments in the form of a filename, optionally qualified with a pathname, enclosed in double quotes. To assist in making projects more portable ocpp accepts file specifications containing embedded references to environment variables using the same format as make, ie: the variable name, enclosed in parentheses and prefixed with a dollar symbol ("$"). The #DEFSFROM directive (see pp. � PAGEREF _Ref394417226 �9�) can, for example, accept an argument of the form:

#DEFSFROM "$(PROJ)/ocpp_defs/test_$(TESTMODE).def"

The values of such embedded environment variables are read from the copy of the master environment passed to ocpp by the OS, and their names must adhere to whatever conditions the OS mandates (Eg: MSDOS(r) requires all upper-case). If a given variable does not exist a warning message is given and the reference itself is removed from the file specification before attempting to find the file. This will normally result in a subsequent error message when the file cannot be found (Quoting the expanded form of the file specification) unless the user is specifically exploiting this behaviour to optionally add or omit elements from a path.

This facility is also extended to the occam compiler's native directives in the following manner. If ocpp encounters, for example, a #INCLUDE directive in a context in which it is to be commented out (due to the effect of some enclosing conditional construct) it merely does so. If not, it examines the associated file specification. Those which do not contain embedded environment variable references of the form '$(<name>)' are simply copied to the output, those that do are replaced by a #INCLUDE directive containing the expanded file specification, followed by a reserved comment and the original directive. This scheme allows the input to be reconstructed from the output file if required. A typical example of this latter case might be:

#INCLUDE "/occam/black-box/prot.inc" --::: #INCLUDE "$(PROJ)/prot.inc"

Whilst there are limitations on the usefulness of this facility due to the lack of similar provisions in other tools it should prove helpful, particularly in PC-based development environments where the file system does not provide such comprehensive support for relocatable project directory structures. If this feature is undesirable or inconvenient for some reason it can be turned off by setting the special internal macro “OcppExpandFileNames” to FALSE.

N.B:	In order that both ocpp and your make utility agree about the value of such embedded variables it is advisable to pass them into both programs from the shell. An instance of ocpp called as part of a make rule does not receive any information about the make utility’s internal variables or their values, but most forms of make will pre-load the shell’s environment variables into internal ones when they are called.

For compatibility with the SGS(r) makefile generator program imakef, when ocpp is modifying it’s input file ‘in place’, or is acting as a pre-processor for another program (see the PP option, pp. � PAGEREF _Ref394125886 �20�) if no input file name extension is present “occ” is assumed. This behaviour may be changed by setting the value of the special internal macro “OcppDefaultExtn”. This may be set to any combination of up to seven characters (there is no need to explicitly specify the “dot” prefix) or to the empty string, in which case no assumption will be made and the given file name will be used ‘as is’. This is also the case when processing a given input file to an explicitly specified output file, or to the terminal (which is the default output stream).

Regular expressions

The patterns recognised by the #(IF|OR|AND)[N] group of conditional directives (see pp. � PAGEREF _Ref395635715 �6� et seq.) may either be simple strings, in which case an exact match is tested for, or a group of one or more alternative “regular expressions”. These are defined in a similar manner to those recognised by the Unix egrep command, with some slight modifications and one non-standard feature. Specifically, any pattern which does not begin with the vertical bar character (‘|’) is treated as a simple exact match string. A list of one or more regular expressions is started and delimited with the vertical bar, and can optionally be terminated with one. Within regular expressions the elements tabulated below have special meanings. If one of the special characters they use (. * + ? [(\) needs to be specified as an explicit literal component of the pattern it must be ‘escaped’ by prefixing it with a backslash (‘\’). This applies to backslash itself, so that a pair of backslashes in the pattern matches a single real one in the macro value. Notice that when macro values are being defined a placeholder (by default the underbar character (‘_’)) is required to denote spaces (see pp. � PAGEREF Space_placeholder �2�); this not the case in either simple or regular expression patterns, but since ocpp strips trailing comments the pattern may not contain two consecutive dashes (‘--’). If you need to do this, use an equivalent regular expression such as (‘-[-]’).

Element�Example�Meaning��Dot�.�Matches any single character.��Asterisk�e*�Causes the preceding element to match zero or more copies of itself.��Plus�e+�Causes the preceding element to match one or more copies of itself.��Query�e?�Causes the preceding element to match zero or one copy of itself.��Set �[aeiou]�Matches one instance of any of the given characters. ��Complement�[^aeiou]�Matches one instance of any character except those given.��Group�(cat|dog)�Matches one instance of any of the given sub-expressions.��Capture�\3�Matches the string that matched the given group number [1-9].��Repeat�e\{10\}�Matches exactly the given number of copies of the preceding element.��Min. Repeat�e\{5,\}�Matches at least the given number of copies of the preceding element.��Range�e\{1,3\}�Matches at least the first and at most the last given number of copies.��Escape�\.�Matches the escaped character without any special meaning.��Any case�\<xyz\>�Matches contents in any combination of upper or lowercase.��Literal�Z�All other characters stand for themselves.��

The elements asterisk, plus, query and the various forms of repeat/range elements are known as ‘closures’, because they modify the matching behaviour of the preceding element. When ambiguity is present, they will always match sufficient repeats such that the next element in the expression does not fail. For example, in the following fragment the #IF succeeds, because the b+ matches only two of the bs present in the macro value:

#DEFINE mac=Abbbcd�#IF mac=|A[bB]+(bcd)

Within sets and their complements the only characters with special meanings are the closing square bracket (‘]’), which terminates the set and minus (‘-’), which may be used to indicate a range of characters. The characters (. * + ? (\) do not need to be escaped. If an explicit closing square bracket has to be included it must be the first character after the opening one, or after the caret (‘^’) in a complement set. If a minus sign is needed it must be the first or last character in the set. Elsewhere, minus indicates the full range of characters from the preceding one to the following; for example 0-9 specifies all the digits, and a-z all the lowercase letters.

Group elements are separate regular expressions in their own right; it is quite permissible to have only one member element and groups are fully nestable. Within them the closing parenthesis (‘)’) and vertical bar characters are special, and must be escaped if intended literally. It is important to note that the alternatives in a group are assessed from left to right during matching, and the first to succeed is taken. This means that when one or more alternatives are supersets of another one they should appear first for correct operation. For example, you should write (def|de|d) and NOT (d|de|def). If the sub-expressions are complex this can be quite difficult to assess.

A group’s number can be found by counting opening parentheses (‘(’) from left to right, starting at one. Nested groups must also be counted as they appear. Once a group’s number is known it is possible to “capture” the string which matches it and re-use it later on in the expression. If a nested group is not matched because a sub-expression in the outer group succeeded it’s capture string will be empty, as will those of groups which have not yet been encountered. (An empty capture string matches precisely nothing.) This will also be true of groups which were marked with a closure that allowed them to match zero instances of their contents. When a group closure matches more than one instance of it’s contents only the first match is captured. If more than nine groups are present in an expression only the first nine will be captured.

Case-insensitivity is the non-standard feature mentioned above. Within escaped angle brackets (‘\<’ and ‘\>’) literals, sets and captures operate without regard to the case of the alphabetic characters. This feature acts on a “per expression” basis; all regular expressions, and sub-expressions within groups start off by being case sensitive, in the manner expected by users of regular expressions in other utilities. If case-insensitivity is required it must be explicitly re-set after each vertical bar or opening parenthesis. Case insensitivity is a convenient shortcut at times, for example the following two expressions are equivalent:

\<multiplexor\> [mM][uU][lL][tT][iI][pP][lL][eE][xX][oO][rR]

The following are some examples of complete regular expressions, as recognised by ocpp. The first construction matches any valid occam identifier, the second any valid occam floating point constant, the third any valid basic occam type name, and the fourth (rather trivially) any three repeated (case-insensitive) words, such as “help! Help! HELP!”:

#IF VarName=|[\.A-Za-z][\.0-9A-Za-z]*

#IF FPval=|[+-]?[0-9]\.[0-9]+[Ee][+-][0-9]\{1,3\}|[+-]?[0-9]+\.[0-9]+

#IF Type=|BOOL|BYTE|INT(16|32|64)?|REAL(32|64)

#IF Exclamation=|([^]) +\<\1\> +\<\1\>

SOURCE DIRECTIVES

In the following descriptions angle brackets ('<>') denote items to be replaced with user-supplied text, square brackets ('[]') mark optional portions of the directive line and parentheses ('()') represent a list of zero or more instances of the item(s) they enclose. Braces ('{}') are shown around items within which ocpp will perform "substitution processing", explained below under the #SUBST directive (see pp. � PAGEREF _Ref394417769 �10�). All other characters should be interpreted literally.

#IFDEF <symbol>

Passes subsequent lines through to the output uncommented only if <symbol> is defined for the current run.

#IFNDEF <symbol>

Passes subsequent lines through to the output uncommented only if <symbol> is NOT defined for the current run.

#IF <symbol>=<pattern>

Passes subsequent lines through to the output uncommented only if <symbol> is defined for the current run, and it has a value that matches <pattern>, which may be either a simple exact match or a regular expression (see pp. � PAGEREF _Ref394119952 �4�). Elicits an error if the symbol-value pair is corrupt. If the macro referenced is undefined the match fails, and if it is defined in simple form without a value it also fails unless the value being matched is the empty string. Both the latter cases elicit a warning.

#IFN <symbol>=<pattern>

Passes subsequent lines through to the output uncommented only if <symbol> is defined for the current run, and it has a value that does NOT match <pattern>, which may be either a simple exact match or a regular expression (see pp. � PAGEREF _Ref394119952 �4�). Elicits an error if the symbol-value pair is corrupt. If the macro referenced is undefined the match succeeds, and if it is defined in simple form without a value it also succeeds unless the value being matched is the empty string. Both the latter cases elicit a warning.

#ELSE

Introduces a block of source code which is to be copied to the output uncommented only if the lexically innermost preceding #IF[N][DEF] directive caused subsequent lines to be eliminated (ie: it evaluated to FALSE). An isolated #ELSE directive without a preceding #IF[N][DEF] is considered an error.

#ENDIF

Terminates processing of the output based on the corresponding #IF[N][DEF] directive and resumes whatever state obtained immediately before it was encountered. An isolated #ENDIF directive without a preceding #IF[N][DEF] is considered an error, as is the circumstance of #IF[N][DEF] being followed by End-of-file before it's corresponding #ENDIF. In this latter case all the incomplete conditionals are listed in the error message.

The remaining eight conditional directives are modifiers which affect the truth value of the preceding #IF[N][DEF]. They may only be legally placed immediately after the #IF[N][DEF] line itself, or after another modifier which fulfils that criterion, thus forming a condition 'list'. Only blank lines and other modifiers may occur within such a list.

#ORDEF <symbol>

Passes subsequent lines through to the output uncommented if <symbol> is defined for the current run, even though the symbol(s) associated with preceding condition(s) may have yielded outcomes that would cause commenting.

#ORNDEF <symbol>

Passes subsequent lines through to the output uncommented if <symbol> is undefined for the current run, even though the symbol(s) associated with preceding condition(s) may have yielded outcomes that would cause commenting.

#ANDDEF <symbol>

Passes subsequent lines through to the output uncommented only if <symbol> is defined for the current run, and all the symbol(s) associated with preceding condition(s) so far have yielded a current outcome that would also prevent commenting.

#ANDNDEF <symbol>

Passes subsequent lines through to the output uncommented only if <symbol> is undefined for the current run, and all the symbol(s) associated with preceding condition(s) so far have yielded a current outcome that would also prevent commenting.

#OR <symbol>=<pattern>

Passes subsequent lines through to the output uncommented if <symbol> is defined for the current run with a value that matches <pattern> which may be either a simple exact match or a regular expression (see pp. � PAGEREF _Ref394119952 �4�), even though the preceding condition(s) may have yielded outcomes that would have caused commenting. Elicits an error if the symbol-value pair is corrupt.

If the macro referenced is undefined the result is FALSE, if it is defined in simple form without a value it is also FALSE unless the value being matched is the empty string. Both the latter cases elicit a warning.

#ORN <symbol>=<pattern>

Passes subsequent lines through to the output uncommented if <symbol> is defined for the current run with a value that does NOT match <pattern> which may be either a simple exact match or a regular expression (see pp. � PAGEREF _Ref394119952 �4�), even though the preceding condition(s) may have yielded outcomes that would have caused commenting. Elicits an error if the symbol-value pair is corrupt.

If the macro referenced is undefined the result is TRUE, and if it is defined in simple form without a value it is also TRUE unless the value being matched is the empty string. Both the latter cases elicit a warning.

#AND <symbol>=<pattern>

Passes subsequent lines through to the output uncommented if <symbol> is defined for the current run with a value that matches <pattern> which may be either a simple exact match or a regular expression (see pp. � PAGEREF _Ref394119952 �4�), provided that the preceding condition(s) have yielded outcomes that would not have caused commenting. Elicits an error if the symbol-value pair is corrupt.

If the macro referenced is undefined the result is FALSE, and if it is defined in simple form without a value it is also FALSE unless the value being matched is the empty string. Both the latter cases elicit a warning.

#ANDN <symbol>=<pattern>

Passes subsequent lines through to the output uncommented if <symbol> is defined for the current run with a value that does NOT match <pattern> which may be either a simple exact match or a regular expression (see pp. � PAGEREF _Ref394119952 �4�), provided that the preceding condition(s) have yielded outcomes that would not have caused commenting. Elicits an error if the symbol-value pair is corrupt.

If the macro referenced is undefined the result is TRUE, and if it is defined in simple form without a value it is also TRUE unless the value being matched is the empty string. Both the latter cases elicit a warning.

It may be seen that in a list of #OR[N][DEF] clauses any one is able to prevent commenting, whereas in a list of #AND[N][DEF] clauses any one can enforce commenting despite the outcomes of all the others. In mixed lists the outcome depends upon the order in which clauses are written.

With a given input file, and a given set of macros the construction #IF[N][DEF], (#AND[N][DEF]), (#OR[N][DEF]) ... [#ELSE] ... #ENDIF may be nested to an implementation-dependent depth. The limit depends on available memory, but at least twenty levels may normally be assumed.

#DEFINE <symbol>[=<value>]

If this directive is encountered in a context in which it would not be commented out by an enclosing #IF[N][DEF] ... #ENDIF construction it defines <symbol> directly within the source code, and optionally associates <value> with it it's existence and value may affect the processing of all subsequent lines in the input file. Re-definition of existing symbols is not considered to be an error. Note that no whitespace may occur within the symbol-value pair.

#UNDEF <symbol>

If this directive is encountered in a context in which it would not be commented out by an enclosing #IF[N][DEF] ... #ENDIF construction it removes any existing macro with the name <symbol>, such that it's absence may affect the processing of all subsequent lines in the input file. Macros which have been defined more than once do NOT require an equal number of #UNDEF directives to eliminate them. Attempts to un-define a non-existent macro have no adverse consequences.

#DEFSFROM "<definition indirect file>"

If this directive is encountered in a context in which it would not be commented out by an enclosing #IF[N][DEF] ... #ENDIF construction it causes the referenced file to be read as if it had been passed on the command line using the DF switch (see pp. � PAGEREF DF_option �18�), ie: For each line which starts with #DEFINE or #define (leading whitespace permitted) define the next whitespace delimited word on the line as a symbol during subsequent processing, provided that it does not contain the opening parenthesis ('(') and is not followed on the same line by anything other than a valid C, C++ or occam comment, the symbol TRUE (case insensitive) or a non-zero decimal integer literal within at most one level of parentheses. Note how this differs from #INCLUDE “<filename>” ; when using #DEFSFROM none of the file’s content can be passed to the occam compiler, and lines that do not contain ocpp definitions (Eg: lines intended to be read by a C compiler) are ignored. It is also possible to include #DERIVE lines (see pp. � PAGEREF DERIVE_directive �11�) in such a definition indirect file, but only the uppercase form is tolerated.

N.B:	The ocpp distribution contains a file called defaults.ocp, which defines all the writeable special internal macros to take the default values they had before the first, global ocpp.rc file (see pp. � PAGEREF Default_extn �4�) was read. This may conveniently be passed to the #DEFSFROM directive to restore all these values to the ones listed in the table on pp. � PAGEREF SIMacroTable �22�, or copied and edited to produce your own ocpp.rc files.

Textual Substitution

Macros which have been defined with a value field are used in the following contexts to perform textual substitutions within a line of source code. Again, this facility is more restricted than that offered by a 'C' pre-processor, and also differs in that substitution is allowed anywhere, even inside string literals. The syntax is best shown by an example:

#SUBST {<line of source code>}

passes to the output a modified copy of everything lying to the right of the #SUBST directive except leading whitespace, followed by a reserved comment and the original text of the line. Items enclosed inside literal braces ('{' and '}') within the original copy are replaced (omitting the braces) according to the following scheme:

Item�Substitution��Macro with value field�Contents of value field��Simply defined macro�Macro symbol itself��Undefined macro�Generates an error��

Thus, for example, the output could take one of the following forms, according to the status of the 'source' macro:

--::: #DEFINE source=occam�line of occam code --::: #SUBST line of {source} code�--::: #DEFINE source�line of source code --::: #SUBST line of {source} code

There is no limit on the number of individual substitutions which may occur within a line prefixed with #SUBST. Note that this is NOT intended to replace those facilities already available by using compile-time occam constants, hence the deliberate omission of arithmetic and logical operations on the contents of macro strings.

braces may not be nested within the source line, Eg: {X{Y}X} will elicit an error report, as will any unmatched opening or closing brace. Substitutions cannot be nested recursively by placing them inside the value field of a macro which will itself be expanded, but this restriction can be overcome using the #DERIVE directive below.

This substitution facility in ocpp may be employed to good effect in conjunction with revision-control utilities to incorporate version numbers into, say, PROTOCOL names. In such situations it may be desirable to derive more than one substitution from a single macro, for use in several related situations. For this purpose substitution modifiers are provided.

If the first character after the opening brace is a plus sign (‘+’), all alphabetic characters in the substitution are forced to uppercase, regardless of their case as defined in the macro mentioned in the body of the substitution. If it is a minus (‘-’) they are forced to lowercase, and if a plus and a minus are present the initial letter is capitalised, and subsequent ones are forced to lowercase. (If the macro symbol itself starts with a plus or minus you may use leading space to hide it.) The final modifier is the underbar (‘_’), which causes the substitution to be blanked out with an equal number of spaces. It’s main purpose is cosmetic, allowing neat vertical alignment of adjacent lines containing substitutions.

It is also possible to select a portion of the text that would normally result from a substitution, based on character position, numbered from zero. After any (or none) of the above modifiers a ‘slice selector’ can be inserted, consisting of one or two numbers separated by a comma (‘,’). If a single number is present without a comma it selects a single character, or the empty string if the place specified is beyond the end of the string. If it is followed by a comma it selects the characters at and beyond the given place, and if the comma precedes it it selects all characters up to and including that location. A comma separated pair of numbers selects a sub-range of the string. The following code fragment illustrates all the above features:

--::: #DEFINE name=FrEd�[9][4]BYTE eg:�SEQ� eg[0] := “FrEd” --::: #SUBST eg[0] := “{ name}”� eg[1] := “FRED” --::: #SUBST eg[1] := “{+ name}”� eg[2] := “fred” --::: #SUBST eg[2] := “{- name}”� eg[3] := “Fred” --::: #SUBST eg[3] := “{+- name}”� eg[4] := “ ” --::: #SUBST eg[4] := “{_ name}”� eg[5] := “d ” --::: #SUBST eg[5] := “{3 name} ”� eg[6] := “ED ” --::: #SUBST eg[6] := “{+2, name} ”� eg[7] := “fr ” --::: #SUBST eg[7] := “{-,1 name} ”� eg[8] := “rE ” --::: #SUBST eg[8] := “{1,2 name} ”

N.B:	The default settings for the substitution delimiter tokens, "{" and "}", should be appropriate in almost every case, but they may be changed if desired by setting the values of the write-only special internal macros "OcppOpenSubstToken" and "OcppCloseSubstToken". They may even be set to identical values if desired. Only the first three characters of each token are significant. The values of the substitution modifier characters may not be changed.

When large blocks of code require substitutions to be performed within them it may be more efficient to enclose them between lines defining the special internal macro "OcppSubstAlways" to be first "TRUE" and then "FALSE". This facility should be used with care to ensure the tokens mentioned above do not occur in misleading circumstances. Comment lines, those that contain one of the other ocpp directives and those in which no substitution was found are passed through unaltered.

#DERIVE {<symbol>[=<value>]}

Performs the same action as #DEFINE, except that the whole definition is expanded in the same manner as a line passed to #SUBST above before the definition is recorded. Note that it is perfectly legal to substitute the previous value of a macro into a re-definition, for example:

--::: #DEFINE myMacro=b�--::: #DERIVE myMacro=A{+myMacro}C -- note use of uppercase modifier�as easy as ABC --::: #SUBST as easy as {myMacro}

#EXTRACT <symbol>=<d><regexp><d>[<d><replacement><d>]{<source text>}

This directive, and the following one provide the most generalised ways to create a new macro from any arbitrary combination of components. The given <symbol> is assigned a value as follows: First the regular expression <regexp> is extracted; it is taken to be formed from all text lying between the first two instances of the delimiter character <d>, which can be any single character that does not occur in the expression. (Unless the expression precludes it you may care to use slash (‘/’), which performs the same function Unix tools such as sed and awk.) There is no need in this case for the regular expression to start with a vertical bar (‘|’), although it may still be used to separate multiple alternatives. Next the <source text> is expanded in the same manner as a line passed to #SUBST, then scanned for a match with the regular expression. (Because of this, #EXTRACT lines may not have user-supplied trailing comments.) Whatever text fulfils the match is assigned as the value of macro <symbol>.

If the regular expression within it’s pair of delimiters is followed by a second string, within an identical pair of delimiters this is taken as it’s <replacement>. A replacement string consists of ordinary text and the special ‘escapes’ \0, and \1 to \9. The latter correspond to the ‘captured’ contents of groups, as they do in the regular expression itself (see pp. � PAGEREF _Ref394119952 �4�) while \0 corresponds to the entire text of the match. When a replacement string is present it is processed to replace the escapes with their corresponding text, and the result becomes the macro’s value. (The default replacement string, if none is specified is thus simply <d>\0<d>.) Because the original <source text> can contain macro value substitutions, which may themselves be subject to modifiers and slicing #EXTRACT can in principle be used to obtain any desired re-combination of macro values or components of their values.

#REPLACE <symbol>=<d><regexp><d>[<d><replacement><d>]{<source text>}

This directive differs from #EXTRACT by providing a facility to apply editing operations to the <source text> before it is copied into the given <symbol>. The value is assigned as follows: First the regular expression <regexp> and its optional <replacement> are extracted, as described above for #EXTRACT, by use of the delimiter character <d>. Next the <source text> is expanded in the same manner as a line passed to #SUBST. It is then scanned for one or more matches with the regular expression, and each one found is replaced with <replacement>, which provides the same facilities for interpolating captured text as for #EXTRACT. The default replacement string if none is supplied is the empty string, so that all portions that match <regexp> in the source are edited out. #REPLACE lines may not have user-supplied trailing comments.

As mentioned above, ocpp does not follow the occam #INCLUDE directive in the way a C pre-processor does, since the syntax defined by ocpp is not an integral part of the language. Instead, to allow generic code fragments containing substitutions such as those described above to be held in a separate file the following directive is provided:

#TEMPLATE [<symbol>=]"<template file>" [...] ({<symbol>[=<value>]})

A template file functions, essentially, as an ocpp sub-routine. When this directive is encountered ocpp searches for the file whose name, in double quotes, is given in <template file>. When no explicit path is given it looks first in the current directory and then in the directories defined by the ISEARCH environment variable. If this file cannot be located an error is generated. ("ISEARCH" is actually the default value of the special internal macro "OcppSearchPathVar", which may be changed if desired. Only the first 32 characters passed to this macro are significant.)

If the file can be found a destination file is created in the current directory, overwriting any previous version, with a name derived from the main output file using a numerical extension (If output is to <stdout> an arbitrary unique name is generated). The template line in the original parent file is replaced by a #INCLUDE directive referencing the destination file, at the same indentation level, with the original text appended after a reserved comment. For example, the command:

ocpp generic.occ /o specific.occ

would, if generic.occ contained several #TEMPLATE lines, create #INCLUDE directives within specific.occ, each referencing files of the form:

specific.000�specific.001�specific.002 &c...

Ocpp next scans the rest of the #TEMPLATE line for a whitespace separated list of macro definitions or derivations. It defines or derives any that are found from left to right, such that earlier definitions are able to affect later derivations. (Because of this, template lines may not have user-supplied trailing comments.) It then switches to reading it's input from the source, and writing it's output to the destination file until the source is all consumed, or it encounters a #RETURN directive (see below).

If the first item found on the line after the template source-file name during scanning is the ellipsis symbol ("...") then, in addition to any following macros, the template also inherits all those macros which were defined in the parent file at the point where it was encountered. (In all cases, templates always inherit ocpp's special internal macros). This is referred to as 'acanonical' template processing, and in cases where definitions found on the line itself already exist in the parent file they supersede the existing ones.

All macros defined thus on the template line, or within the template source file itself persist only for the duration of template processing and pass out of scope on completion (again, with the exception of the special internal macros). In the case of acanonical template processing any of the parent's ordinary macros which were modified or undefined inside the template revert to their former states and values at the same time. Changes made to the special internal macros inside a template, however, persist. If this is undesirable you must save them on template entry, and restore them on exit by using a temporary macro.

A template can optionally return a value: If the quoted filename is prefixed with “<symbol>=” (no whitespace permitted) then when the file has been processed a macro with this name will be assigned, taking whatever value the template chooses to return (see the #RETURN directive below).

Template source files may themselves reference other templates, canonically or acanonically, until available memory is exhausted or the nesting level reaches 32, where the program halts on the assumption that an infinite recursion loop has been accidentally formed (typically by a template referencing itself).

An important application for templates is the creation of object code libraries of related occam procedures from a single source; for example, occam generally prevents the writing of generic channel fan-out processes, but a library containing 2,3,4 &c.-way versions can be built using a single template.

N.B:	Each destination file gets a standard header comment identifying the source and warning that it may be automatically re-generated. In exceptional circumstances this may violate occam's comment indentation rules in the intended application. The header will be omitted if the special internal macro "OcppStdHeader=FALSE" is first defined by the user. Whilst a template file is being processed the read-only special internal macro "OcppCallersName" may be used to find which file called it, with "OcppCallLine" indicating at which line in the calling file that happened.

Additionally, when irrevocably processing a file using the IRV command line option (described below), it is possible to replace the #TEMPLATE directive with the derived code itself. This is written in the output file on a series of lines starting at the same indentation level as the template directive when the user sets the special internal macro "OcppInLineInsert=TRUE". As this destroys the one-to-one correspondence between input and output file lines it is only selectable when IRV is in effect, which precludes it’s use during MIP or PP processing (see pp. � PAGEREF _Ref395808615 �18� et seq for these command line options). Leading and trailing comments are added unless the above special internal macro "OcppStdHeader=FALSE" is in force.

During template processing the special internal macro “OcppInputName” (see the #ERROR directive, pp. � PAGEREF _Ref394422524 �15�) is changed to reflect the template file’s name. If you require the name of the original input file as given on the command line you may use “OcppRootInputName”.

#RETURN {<return value text>}

This directive is only legal within a file that is being processed as a Template; if it is found in the top-level input file it elicits an error. Within a template, when it is encountered in a context where it would not be commented out it stops template processing and causes a return to the calling file. The rest of the text on the line is processed as if it had been passed to the #SUBST directive and the result becomes the template’s return value. If the #TEMPLATE line contained an assignment symbol before the filename this macro receives the value; if not it is lost. If the end of a template file is reached without #RETURN being seen an implicit return with the empty string as it’s value is performed. The return value is the only way to pass data out from a template, since the “parent” files macros are saved whilst the template is being interpreted, and restored when it returns.

N.B:	It is quite legal to use #RETURN within deeply-nested #IF[N][DEF] ... #ENDIF conditional blocks. It will merely cause early termination of template processing and will not lead to error messages about the un-closed conditionals. The implicit return at the end of a template file will, however, stop all processing if there are un-closed conditionals and list them in a ‘severe’ level error message.

The next two directives have specialised uses during advanced substitution operations. They are employed when the indentation level of a subsequent block of code depends on the presence or absence of an earlier line. This is not a common need, but there exist situations in which no other measure will suffice:

#INDENT�#OUTDENT

If one of these directives is encountered in a context where it would not normally be commented out, it increases (indents) or decreases (outdents) the leading whitespace on all subsequent lines in the input file by two spaces before writing them to the output. When this is done the suffix "ED" is appended to denote that the operation was indeed performed. (The suffix permits the output file to be correctly re-processed with the MIP, RMC and PP command line options, detailed below.) The indentation change comes into effect immediately, including the in / outdent line itself. If outdents eventually lead to an attempt to place the start of a line of source text at a negative column index an error is generated.

For an example of a situation in which these directives are useful, consider the following: You wish to write a generic buffer / multiplexor for channels carrying a large variant protocol. To duplicate the code that processes each variant within the CASE input would be both tedious and error-prone. Instead, you use a macro called "MUX" to control the output of a template file, which constructs a buffer or a multiplexor process to order when referenced:

-- define a multiplexor procedure�#TEMPLATE "generic.otp" MUX�-- define a single-place buffer procedure�#TEMPLATE "generic.otp"

Neglecting the details of creating a PROC definition with the correct parameter list and a name which depends on whether "MUX" is defined or not, all of which can be done using normal applications of #SUBST, the core functionality of your template can be implemented as follows:

#DEFINE ELEMENT=�#IFDEF MUX�#DEFINE ELEMENT=[i]�ALT i = 0 FOR SIZE in -- if this line is included in the output�#INDENT -- all below is indented by 2 spaces...�#ENDIF�#SUBST in{ELEMENT} ? CASE� ... code to handle each of the variants in the protocol� #IFDEF MUX� #OUTDENT -- ...until we get to here� #ENDIF

Diagnostics

The next four directives do not affect commenting, but may be used to track the progress of pre-processing, abort it in some exceptional circumstance or perform arbitrary actions via the OS:

#MDUMP ["<dump file>"]

If this directive is encountered in a context in which it would not be commented out by an enclosing #IF[N][DEF] ... #ENDIF construction it generates a list of all currently defined macros, their values (if any) and where they were most recently defined or derived. If a file name is supplied the list is written to it as a sequence of #DEFINE directives, suitable for re-use as an indirect definition file; if not it is output as a simple list to <stderr>. Note that the special internal macros do not appear in the listing.

#MEMO {<message text>}

If this directive is encountered in a context in which it would not be commented out by an enclosing #IF[N][DEF] ... #ENDIF construction it parses the supplied message text as if it had been prefixed with #SUBST, then reports it to the user in an information-level message and continues processing the input file.

#ERROR {[<code>] <message text>}

If this directive is encountered in a context in which it would not be commented out by an enclosing #IF[N][DEF] ... #ENDIF construction it unconditionally aborts processing and reports the supplied message to the user after #SUBST-style parsing. A non-zero return code (error level 2) is supplied to the operating system for use in makefiles. If the first item of the accompanying message text (after substitution processing) is an integer number this value is returned instead, allowing the calling script or make utility to take specific actions on particular errors. Within your error message you may care to make use of the special internal macros “OcppInputName” and “OcppInputLine”, which allow more helpful messages to be constructed.

#SHELL {<command line>}

If this directive is encountered in a context in which it would not be commented out by an enclosing #IF[N][DEF] ... #ENDIF construction it causes the supplied command line to be first parsed as if it had been prefixed with #SUBST, then passed to the OS for execution. If this results in a non-zero return code processing is aborted and the value obtained is passed as the return code from ocpp. This facility is intended for use with advanced automatic editing operations employing text-processing languages such as awk or perl, or for thorny revision-control problems. Such tools can, for example, be used with command line options derived from macro values via substitution to re-generate an include file which is referenced on some subsequent input line.

CONSTANT IMPORTATION

The final embeddable directive is less concerned with conditional compilation issues than with automating revision control, and eliminating error-prone manual translation in mixed-language projects. It provided a mechanism whereby constants may be synchronised between C and occam programs via their respective pre-processors:

#INTERPRET "<C header file>"

The named file, which must appear in double quotes is opened and read. If no explicit path is given the current directory is checked first, followed by those specified in the ISEARCH environment variable. ("ISEARCH" is actually the default value of the special internal macro "OcppSearchPathVar", which may be changed if desired. Only the first 32 characters passed to this macro are significant.) A new file is opened in the current directory with the same root name but a “.inc” extension, and the interpret directive is substituted in the output by an occam #INCLUDE directive pointing to it. (Care should be taken to ensure existing user-written include files are not destroyed by this process.) The original source text is hidden behind a reserved comment after the include file's name. Definitions are then translated from the target C header file into the newly created occam include file according to the following scheme:

Lines which do not begin with a C pre-processor ‘#define’ directive, which define a parameterised macro, which merely define, and do not assign a value to their macro or which use a trailing backslash to extend themselves to the next line are ignored. The macro name itself is translated by substituting dots ('.') for underscores ('_'). Lines defining translatable constant definitions cause equivalent constants to be written in the occam include file in the format:

VAL <o_type> <translated_name> IS <c_value> :

Where...

<c_value> ::=	<decimal integer literal>	|�	<hexadecimal integer literal>	|�	<double literal>	|�	<float literal>	|�	<character literal>	|�	<string literal>	|�	<truth value>

<o_type> ::= INT | INT32 | REAL64 | REAL32 | BYTE | []BYTE | BOOL

In performing <c_value> translations ocpp applies the following rules:

One level of enclosing parentheses is allowed in the C header file value definition and is removed before translation if found. Any additional bracketing prevents translation.

Integer literals are translated into value declarations of type INT, with their number base preserved. Octal literals are not supported and will be treated as decimal numbers if encountered. If the target transputer is a sixteen bit variant the T2 command line option (see pp. � PAGEREF T2_option �20�) allows out-of-range and explicitly long integer literals to be coerced to type INT32. In the absence of this option no word-length is assumed.

Real literals are translated into value declarations of type REAL64 unless they are terminated by C's 'F' modifier, in which case they assume type REAL32. Ocpp will attempt to formalise abbreviated real literals when they are legal in C but not occam by, for example, adding a leading zero when the literal starts with just a decimal point, but the user should aim to define them such that they are equally acceptable to both compilers. It should be noted here that ocpp only ever performs textual modifications to it's input. Real literals are never converted to any internal numeric representation so no rounding or precision issues can arise other than those introduced by the ASCII base-10 representation itself.

Character literals are translated into value declarations of type BYTE, and string literals into value declarations of type []BYTE. Single byte ANSI C character escapes in literals and strings are mapped into their corresponding occam syntax, using the hexadecimal format *#xx wherever no direct equivalent exists. ANSI trigraphs are not supported.

Literal truth values are generated for any C declarations which employ the symbols TRUE and FALSE (in any combination of upper or lowercase). They are translated into value declarations of type BOOL.

Lines with values in C which do not match any of the above criteria, or which do not form a legal C constant of one of the recognised types are omitted from the occam include file without generating any diagnostic output. Some example translations follow; note that the penultimate one does not translate because it has too many levels of parentheses, but is needed to prepare the ground for the final one:

C header file�Occam include file��#define LINE_LEN 256�VAL INT LINE.LEN IS 256 :��#define mask (0x80000ff7)�VAL INT mask IS #80000FF7 :��#define Pi 3.14159F�VAL REAL32 Pi IS 3.14159(REAL32) :��#define big (-.78e90)�VAL REAL64 big IS -0.78E+90(REAL64) :��#define dirsep '/'�VAL BYTE dirsep IS '/' :��#define del '\x7f'�VAL BYTE del IS '*#7F' :��#define Greet "Hi!\n"�VAL []BYTE Greet IS "Hi!*c*n" :��#define True ((1))���#define allow_input True�VAL BOOL allow.input IS TRUE :��

N.B:	The include files generated in this manner are also affected by the value assigned to the special internal macro "OcppStdHeader" (see #TEMPLATE, pp. � PAGEREF TEMPLATE_directive �12�) and in-line insertion can also be forced using "OcppInLineInsert".

In the above example of importing of a string constant it may be seen that the ‘C’ character escape \n translates to *c*n in the occam equivalent. This is what the SGS(r) toolset's standard occam library routines for string output would normally require, but if it is undesirable the special internal macro "OcppAddCrToLf" may be set to "FALSE".

COMMAND LINE OPTIONS

With the exception of PP (see below), the order in which options are supplied on the command line is immaterial, and they are not case-sensitive. Apart from the first, each of these options should be prefixed with the OS's switch character, ie: '/' for DOS and '-' for Unix (although either is, in fact, acceptable whichever OS is being used).

-

When a hyphen is substituted for the input file specification it directs ocpp to act as a filter, processing it's standard input instead of a named file. Only one input file specification is allowed per command.

O <output file>

Direct output to the given file, overwriting any previous contents if the file exists. If this option is absent output goes to <stdout> (normally the terminal, unless redirected). This filename will be available during processing via the special internal macro “OcppOutputName”.

D <symbol>[=<value>]

Define the given symbol during processing of the input, and optionally associate a value with it's symbol for use during substitution processing. Note that it may be possible, using shell-level quoting, to include whitespace in the symbol or value of a macro when this switch is employed but this practice should be used with caution.

DE <environment variable>

Parse the contents of the given environment variable and define each whitespace separated word found as a symbol during all subsequent processing. If any such word contains an embedded equals sign treat it as a symbol / value pair.

DF <definition indirect file>

Read the given file and, for each line which starts with #DEFINE or #define (leading whitespace permitted) define the next whitespace delimited word on the line as a symbol during subsequent processing, provided that it does not contain the opening parenthesis ('(') and is not followed on the same line by anything other than a valid C, C++ or occam comment, the symbol TRUE (case insensitive) or a non-zero decimal integer literal within at most one level of parentheses.

These features, together with the case insensitivity in the introductory declarator are provided to assist in mixed-language programming where the target may be a C header file. Note that the loading of symbol / value pairs from a file is only possible if no spaces appear between the symbol, it's value, and the connecting 'equals' character. Spaces may still be inserted using their placeholder token, normally the underbar character, ("_"). Definition indirect files may also contain #DERIVE directives provided the keyword is in uppercase.

U <symbol>

Undefine the given symbol during processing of the input. Unlike the embedded #UNDEF directive this option does not elicit a warning if the symbol is already undefined. Note that there is nothing preventing you re-defining the symbol later in the command line, or within the input file itself. Useful to temporarily hide one of the definitions inside an indirect file without touching the file itself.

RMC

Once all reserved comments have been removed from the input file, abort further processing of conditional constructs and terminate. This option may be used to reverse the effects of a normal application of ocpp to a file. #TEMPLATE and #INTERPRET directives are stripped of their prefixed #INCLUDE directive by this option but any corresponding automatically-generated include files which may exist are NOT deleted. If you re-defined "OcppReservedComment" when you originally processed the file you must do it again when using RMC to recover the input file.

N.B:	RMC processing does not normally remove private comments (see � REF _Ref395874818 * MERGEFORMAT �OUTPUT FORMAT�, pp. � PAGEREF _Ref395874802 �2�) since these will normally have already been removed when the file was first processed and the reserved comments (which you are trying to remove) were created. If you can find a circumstance in which you need to do this you may set to ‘TRUE’ a special internal macro which (because I couldn’t resist the temptation) is called “OcppStripPrivates”.

Users of folding editors who manipulate “OcppFoldUpHashIFs” (see pp. � PAGEREF OcppFoldUpHashIFs �3�) to substitute foldmarks for certain reserved comments may not wish them to be deleted along with the ordinary reserved comments. If so, they should set it to ‘TRUE’ during RMC processing to be certain that foldmarks are retained on #IF[N][DEF] and #ENDIF lines.

MIP

Modify the input file in-place, retaining the same name. This option over-rides any output file specification and is safe since the above RMC option can be used to reconstruct the original text.

DBG

Annotate directive lines with their meaning, current truth status, definition source and directive nesting level (in angle brackets) for debugging purposes. #ELSE and #ENDIF lines are also given backward line number references to the #IF[N][DEF] they belong to. Directives that are commented out due to an enclosing #IF[N][DEF] ... #ENDIF, although not acted upon are still annotated for reference purposes, to show their effects. Note that use of this option destroys any trailing user-supplied comments on directive lines.

In addition all macro definitions and un-definitions are announced when encountered via information level error messages sent to <stderr>. Only those command line options occurring after the DBG switch will produce this effect; this allows elimination of their associated messages if desired. Finally, include files generated in response to #INTERPRET directives will contain comments citing the line in the original file which was translated to yield each occam constant, and template processing may be tracked via further information-level error messages.

If this option is combined with RMC any such debugging annotations that are found will be removed. This is a sensible policy when MIP is also used since debugging annotations may otherwise be retained long after the relationships they purport to assert have been rendered invalid by subsequent runs of ocpp without the DBG switch. The state of the DBG switch may be tested or changed within a file by reading or writing to the special internal macro "OcppDebugOption".

IRV

Forces irrevocable, destructive processing in which lines that would normally be commented out are omitted from the output altogether, in the same manner as a C pre-processor. For increased safety, this switch will cause an error if found in conjunction with MIP or PP (see below). In use, it overrides DBG but is overridden by RMC. The state of this switch may be tested or changed within a file by reading or writing to the special internal macro "OcppIrrevocable".

T2

Affects only the #INTERPRET directive. When integer literals are encountered in the C input file declare the corresponding occam constants to be of type INT32 if the C declaration is terminated with C's 'L' modifier, or if the value given is beyond the range of sixteen-bit integers. The state of this switch may be tested or changed within a file by reading or writing to the special internal macro "OcppIntIsInt16".

PP <input file> (<occam compiler options>)

Causes the input file specified to be pre-processed as if the MIP option had been set, then passed directly to the user’s occam compiler for processing. After the occam compiler has finished, the file is re-processed as if the RMC option had been set. The occam compiler’s exit code is then returned by ocpp. Any further items on the command line after the PP option and it’s input file specification are assumed to be compiler options and are passed to it when it is called. With this latter exception, the following two command groups are thus equivalent:

ocpp /mip myfile.occ�oc myfile /t8 /h /o myfile.t8h�ocpp /rmc myfile.occ��ocpp /pp myfile /t8 /h /o myfile.t8h

Everything after the PP option in the latter command is capable of being generated automatically by the occam toolset’s makefile generator, imakef. The name to use when calling the compiler is held in the special internal macro “OcppCompilerName”. By default it is “oc” but the user may change this if necessary. Probably the best place to do this is in the global ocpp.rc file. If pre-processing of configuration-level code was also required the occonf command could, for example, be replaced by:

ocpp /d OcppCompilerName=occonf /d OcppDefaultExtn=pgm /pp

N.B:	Any command containing PP will ignore O but is illegal if it also contains IRV (for obvious reasons). Similarly, in-line insertion of template-derived code is disabled. By default, ocpp will perform an RMC after the compiler has finished (unless DBG was in force). If this is undesirable you may set the special internal macro “OcppRMCafterPP” to ‘FALSE’ in, for example, the local ocpp.rc file.

Z

Displays the normal on-line help text, as shown when no command line arguments are supplied, together with extra information including the following table of special internal macros. Users may wish to redirect this information (which includes the following table of special internal macros) to a printer to create a quick-reference sheet.

SPECIAL INTERNAL MACROS

There follows an alphabetic list of the special internal macros available in the current version of ocpp, with a short description of each one's purpose. Most have already been described in previous sections of this document, under the ocpp feature which they affect, and for these there is a page reference pointing to where they are first mentioned. The remainder are largely self-explanatory.

Many special internal macros relate to boolean conditions; these accept or return the values 'TRUE' and 'FALSE' (case sensitive). The remainder deal exclusively with strings that have a fixed maximum length. The writeable booleans also accept the value 'TOGGLE', and invert their state in response, whilst those that mirror command options accept the value 'REVERT', which restores the original state.

This is also true of "OcppWriteTabs", which controls whether tab (ASCII character 9) is used to replace blocks of eight spaces when a line is heavily indented, but in a different sense. In this case 'REVERT' specifies that tabs be used if they were seen in the input. This is the default behaviour.

If the default values of some of the special internal macros are unsuitable on your system (or in some particular project) it may be most convenient to change them in the global (or local) ocpp.rc file.

Notice finally the special case of "OcppEnv?????", the only special internal macro with a variable field in it's symbol. It returns the value of the corresponding OS environment variable, or the empty string if the variable does not exist.

Macro read / write permission status is denoted in the table overleaf by 'R', 'W' or 'RW' and in the case of booleans their default values are denoted by 'TRUE', 'FALSE' or, when they mirror a command line option, '?'. String macros are annotated with their maximum number of characters and a default is given when they are write-only.�

Name�Type�Max�Function�Default�Page��OcppAddCrToLf�W��affects C string interpretation�TRUE�� PAGEREF OcppAddCrToLf �18���OcppCallersName�R�255�name of file that called current template��� PAGEREF OcppCallers �13���OcppCallLine�R�10�line number of call to current template��� PAGEREF OcppCallers �13���OcppCloseSubstToken�W�3�sets substitution end delimiter�“}”�� PAGEREF SubstToken �11���OcppCompilerName�W�255�program name for use with PP option�“oc”�� PAGEREF OcppCompilerName �20���OcppDebugOption�RW��state of DBG command line switch�?�� PAGEREF OcppDebugOption �20���OcppDefaultExtn�W�7�default input file extension�“occ”�� PAGEREF OcppDefaultExtn �4���OcppDir�R�1�OS's directory separator character����OcppEnv?????�R��value of environment variable named ?????��� PAGEREF OcppEnv �21���OcppExpandFileNames�W��affects expansion of env vars in filespecs�TRUE�� PAGEREF OcppExpandFileNames �4���OcppFoldUpHashIFs�W��affects folding of #IF[N][DEF] ... #ENDIF�as per input�� PAGEREF OcppFoldUpHashIFs �3���OcppInLineInsert�W��eliminates auto-generated include files�FALSE�� PAGEREF OcppInLineInsert �14���OcppInputLine�R�10�current input file line number��� PAGEREF OcppInput �15���OcppInputName�R�255�current input file or template name��� PAGEREF OcppInput �15���OcppIntIsInt16�RW��state of T2 command line switch�?�� PAGEREF OcppIntIsInt16 �20���OcppIrrevocable�RW��state of IRV command line switch�?�� PAGEREF OcppIrrevocable �20���OcppMacValSpcToken�W�3�placeholder for space in macro value�“_”�� PAGEREF OcppMacValSpcToken �2���OcppOpenSubstToken�W�3�sets substitution start delimiter�“{”�� PAGEREF SubstToken �11���OcppOpt�R�1�OS's command option character����OcppOutputName�R�255�current output file name��� PAGEREF OcppOutputName �18���OcppPrivateComment�W�15�sets private comment style�“--///”�� PAGEREF OcppPrivateComment �3���OcppPsep�R�1�OS's path separator character����OcppRMCafterPP�W��remove reserved comments after compilation�TRUE�� PAGEREF OcppRMCafterPP �21���OcppReservedComment�W�15�sets reserved comment style�“--::: ”�� PAGEREF OcppReservedComment �2���OcppRootInputName�R�255�original input file name from command line��� PAGEREF OcppRootInputName �14���OcppSearchPathVar�W�32�environment var. containing search path�“ISEARCH”�� PAGEREF OcppSearchPathVar �12���OcppStartTime�R�8�hours, minutes and seconds (24 hour)����OcppStdHeader�W��affects auto-generated include files�TRUE�� PAGEREF OcppStdHeader �13���OcppStripPrivates�W��if TRUE, RMC removes private comments�FALSE�� PAGEREF OcppStripPrivates �19���OcppSubstAlways�W��affects substitution on source text lines�FALSE�� PAGEREF OcppSubstAlways �11���OcppTodaysDate�R�11�day-of-month, month and year����OcppVersionNo�R�5�ocpp version number����OcppWriteTabs�W��affects use of ASCII 9 in output indents�as per input�� PAGEREF OcppWriteTabs �21���

FILES

Ocpp recognises files called ocpp.rc in the same directory as it’s executable, and in the current working directory as global and local definition indirect files respectively. Other than this it does not distinguish any particular naming patterns or extensions apart from the default filename extension for input files during PP and MIP command line option processing (held in special internal macro “OcppDefaultExtn”, see pp. � PAGEREF Default_extn �4�). Nevertheless, given that output files will normally have a “.occ” extension it is suggested that input files be assigned “.ocp”, and template files “.otp” when in-place modification of the input is not being used. Non-local template files, and C header files for interpretation are located using a path environment variable whose name is given in the special internal macro "OcppSearchPathVar" (with the default value “ISEARCH”). The distribution should also include defaults.ocp, which re-defines all writeable special internal macros back to their defaults, as tabulated on pp. � PAGEREF SIMacroTable �22�. Instanciating template files can lead to the automatic generation of occam source files with the same root name as the output file, but with a three-digit numeric extension starting with “.000”. Interpreting a C header file called “*.h” can automatically generate a corresponding occam include file called “*.inc”.

LIMITS

File names and their paths are limited to a maximum of 255 characters. Lines within both input and output files are limited to a maximum of 511 characters, including indentation. The maximum template call nesting level is 32 deep. The maximum length of strings which may be assigned to ocpp’s writeable special internal macros are noted in the internal macro table (shown above). The maximum nesting level for conditional blocks, the maximum number of macros that may be defined and the maximum size and complexity of regular expressions that can be used are governed by the amount of memory allocated by the OS to ocpp and hence are implementation dependent.

ERRORS

Ocpp adheres to the conventions defined for the SGS(r) toolset in respect of the message format, severity levels and actions taken when run-time errors are encountered. These are listed below. The latter level, "Fatal" is only invoked by the current version of ocpp in the case of memory allocation failures (see LIMITS, above) and for certain cases where an internal inconsistency which “should never happen” is detected. These latter cases are reportable and have an associated unique identification number.

"Information" messages, which assist the user in tracking ocpp's progress.

"Warning" messages, which draw attention to suspicious events.

"Error", when the output is likely to be incorrect but processing can still continue.	(error code 1)

"Serious", when a problem in the input file warrants stopping processing altogether.	(error code 2)

"Fatal", which signals an irrecoverable problem with ocpp's internal operation.		(error code 3)

Other error codes may be returned in response to the #SHELL and #ERROR directives, or from the compiler when the PP command line option is employed.

�PAGE �

�PAGE �

�PAGE �

�PAGE �1�

