Windows Server Package 95

Programmer's Guide

PART II Programming Transputer Windows Applications�� VERZEICHNIS \o "1-2" �

0 Introduction	� GEHEZU _Toc346429891 � SEITENREF _Toc346429891 �0—4��

0.1 About This Guide	� GEHEZU _Toc346429892 � SEITENREF _Toc346429892 �0—4��

0.2 Software and Hardware Requirements	� GEHEZU _Toc346429893 � SEITENREF _Toc346429893 �0—5��

0.3 Using the Sample Applications	� GEHEZU _Toc346429894 � SEITENREF _Toc346429894 �0—6��

0.4 Programming Transputer Windows Applications	� GEHEZU _Toc346429895 � SEITENREF _Toc346429895 �0—6��

1 Output to a Window	� GEHEZU _Toc346429896 � SEITENREF _Toc346429896 �1—7��

1.1 The Display Context	� GEHEZU _Toc346429897 � SEITENREF _Toc346429897 �1—7��

1.2 Creating, Selecting, and Deleting Drawing Tools	� GEHEZU _Toc346429898 � SEITENREF _Toc346429898 �1—8��

1.3 Drawing and Writing	� GEHEZU _Toc346429899 � SEITENREF _Toc346429899 �1—9��

1.4 A Sample Application: Output	� GEHEZU _Toc346429900 � SEITENREF _Toc346429900 �1—10��

2 Keyboard and Mouse Input	� GEHEZU _Toc346429901 � SEITENREF _Toc346429901 �2—12��

2.1 Windows Input Messages	� GEHEZU _Toc346429902 � SEITENREF _Toc346429902 �2—12��

2.2 A Sample Application: Input	� GEHEZU _Toc346429903 � SEITENREF _Toc346429903 �2—15��

3 Icons	� GEHEZU _Toc346429904 � SEITENREF _Toc346429904 �3—19��

3.1 What is an Icon?	� GEHEZU _Toc346429905 � SEITENREF _Toc346429905 �3—19��

3.2 Using Your Own Icons	� GEHEZU _Toc346429906 � SEITENREF _Toc346429906 �3—20��

3.3 Specifying a Window Icon	� GEHEZU _Toc346429907 � SEITENREF _Toc346429907 �3—21��

3.4 A Sample Application: Icon	� GEHEZU _Toc346429908 � SEITENREF _Toc346429908 �3—21��

3.5 Summary	� GEHEZU _Toc346429909 � SEITENREF _Toc346429909 �3—22��

4 The Cursor, the Mouse, and the Keyboard	� GEHEZU _Toc346429910 � SEITENREF _Toc346429910 �4—23��

4.1 Controlling the Shape of the Cursor	� GEHEZU _Toc346429911 � SEITENREF _Toc346429911 �4—23��

4.2 Displaying the Cursor	� GEHEZU _Toc346429912 � SEITENREF _Toc346429912 �4—24��

4.3 Letting the User Select Information with the Mouse	� GEHEZU _Toc346429913 � SEITENREF _Toc346429913 �4—26��

4.4 A Sample Application: Cursor	� GEHEZU _Toc346429914 � SEITENREF _Toc346429914 �4—29��

5 Menus	� GEHEZU _Toc346429915 � SEITENREF _Toc346429915 �5—30��

5.1 What is a Menu?	� GEHEZU _Toc346429916 � SEITENREF _Toc346429916 �5—30��

5.2 Defining a Menu	� GEHEZU _Toc346429917 � SEITENREF _Toc346429917 �5—30��

5.3 Including a Menu in Your Application	� GEHEZU _Toc346429918 � SEITENREF _Toc346429918 �5—32��

5.4 Processing Input from a Menu	� GEHEZU _Toc346429919 � SEITENREF _Toc346429919 �5—32��

5.5 Working with Menus from Your Application	� GEHEZU _Toc346429920 � SEITENREF _Toc346429920 �5—33��

�6 Controls	� GEHEZU _Toc346429921 � SEITENREF _Toc346429921 �6—39��

6.1 What is a Control?	� GEHEZU _Toc346429922 � SEITENREF _Toc346429922 �6—39��

6.2 Creating a Control	� GEHEZU _Toc346429923 � SEITENREF _Toc346429923 �6—39��

6.3 Using a Control	� GEHEZU _Toc346429924 � SEITENREF _Toc346429924 �6—40��

6.4 Creating and Using Some Common Controls	� GEHEZU _Toc346429925 � SEITENREF _Toc346429925 �6—42��

6.5 Summary	� GEHEZU _Toc346429926 � SEITENREF _Toc346429926 �6—50��

7 Dialog Boxes	� GEHEZU _Toc346429927 � SEITENREF _Toc346429927 �7—52��

7.1 What Is a Dialog Box?	� GEHEZU _Toc346429928 � SEITENREF _Toc346429928 �7—52��

7.2 Using a Dialog Box	� GEHEZU _Toc346429929 � SEITENREF _Toc346429929 �7—53��

7.3 Common Dialogs	� GEHEZU _Toc346429930 � SEITENREF _Toc346429930 �7—55��

8 Bitmaps	� GEHEZU _Toc346429931 � SEITENREF _Toc346429931 �8—56��

8.1 What is a Bitmap?	� GEHEZU _Toc346429932 � SEITENREF _Toc346429932 �8—56��

8.2 Creating Bitmaps	� GEHEZU _Toc346429933 � SEITENREF _Toc346429933 �8—56��

8.3 Displaying Bitmaps	� GEHEZU _Toc346429934 � SEITENREF _Toc346429934 �8—60��

8.4 Deleting Bitmaps	� GEHEZU _Toc346429935 � SEITENREF _Toc346429935 �8—60��

8.5 Summary	� GEHEZU _Toc346429936 � SEITENREF _Toc346429936 �8—61��

9 Printing	� GEHEZU _Toc346429937 � SEITENREF _Toc346429937 �9—62��

9.1 Printing in the Windows Environment	� GEHEZU _Toc346429938 � SEITENREF _Toc346429938 �9—62��

9.2 Retrieving Information About the Current Printer	� GEHEZU _Toc346429939 � SEITENREF _Toc346429939 �9—63��

9.3 Printing a Line of Text	� GEHEZU _Toc346429940 � SEITENREF _Toc346429940 �9—63��

9.4 Processing Errors During Printing	� GEHEZU _Toc346429941 � SEITENREF _Toc346429941 �9—64��

9.5 Canceling a Print Operation with the AbortDoc function	� GEHEZU _Toc346429942 � SEITENREF _Toc346429942 �9—64��

10 The Clipboard	� GEHEZU _Toc346429943 � SEITENREF _Toc346429943 �10—65��

10.1 Using the Clipboard	� GEHEZU _Toc346429944 � SEITENREF _Toc346429944 �10—65��

10.2 Using Clipboard Bitmaps	� GEHEZU _Toc346429945 � SEITENREF _Toc346429945 �10—65��

10.3 The Windows Clipboard Application	� GEHEZU _Toc346429946 � SEITENREF _Toc346429946 �10—66��

11 Host Memory Management	� GEHEZU _Toc346429947 � SEITENREF _Toc346429947 �11—67��

11.1 Using Memory	� GEHEZU _Toc346429948 � SEITENREF _Toc346429948 �11—67��

11.2 Allocating Memory	� GEHEZU _Toc346429949 � SEITENREF _Toc346429949 �11—67��

11.3 Data Transmission	� GEHEZU _Toc346429950 � SEITENREF _Toc346429950 �11—68��

12 Writing Protocol Extensions	� GEHEZU _Toc346429951 � SEITENREF _Toc346429951 �12—70��

12.1 Creating DLL	� GEHEZU _Toc346429952 � SEITENREF _Toc346429952 �12—70��

12.2 Transputer Library	� GEHEZU _Toc346429953 � SEITENREF _Toc346429953 �12—71��

�

�Introduction

This introduction provides some background information that you should review before you use this guide.

This introduction covers the following topics:

Things you should know before you start

The purpose and contents of this guide

Using the sample applications described in this guide

What Should You Know Before You Start?

To start using this guide, you will need the following:

Experience using Windows and an understanding of the Windows user interface.

Before starting any Windows application development, you should install Windows version 3.0 on your computer and learn how to use it. Be sure to learn the names, purposes, and operation of the various parts of a Windows application (such as windows, dialog boxes, menus, controls, and scroll bars). Because your own Windows applications will incorporate these features, it is very important for you to understand them so that you can implement them properly.

An understanding of the Windows user-interface style guidelines.

One goal of Microsoft Windows is to provide a common user interface for all applications. This ultimately helps the user by reducing the effort required to learn the user interface of a Windows application; it helps you by clarifying the choices you have to make when designing a user interface. To achieve this goal, however, you must base your application's user interface design on the recommended application style guidelines described in the System Application Architecture, Common User Access: Advanced Interface Design Guide.

Experience writing C-language programs and using the standard C run-time functions.

The C programming language is the preferred development language for Windows applications. Many of the programming features of Windows were designed with the C programmer in mind. (Windows applications can also be developed in Pascal and assembly language, but these languages present additional challenges that you typically bypass when writing applications in the C language.)

About This Guide

This guide is intended to help the experienced C programmer make the transition to writing applications that use the Microsoft Windows 3.1, Windows 95 and Windows NT application program interface. It explains how to use Windows functions, messages, and data structures to carry out useful tasks common to all Windows applications, and illustrates these explanations with sample applications that you can compile and run with Windows.

This guide consists of two parts, each of which contain several chapters.

Part 1, “Introduction to Writing Windows Applications,” gives an overview of the Windows environment, and provides an in-depth look at a sample Windows application. Part 1 consists of the following chapters:

Chapter 1, “An Overview of the Windows Environment,” compares Windows to the standard C environment, provides a brief overview of Windows, and describes the Windows programming model and the Windows application-development process.

Chapter 2, “A Generic Transputer Windows Application,” shows how to create a simple Transputer Windows application called Generic. You'll then use this application as a basis for subsequent examples in this learning guide.

Part 2, “Programming Transputer Windows Applications,” explains basic Windows programming tasks, such as creating menus, printing, and using the clipboard. Each chapter covers a specific topic, and provides a sample application that illustrates that topic. Part 2 consists of the following chapters:

Chapter 1, “Output to a Window,” introduces the graphics device interface (GDI) and shows how to use GDI tools to create your own output.

Chapter 2, “Keyboard and Mouse Input,” shows how to process input from the mouse and keyboard.

Chapter 3, “Icons,” shows how to create and display icons for your applications.

Chapter 4, “The Cursor, the Mouse, and the Keyboard,” explains the purpose of the cursor, the mouse, and the keyboard, and shows how to use them in your applications.

Chapter 5, “Menus,” shows how to create menus for your applications and how to process input from menus.

Chapter 6, “Controls,” explains how to create and use controls, such as push buttons and list boxes.

Chapter 7, “Dialog Boxes,” explains how to create and use dialog boxes, and how to fill them with controls.

Chapter 8, “Bitmaps,” shows how to create and display bitmaps.

Chapter 9, “Printing,” shows how to use a printer with Windows.

Chapter 10, “The Clipboard,” explains the clipboard and shows how to use it in your applications.

Chapter 11, “Host Memory Management”, explains how to manage host Windows memory from transputer application

Chapter 12, “Writing Protocol Extensions”, shows how to add new functions, realized oh host computer, to your Windows library

Software and Hardware Requirements

Hardware

Intel 386/486/Pentium-based computer, VGA/SVGA display and card, 6 Mb RAM;

Transputer motherboard;

Software

One of:

 Microsoft MS DOS 5.0/6.x + Windows 3.1x + Win32s (V.1.30 recommended), or

	 Microsoft Windows 95, or

	 Microsoft Windows NT 3.5x;

Inmos ANSI C Toolset IMSD7214;

Any Windows compiler and linker (such as Microsoft C/C++, Borland C/C++ or Symantec

 C/C++) - for writing protocol extension DDLs.

Using the Sample Applications

The sample applications in this guide are written in the C programming language and conform to the user-interface style recommended by Elcom for Windows applications.

The source files for all sample applications are on the disk that comes with the WServer Package. It's a good idea to review the sample application sources while reading the corresponding descriptions in this guide. You can also use the sources as a basis for your own applications.

Programming Transputer Windows Applications

Like most applications, Transputer Windows applications receive input from the user and send output to the screen and printer. Unlike standard applications, however, Windows applications must cooperate within a multitasking, graphics-based environment. For this reason, they cannot read directly from the keyboard or write directly to output devices. Instead, they must allow Windows to mediate between the application (i.e. WServer working with transputer application) and shared system resources. The apparent penalty this imposes upon an application is offset by the built-in support Windows provides an application for advanced user-interface and system-interface features.

For example, a user typically provides input to a Windows application by choosing commands from menus, and by entering and selecting information in dialog boxes. In the Windows environment, you do not have to implement the details of how these menus and dialog boxes are

displayed and respond to the user's input. Instead, you simply provide a high-level description of their contents and specify the messages that your application will receive when the user interacts with the item. Windows provides the low-level tasks of displaying the menus and dialog boxes and of tracking the user's interaction with them.

�Output to a Window

In Microsoft Windows, all output to a window is performed by the graphics device interface (GDI).

This chapter covers the following topics:

How the painting and drawing process works in the Windows environment

The purpose of the display context

Using GDI functions to draw within the client area of a window

Drawing lines and figures, writing text, and creating pens and brushes

This chapter also explains how to build a sample application, Output, that illustrates some of these concepts.

The Display Context

A display context defines the output device and the current drawing tools, colors, and other drawing information used by GDI to generate output. All GDI output functions require a display-context handle. No output can be performed without one.

To draw within a window, you need the handle to the window. You can then use the window handle to get a handle to the display context of the window's client area. To retrieve the handle to the display context to draw within the client area at any time you must use the GetDC function.

Whenever you retrieve a display context for a window, that context is only on temporary loan from Windows to your application. A display context is a shared resource; as long as one application has it, no other application can retrieve it. Therefore, you must release the display context as soon as possible after using it to draw within the window. If you retrieve a display context by using the GetDC function, you must use the ReleaseDC function to release it.

Note that display context available only with graphics windows, created by CreateGraphWindow function.

Using the GetDC Function

You typically use the GetDC function to provide instant feedback to some action by the user, such as drawing a line as the user moves the cursor (pointer) through the window. The function returns a display-context handle that you can use in any GDI output function.

The following example shows how to use the GetDC function to retrieve a display-context handle and write the string “Hello Windows!” in the client area:

 hDC = GetDC(hWnd);

 TextOut(hDC, 10,10, Hello Windows!, 14);

 ReleaseDC(hWnd, hDC);

In this example, the GetDC function returns the display context for the window identified by the hWnd parameter, and the TextOut function writes the string at the point (10,10) in the window's client area. The ReleaseDC function releases the display context.

Anything you draw in the client area will be erased the next time the window function receives a WM_PAINT message that affects that part of the client area. But WM_PAINT message isn't available to Transputer Windows Application - it is processing in Windows Server, which repaint client area as soon as possible. So, you have no need to think about repainting (all output to window device context goes to memory as well, to be repainted later as needed - this is hided from user). So, you can use drawing functions in any place of your application.

Display Contexts and Device Contexts

A display context is actually a type of “device context” that has been especially prepared for output to the client area of a window. A device context defines the device, drawing tools, and drawing information for a complete device, such as a display or printer; a display context defines these things only for a window's client area. To prepare a display context, Windows adjusts the device origin so that it aligns with the upper-left corner of the client area instead of with the upper-left corner of the display. It also sets a clipping rectangle so that output to a display context is “clipped” to the client area. This means any output that would otherwise appear outside the client area is not sent to the display.

The Coordinate System

The default coordinate system for a display context is very simple. The upper-left corner of the client area is the origin, or point (0,0). Each pixel to the right represents one unit along the positive x-axis. Each pixel down represents one unit along the positive y-axis.

Creating, Selecting, and Deleting Drawing Tools

GDI lets you use a variety of drawing tools to draw within a window. It provides pens to draw lines, brushes to fill interiors, and fonts to write text. To create these tools, use functions such as CreatePen and CreateSolidBrush. Then select them into the display context by using the SelectObject function. When you are done using a drawing tool, you can delete it by using the DeleteObject function.

Use the CreatePen function to create a pen for drawing lines and borders. The function returns a handle to a pen that has the specified style, width, and color. (Be sure to check the return value of CreatePen to ensure that it is a valid handle.)

The following example creates a dashed, black pen, one pixel wide:

 HPEN hDashPen;

 .

 .

 .

 hDashPen = CreatePen(PS_DASH, 1, RGB(0, 0, 0));

 if (hDashPen) /* make sure handle is valid */

 .

 .

 .

The RGB utility (actually, that’s a macro) creates a 32-bit value representing a red, green, and blue color value. The three arguments specify the intensity of the colors red, green, and blue, respectively. In this example, all colors have zero intensity, so the specified color is black.

You can create solid brushes for drawing and filling by using the CreateSolidBrush function. This function returns a handle to a brush that contains the specified solid color. (Be sure to check the return value of CreateSolidBrush to ensure that it is a valid handle.)

The following example shows how to create a red brush:

 HBRUSH hRedBrush

 .

 .

 .

 hRedBrush = CreateSolidBrush(RGB(255, 0, 0));

 if (hRedBrush) /* make sure handle is valid */

 .

 .

 .

Once you have created a drawing tool, you can select it into a display context by using the SelectObject function. The following example selects the red brush for drawing:

 HBRUSH hOldBrush;

 .

 .

 .

 hOldBrush = SelectObject(hDC, hRedBrush);

In this example, SelectObject returns a handle to the previous brush. In general, you should save the handle of the previous drawing tool so that you can restore it later.

You do not have to create or select a drawing tool before using a display context. Windows provides default drawing tools with each display context; for example, a black pen, a white brush, and the system font.

You can delete drawing objects you no longer need by using the DeleteObject function. The following example deletes the brush identified by the handle hRedBrush:

 DeleteObject(hRedBrush);

You must not delete a selected drawing tool. You should use the SelectObject function to restore a previous drawing tool and remove the tool to be deleted from the selection, as shown in the following example:

 SelectObject(hDC, hOldBrush);

 DeleteObject(hRedBrush);

Drawing and Writing

GDI provides a wide variety of output operations, from drawing lines to writing text; some of them - the most important - realized in Transputer Windows Library and available in your transputer application. Specifically, you can use the LineTo, Rectangle, Ellipse, Arc, Pie and TextOut functions to draw lines, rectangles, circles, arcs, pie wedges, and text, respectively. All these functions use the selected pen and brush to draw borders and fill interiors, and the selected font to write text.

You can draw lines by using the LineTo function. You usually combine the MoveTo and LineTo functions to draw lines. The following example draws a line from the point (10,90) to the point (360,90):

 MoveTo(hDC, 10, 90);

 LineTo(hDC, 360, 90);

You can draw a rectangle by using the Rectangle function. This function uses the selected pen to draw the border, and the selected brush to fill the interior. The following example draws a rectangle that has its upper-left and lower-right corners at the points (10,30) and (60,80), respectively:

 Rectangle(hDC, 10, 30, 60, 80);

You can draw an ellipse or circle by using the Ellipse function. The function uses the selected pen to draw the border, and the selected brush to fill the interior. The following example draws an ellipse that is bounded by the rectangle specified by the points (160,30) and (210,80):

 Ellipse(hDC, 160, 30, 210, 80);

You can draw arcs by using the Arc function. You draw an arc by defining a bounding rectangle for the circle containing the arc, then specifying on which points the arc starts and ends. The following example draws an arc within the rectangle defined by the points (10,90) and (360,120); it draws the arc from the point (10,90) to the point (360,90):

 Arc(hDC, 10, 90, 360, 120, 10, 90, 360, 90);

You can draw a pie wedge by using the Pie function. A pie wedge consists of an arc and two radii extending from the focus of the arc to its endpoints. The Pie function uses the selected pen to draw the border, and the selected brush to fill the interior. The following example draws a pie wedge that is bounded by the rectangle specified by the points (310,30) and (360,80) and that starts and ends at the points (360,30) and (360,80), respectively:

 Pie (hDC, 310, 30, 360, 80, 360, 30, 360, 80);

You can display text by using the TextOut function. The function displays a string starting at the specified point. The following example displays the string “A Sample String” at the point (1,1):

 TextOut(hDC, 1, 1, “A Sample String”, 15);

A Sample Application: Output

The sample application Output illustrates how to draw within the client area, as well as how to create and use drawing tools. The Output application is a simple extension of the Generic application described in the previous chapter.

You can find the source files for Output on the Windows Server Package source disks.

This sample assumes that you have a color display. If you do not, GDI will simulate some of the color output by “dithering.” Dithering is a method of simulating a color by creating a unique pattern with two or more available colors. On a color monitor that cannot display orange, for example, Windows simulates orange by using a pattern of red and yellow pixels. On a monochrome monitor, Windows represents colors with black, white, and shades of gray, instead of colors.

�Keyboard and Mouse Input

Most applications require input from the user. Typically, input from the user comes via the keyboard or the mouse. In Microsoft Windows, applications receive keyboard and mouse input in the form of input messages.

This chapter covers the following topics:

The input messages that Windows sends your application

Responding to Windows input messages

This chapter also explains how to build a sample application, Input, that responds to various types of input messages.

Windows Input Messages

Whenever the user presses a key, moves the mouse, or clicks a mouse button, Windows responds by sending input messages to the appropriate application. Windows also sends input messages in response to timer input.

Windows provides several types of input messages:

Keyboard	User input through the keyboard.

Character	Keyboard input translated into character codes.

Mouse		User input through the mouse.

Timer		Input from the system timer.

Scroll-bar	User input through a window's scroll bars and the mouse.

Menu		User input through a window's menus and the mouse.

DDE		Dynamic data exchange messages.

Most of these messages available to Transputer Windows Application.

The keyboard, mouse, and timer input messages correspond directly to hardware input. Windows passes these messages to your application through the application queue.

The character, menu, and scroll-bar messages are created in response to mouse and keyboard actions in the nonclient area of a window, or are the result of translated keyboard messages. Normally, Windows sends these messages directly to the appropriate window function.

Keyboard Input

Much of an application's user input comes from the keyboard. Windows sends keyboard input to an application when the user presses or releases a key. Windows generates keyboard messages in response to the following keyboard events:

WM_KEYDOWN	User presses a key.

WM_KEYUP		User releases a key.

WM_SYSKEYDOWN	User presses a system key.

WM_SYSKEYUP	User releases a system key.

The WParam parameter of a keyboard message specifies the “virtual-key code” of the key the user pressed. A virtual-key code is a device-independent value for a specific keyboard key. Windows uses virtual-key codes so that it can provide consistent keyboard input no matter what computer your application is running on.

The LParam parameter contains the keyboard's actual scan code for the key, as well as additional information about the keyboard, such as the state of the SHIFT key and whether the current key was previously up or down.

Windows generates system-key messages, WM_SYSKEYUP and WM_SYSKEYDOWN. These are special keys, such as the ALT and F10 keys, that belong to the Windows user interface and cannot be used by an application in any other way.

An application receives keyboard messages only when it has the “input focus.” Your application receives the input focus when it is the active application; that is, when the user has selected your

application's window.

Mouse Input

User input can also come from the mouse. Windows sends mouse messages to the application when the user moves the cursor into and through a window or presses or releases a mouse button while the cursor is in the window. Windows generates mouse messages in response to the following events (only messages available in Transputer Windows Application listed here):

WM_MOUSEMOVE		User moves the cursor into or through the window.

WM_LBUTTONDOWN		User presses the left button.

WM_LBUTTONUP		User releases the left button.

WM_LBUTTONDBLCLK	User presses, releases, and presses again the left button within

the system's defined double-click time.

WM_RBUTTONDOWN		User presses the right button.

WM_RBUTTONUP		User releases the right button.

The WParam parameter of each button includes a bitmask specifying the current state of the keyboard and mouse buttons, such as whether the mouse buttons, SHIFT key, and CONTROL key are down. The LParam parameter contains the the x- and y-coordinates of the cursor.

Windows sends mouse messages to a window only if the cursor is in the window or if you have captured mouse input by using the SetCapture function. The SetCapture function directs Windows to send all mouse input, regardless of where the cursor is, to the specified window. Applications typically use this function to take control of the mouse when carrying out some critical operation with the mouse, such as selecting something in the client area. Capturing the mouse prevents other applications from taking control of the mouse before the operation is completed.

Since the mouse is a shared resource, it is important to release the captured mouse as soon as you have finished the operation. You release the mouse by using the ReleaseCapture function.

Windows sends double-click messages to a window function only if the corresponding window class has the CS_DBLCLKS style (all windows created from Transputer Windows Application have this style flag). The first two messages are the first button press and release. The second button press is replaced with the double-click message. The last message is the second release. Remember that a double-click message occurs only if the first and second press occur within the system's defined double-click time.

Timer Input

Windows sends timer input to your application when the specified interval elapses for a particular timer. To receive timer input, you must set a timer by using the SetTimer function.

The following example shows how to set timer input for a five-second interval:

 idTimer = SetTimer (hWnd, 1, 5000);

This example sets a timer interval of 5000 milliseconds. This means that the timer will generate input every five seconds. The second argument is any nonzero value that your application uses to identify the particular timer. Any time when specified interval elapsed, Windows send a WM_TIMER message to window function through the application queue.

The SetTimer function returns a “timer ID” - an integer that identifies the timer. You can use this timer ID to turn the timer off by using it in the KillTimer function.

Scroll-Bar Input

Windows sends a scroll-bar input message, either WM_HSCROLL or WM_VSCROLL, to a window function when the user clicks with the cursor in a scroll bar. Applications use the scroll-bar messages to direct scrolling within the window. Applications that display text or other data that does not all fit in the client area usually provide some form of scrolling. Scroll bars are an easy way to let the user direct scrolling actions.

To get scroll-bar input, add scroll bars to the window. You can do this by specifying the WS_HSCROLL and WS_VSCROLL styles when you create the window. These direct the CreateWindow function to create horizontal and vertical scroll bars for the window. The following

example creates scroll bars for the given window:

 hWnd = CreateGraphWindow(“Window with scrollers”,

 (DWORD)MainWndProc, /* window function */

 WS_OVERLAPPEDWINDOW |

 WS_HSCROLL |

 WS_VSCROLL, /* window style */

 CW_USEDEFAULT, /* x position */

 CW_USEDEFAULT, /* y position */

 CW_USEDEFAULT, /* width */

 CW_USEDEFAULT, /* height */

 300,				/* bitmap width */

 300,				/* bitmap height */

 0); 	/* parent handle */

Windows displays the scroll bars when it displays the window. It automatically maintains the scroll bars and sends scroll-bar messages to the window function when the user moves the thumb of the scroll bar.

When Windows sends a scroll-bar message, it sets the low-word of WParam to indicate the type of scrolling request made, and the high-word to scrolling position (in case of SB_THUMBPOSITION and SB_THUMBTRACK messages). For example, if the user clicks the Up arrow of a vertical scroll bar, Windows sets the WParam to the value SB_LINEUP. Depending on the event, Windows sets the scrolling type to one of the following values:

SB_LINEUP		User clicks the Up or Left arrow.

SB_LINEDOWN	User clicks the Down or Right arrow.

SB_PAGEUP		User clicks between the scroll box and the Up or Left arrow.

SB_PAGEDOWN	User clicks between the scroll box and the Down or Right arrow.

SB_THUMBPOSITION	User releases the mouse button when the cursor is in the scroll box,

typically after dragging the box.

SB_THUMBTRACK	User drags the scroll box with the mouse.

To retrieve current position of window scrollers, you can use function GetWindowScrollerPos. It returns pointer to POINT structure, where X and Y fields contains horizontal and vertical scroller

positions respectively:

 POINT Point;

 .

 .

 .

 GetWindowScrollerPos(hWnd, &Point);

 hPos = Point.x;

 vPos = Point.y;

Menu Input

Whenever the user chooses a command from a menu, Windows sends a menu-input message to the window function for that window.

There are two types of menu-input messages:

WM_SYSCOMMAND, which indicates that the user has selected a command from the System menu.

WM_COMMAND, which indicates that the user has selected a command from the application's menu.

Since menu input is often the primary source of input for an application, its processing can be complex.

A Sample Application: Input

This sample application, Input, illustrates how to process input messages from the keyboard, mouse, timer, and scroll bars. The Input application displays the current or most recent state of each of these input mechanisms. To create the Input application, copy and rename the source files of the Generic application, then make the following modifications:

Add new variables.

Modify the CreateWindow function.

Create static controls

Create the timer

Add the WM_KEYUP and WM_KEYDOWN cases.

Add the WM_CHAR case.

Add the WM_MOUSEMOVE case.

Add the WM_LBUTTONUP and WM_RBUTTONUP cases.

Add the WM_LBUTTONDBLCLK case.

Add the WM_TIMER case.

Add the WM_HSCROLL and WM_VSCROLL cases.

Compile and link the Input application.

Although Windows does not require a pointing device, this sample assumes that you have a mouse or other pointing device. If you do not have a mouse, the application will not receive mouse-input messages.

How the Input Application Displays Output

The Input application responds to input messages by displaying text that indicates the type of input message. It uses some simple functions to format and display the output.

To create a formatted string, use sprintf. You can then pass the buffer address as an argument to the SetStaticText function. The following example shows how to create a formatted string and display it on screen:

 char Str[80];

 HWND hStatic;

 .

 .

 .

 sprintf(Str, WM_MOUSEMOVE: %08X, %08X, WParam, LParam);

 SetStaticText(hMouse, Str);

This example copies the formatted string to the Str array. Then, this string outs to staic control handled by hMouse identifier.

Add New Variables

You need several new global variables. Declare the following variables at the beginning of the C-language source file:

 int idTimer, 			/* timer ID */

 TimerCount = 0;		/* timer counter */

 char Str[80];				/* string for output */

 char HorzOrVertText[80], 		/* horz or vert scroller */

 ScrollTypeText[80];		/* scroller input action */

 HWND hMouse,				/* handles of static controls to */

 hButton,				/* display messages information */

 hKeyb,

 hChar,

 hTimer,

 hScroll;

Create the Static Controls

To create staic controls, use CreateStatic function:

 hMouse = CreateStatic(hWnd, -1, “”, 10, 10, 500, 20, 80);

 hButton = CreateStatic(hWnd, -1, “”, 10, 40, 500, 20, 80);

 hKeyb = CreateStatic(hWnd, -1, “”, 10, 70, 500, 20, 80);

 hChar = CreateStatic(hWnd, -1, “”, 10, 100, 500, 20, 80);

 hTimer = CreateStatic(hWnd, -1, “”, 10, 130, 500, 20, 80);

 hScroll = CreateStatic(hWnd, -1, “”, 10, 160, 500, 20, 80);

Create the Timer

Set a timer by using the SetTimer function. You can do this before the message loop. Add the following statements:

 idTimer = SetTimer(hWnd, 0, 5000);

Adding the new Cases

Add the needed cases to process input (WM_CHAR, WM_KEYUP, WM_KEYDOWN, WM_MOUSEMOVE, WM_LBUTTONDOWN, WM_LBUTTONUP, WM_LBUTTOBDBLCLK, WM_TIMER, WM_VSCROLL, WM_HSCROLL). For example:

case WM_KEYDOWN:

 sprintf(Str, "WM_KEYDOWN: %08Xh, %08Xh", WParam, LParam);

 SetStaticText(hKeyb, Str);

 break;

In WM_TIMER, you can no need to display message parameters. Instead, you can calculate elapsed time:

 case WM_TIMER:

 sprintf(Str, “WM_TIMER: %d seconds”, TimerCount += 5);

 SetStaticText(hTimer, Str);

 break;

To process scroll-bar messages add the following statements to the window function:

case WM_VSCROLL:

case WM_HSCROLL:

 if (LOWORD(WParam) == SB_ENDSCROLL)

 break;

 strcpy(HorzOrVertText,

 (Message == WM_HSCROLL) ? "WM_HSCROLL" :

 "WM_VSCROLL");

 strcpy(ScrollTypeText,

 (LOWORD(WParam) == SB_LINEUP) ? "SB_LINEUP" :

 (LOWORD(WParam) == SB_LINEDOWN) ? "SB_LINEDOWN" :

 (LOWORD(WParam) == SB_PAGEUP) ? "SB_PAGEUP" :

 (LOWORD(WParam) == SB_PAGEDOWN) ? "SB_PAGEDOWN" :

 (LOWORD(WParam) == SB_THUMBPOSITION) ? "SB_THUMBPOSITION" :

 (LOWORD(WParam) == SB_THUMBTRACK) ? "SB_THUMBTRACK" :

 "unknown");

 sprintf(Str, "%s: %s, %04Xh, %08Xh",

 HorzOrVertText, ScrollTypeText, HIWORD(WParam), LParam);

 SetStaticText(hScroll, Str);

 break;

�Icons

A typical Windows application uses an icon to represent itself when its main window is minimized.

This chapter covers the following topics:

What an icon is

Creating and using your own predefined icons

Specifying an icon for your windows

Changing your application's icon “on the fly”

This chapter also explains how to create a sample application, Icon, that illustrates many of these concepts.

What is an Icon?

To the user, an icon is a small graphic image that represents an application when that application's main window is minimized. For example, Microsoft Paintbrush uses an icon that looks like a painter's palette to represent its minimized window. Icons are also used in message and dialog boxes.

To the application, an icon is a type of resource. Before resource compilation, each icon is a separate file that contains a set of bitmap images. When the application wants to use an icon, it simply requests the icon resource by name.

Using Built-In Icons

Windows provides several built-in icons. You can use any of these icons in your applications. Windows uses several built-in icons in message boxes to indicate notes, cautions, warnings, and errors.

To use a built-in icon, you must first load it. To do this, you retrieve a handle to it by using the LoadIcon function. The argument identifies the icon you want. For example, the following statement loads the built-in “exclamation” icon:

 hHandIcon = LoadIcon(IDI_EXCLAMATION);

After loading a built-in icon, your application can use it. For example, the application could specify the icon as the icon for a specified window:

 AssignIcon(hWnd, hIcon);

In comparison with standard Windows Application, which assigns the icon to the class, Transputer Windows Application assigns the icon only to particular window, as far as all windows created via WServer have their own unique class names.

Using Your Own Icons

Using an icon requires three steps:

Create the icon file with the SDKPaint (Microsoft), Resource WorkShop (Borland) or other tool.

Define the icon resource by using an ICON statement in your application's resource script file.

Load the icon resource, when needed, by using the CreateIconIndirect function in your application code.

After loading an icon, you can use it; for example, you can then specify it as the window icon.

The following sections explain each step in detail.

Creating an Icon File

An icon file contains one or more icon images. You use some tool to paint the images and save them in an icon file.

Follow the directions given in documentation on your painting tool for creating and saving an icon. The recommended file extension for an icon file is .ICO.

Defining the Icon Resource

Once you have an icon file, you must define that icon in your application's resource script (.RC) file.

To define an icon resource, add an ICON statement to your resource script file. The ICON statement defines a name for the icon, and specifies the icon file that contains the icon. For example, the following resource statement adds the icon named “MyIcon” to your application's resources:

 MyIcon ICON MYICON.ICO

The filename MYICON.ICO specifies the file that contains the images for the icon named “MyIcon.” When the resource script file is compiled, the icon images will be copied from the file MYICON.ICO into your application's resources.

Loading the Icon Resource

Once you have created an icon file and defined the icon resource in the .RC file, your application can load the icon from its resources.

To load the icon from your resources, you use the CreateIconIndirect function. The CreateIconIndirect function takes the resource file name (.RES) and the icon's name, and returns a handle to the icon. The following example loads “MyIcon” from file “icon.res” and stores its handle in the variable hMyIcon.

 hMyIcon = CreateIconIndirect(“icon.res”, “MyIcon”);

After loading it, the application can display the icon.

Specifying a Window Icon

A “window icon” (same as “class icon” for the reason described above) is an icon that represents a particular window whenever a window is minimized. You specify a window icon by supplying an icon handle in the AssignIcon function:

 AssignIcon(hWnd, hIcon);

Once the window icon is set, Windows automatically displays that icon when any window you create is minimized. Windows 95 also displays the icon in the title bar.

A Sample Application: Icon

This sample application shows how to incorporate icons in your applications, in particular, how to use a custom icon as the window icon.

To create the Icon application, copy and rename the source files of the Generic application, then do the following:

Add an ICON statement to the resource script file.

Load the custom icon and use it to set the class icon in the initialization function.

This sample assumes that you have created an icon using SDKPaint, and have saved the icon in a file named MYICON.ICO.

Add an ICON Statement

Add an ICON statement to your resource script file. Insert the following line at the beginning of the resource script file, immediately after the #include directives:

 MYICON ICON MYICON.ICO

Loading the Icon

Load the icon from file “icon.res” by following call:

 HICON hIcon;

 .

 .

 .

 hIcon = CreateIconIndirect(“icon.res”, “MYICON”);

Set the Window Icon

Set the class icon by adding the following statement to the initialization function in the C-language source file:

 AssignIcon(hWnd, GCW_HICON, hIcon);

 Summary

This chapter explained how to create and use icons in your application. An icon is a small graphic image that can represent an application when that application is minimized. You can use one of Windows' built-in icons, or you can use the SDKPaint tool to create your own icons. You can specify an icon as the window icon after you create the window; then, Windows will automatically display that icon whenever a window in that class is minimized.

�The Cursor, the Mouse, and the Keyboard

The cursor is a special bitmap that shows the user where actions initiated by the mouse will take place. In most Windows applications, the user makes selections, chooses commands, and directs other actions by using either the mouse or the keyboard.

This chapter covers the following topics:

Controlling the shape of the cursor

Displaying the cursor

This chapter also explains how to create a sample application, Cursor, that illustrates some of these concepts.

Controlling the Shape of the Cursor

Since no one cursor shape can satisfy the needs of all applications, Windows lets your application change the shape of the cursor to suit its own needs.

In order to use a particular cursor shape, you must first retrieve a handle to it using the LoadCursor or CreateCursorIndirect functions. Once your application has loaded a cursor, it can use that cursor shape whenever it needs to.

Your application can control the shape of the cursor using either of two methods:

It can take advantage of the built-in cursor shapes that Windows provides.

It can use its own customized cursor shapes.

The following sections explain each method.

Using Built-In Cursor Shapes

Windows provides several built-in cursor shapes. These include the arrow, hourglass, I-beam, and cross-hair cursors. Most of the built-in cursor shapes have specialized uses. For example, the I-beam cursor is normally used when the user is editing text; the hourglass cursor is used to indicate that a lengthy operation is in progress, such as reading a disk file.

To use a built-in cursor, use the LoadCursor function to retrieve a handle to the built-in cursor. The must specify the cursor to load. The following example loads the I-beam cursor, IDC_IBEAM, and assigns the resulting cursor handle to the variable hCursor.

 hCursor = LoadCursor(IDC_IBEAM);

Once you have loaded a cursor, you can use it. For example, you could display the I-beam cursor to indicate that the user is currently editing text.

Using Your Own Cursor Shapes

To create and use your own cursor shapes, follow these steps:

Create the cursor shape itself by using any corresponding tool.

Define the cursor in your resource script file by using the CURSOR statement.

Load the cursor by using the CreateCursorIndirect function.

Display the cursor using one of the techniques described in Section “Displaying the Cursor.”

The following sections explain each step.

Creating a Cursor Shape

The first step is to create the cursor shape itself. You can do this by using SDKPaint, which lets you see an actual-size version of the cursor shape while you're editing it.

When you have created the cursor, save it in a cursor file. The recommended extension for cursor files is .CUR.

Adding the Cursor to Your Application Resources

Next, add a CURSOR statement to your resource script file. The CURSOR statement specifies the file that contains the cursor, and defines a name for the cursor. The application will use this cursor name when loading the cursor. The following is an example of a CURSOR statement:

 mycursor CURSOR MYCURSOR.CUR

In this example, the name of the cursor is “mycursor”, and the cursor is in the file MYCURSOR.CUR.

Loading the Cursor Resource

In your application code, retrieve a handle to the cursor using the CreateCursorIndirect function. For example, the following code loads the cursor resource named “mycursor” from resource file “cursor.res” and assigns its handle to the variable hCursor:

 hCursor = CreateCursorIndirect(“cursor.res”, “mycursor”);

In this example, the CreateCursorIndirect function loads the cursor from the application's resource file “cursor.res”. The name “cursor” identifies the cursor. It is the same name given in the resource script file.

Displaying the Cursor

Once you have loaded a cursor shape, you can display it using one of two methods:

Specifying it as the “window cursor”

Explicitly setting the cursor shape when the cursor moves within the client area of a particular window

Specifying a Window Cursor

The “window cursor” (same as “class cursor”) defines the shape the cursor will take when it enters the client area of a window. To specify it, you should load the cursor you want, and call AssignCursor function for the specified window. For example, to use the built-in arrow cursor (IDC_ARROW) in your window, add the following statement after creating window:

 AssignCursor(hWnd, GCW_HCURSOR, hCursor);

The built-in arrow cursor will appear automatically when the user moves the cursor into the window.

Explicitly Setting the Cursor Shape

Your application does not have to specify a window cursor. Instead, you can set the window cursor to zero to indicate that the window has no window cursor. If a window has no cursor, Windows will not automatically change the shape of the cursor when it moves into the client area of the window. This means that your application will need to display the cursor itself.

To use any cursor, whether built-in or custom, you must load it first. For example, to load the custom cursor “MyCursor” (defined in your application's resource script file) add the following statements to your initialization function:

 HCURSOR hMyCursor;

 hMyCursor = CreateCursorIndirect(“cursor.res”, “MyCursor”);

Then, to change the cursor shape, use the SetCursor function to set the shape each time the cursor moves in the client area. Since Windows sends a WM_MOUSEMOVE message to the window on each cursor movement, you can manage the cursor by adding the following statements to the window function:

 case WM_MOUSEMOVE:

 SetCursor(hMyCursor);

 break;

Example: Displaying the Hourglass on a Lengthy Operation

Whenever your application begins a lengthy operation, such as reading or writing a large block of data to a disk file, you should change the shape of the cursor to the hourglass. This lets users know that a lengthy operation is in progress and that they should wait before attempting to continue their work. Once the operation is complete, your application should restore the cursor to its previous shape.

To change the cursor to an hourglass, use the following statements:

 HCURSOR hSaveCursor;

 HCURSOR hHourGlass;

 .

 .

 .

 hHourGlass = LoadCursor(IDC_WAIT);

 .

 .

 .

 SetCapture(hWnd);

 hSaveCursor = SetCursor(hHourGlass);

 .

 /* Lengthy operation */

 .

 SetCursor(hSaveCursor);

 ReleaseCapture();

 .

 .

 .

In this example the application first captures the mouse input, using the SetCapture function. This keeps the user from attempting to use the mouse to carry out work in another application while the lengthy operation is in progress. When the mouse input is captured, Windows directs all mouse input messages to the specified window, regardless of whether the mouse is in that window. The application can then process the messages as appropriate.

Then the application changes the cursor shape using the SetCursor function. SetCursor returns a handle to the previous cursor shape, so that the shape can be restored later. The application saves this handle in the variable hSaveCursor.

After the lengthy operation is complete, the application restores the previous cursor shape. Then the ReleaseCapture function releases the mouse input.

Letting the User Select Information with the Mouse

The mouse is a hardware device that lets the user move the cursor and enter simple input by pressing a button. In a typical Transputer Windows Application, the user performs many types of tasks with the mouse; for example, choosing commands from a menu, selecting text or graphics, or directing scrolling operations. For most of these tasks, Windows automatically handles the mouse input; for example, when the user chooses a menu command, Windows trough Transputer Windows Server automatically sends the application a message that contains the command ID.

However, one common task, selection of information within the client area, must be handled by the application itself. In order to let the user select such information using the mouse, the application must perform the following tasks:

Start processing the selection.

When the user presses the mouse button to start selecting information, the application must note the location of the cursor and temporarily capture all mouse input to ensure that other applications do not interfere with the selection process.

Provide visual feedback during the selection.

While the user drags the mouse across the screen, the application should show the user what information is currently being selected. For example, some applications highlight selected information; others draw a dotted rectangle around it.

Complete the selection.

When the user releases the mouse button, the application must note the final location of the cursor and signal the end of the selection process.

When the selection process is complete, the user can then choose an action to perform on the selected information. For example, in a word processor, the user might select several words, then choose a command that changes the selected text to a different font. The following sections discuss each step in more detail, and explain how to let the user select graphics in a window's client area.

Starting a Graphics Selection

Because graphics can be virtually any shape, they are potentially more difficult to select than simple text. The simplest approach to selecting graphics is to let the user “stretch” a selection rectangle so that it encloses the desired information.

This section explains how to use the “rubber rectangle” method of selecting graphics. You can use the messages WM_LBUTTONDOWN, WM_LBUTTONUP, and WM_MOUSEMOVE to create the rectangle. This lets the user create the selection by choosing a point, pressing the left button, and dragging to another point before releasing. While the user drags the mouse, the application can provide instant feedback by inverting the border of the rectangle described by the starting and current points.

For this method, you start the selection when you receive the message WM_LBUTTONDOWN. You need to do three things: capture the mouse input, save the starting (original) point, and save the current point, as follows:

 WORD LParamLo = LOWORD(LParam);

 WORD LParamHi = HIWORD(LParam);

 BOOL bTrack = FALSE; /* TRUE if left button clicked */

 int OrgX = 0, OrgY = 0; /* original cursor position */

 int PrevX = 0, PrevY = 0; /* current cursor position */

 int X = 0, Y = 0; /* last cursor position */

 .

 .

 .

case WM_LBUTTONDOWN:

 if (hDlg)

 break;

 bTrack = TRUE;

 PrevX = LParamLo;

 PrevY = LParamHi;

 OrgX = LParamLo;

 OrgY = LParamHi;

 SetCapture(hWnd);

 break;

When the application receives the WM_LBUTTONDOWN message, the bTrack variable is set to TRUE to indicate that a selection is in progress. As with any mouse message, the LParam parameter contains the current x- and y-coordinates of the mouse in the low- and high-order words, respectively. These are saved as the origin x and y values, OrgX and OrgY, as well as the previous values, PrevX and PrevY. The PrevX and PrevY variables will be updated immediately on the next WM_MOUSEMOVE message. The OrgX and OrgY variables remain unchanged and will be used to determine a corner of the bitmap to be copied. (The variables bTrack, OrgX, OrgY, PrevX, and PrevY must be global variables.)

The SetCapture function directs all subsequent mouse input to the window even if the cursor moves outside of the window. This ensures that the selection process will continue uninterrupted.

Showing the Selection

As the user makes the selection, you need to provide feedback about his or her progress. You can do this by drawing a border around the rectangle by using the LineTo function on each new WM_MOUSEMOVE message. To prevent losing information already on the display, you need to draw a line that inverts the screen rather than drawing over it. You can do this by using the SetROP2 function to set the binary raster mode to R2_NOT. The following statements perform this function:

 case WM_MOUSEMOVE:

 if (bTrack)

 {

 NextX = LParamLo;

 NextY = LParamHi;

 if ((NextX != PrevX) || (NextY != PrevY))

 {

 hDC = GetDC(hWnd);

	 /* raster operation - NOT */

 SetROP2(hDC, R2_NOT);

	 /* clearing old selection */

 MoveTo(hDC, OrgX, OrgY);

 LineTo(hDC, OrgX, PrevY);

 LineTo(hDC, PrevX, PrevY);

 LineTo(hDC, PrevX, OrgY);

 LineTo(hDC, OrgX, OrgY);

 PrevX = NextX;

 PrevY = NextY;

	 /* new selection */

 MoveTo(hDC, OrgX, OrgY);

 LineTo(hDC, OrgX, PrevY);

 LineTo(hDC, PrevX, PrevY);

 LineTo(hDC, PrevX, OrgY);

 LineTo(hDC, OrgX, OrgY);

 ReleaseDC(hWnd, hDC);

 }

 }

 break;

The application processes the WM_MOUSEMOVE message only if bTrack is TRUE (that is, if a selection is in progress). The purpose of the WM_MOUSEMOVE processing is to remove the border around the previous rectangle and draw a new border around the rectangle described by the current and original positions. Since the border is actually the inverse of what was originally on the display, inverting again restores it completely. The first four LineTo functions remove the previous border. The next four draw a new border. Before drawing the new border, the PrevX and PrevY values are updated by assigning them the current values contained in the lParam parameter.

Ending the Selection

Finally, when the user releases the left button, save the final point and signal the end of the selection process. The following statements complete the selection:

 case WM_LBUTTONUP:

 bTrack = FALSE;

 ReleaseCapture();

 X = LParamLo;

 Y = LParamHi;

 break;

When the application receives a WM_LBUTTONUP message, it immediately sets bTrack to FALSE to indicate that selection processing has been completed. It also releases the mouse capture by using the ReleaseCapture function. It then saves the current mouse position in the variables, X and Y. This, together with the selection-origin information saved on WM_LBUTTONDOWN, records the selection the user has made. The application can now operate on the selection, and can redraw the selection rectangle when necessary.

The ReleaseCapture function is required since a corresponding SetCapture function was called. In general, you should release the mouse immediately after the mouse capture is no longer needed.

A Sample Application: Cursor

The sample application, Cursor, available with presented package, illustrates how to incorporate cursors and how to use the mouse and keyboard in your applications.

�Menus

Most Windows applications use menus to let the user select commands or actions.

This chapter covers the following topics:

What a menu is

Defining a menu

Including a menu in your application

Processing input from a menu

Modifying an existing menu

What is a Menu?

A menu is a list of items which, to the user, are the application's commands. A menu item can be displayed using text or a bitmap. The user tells the application to perform a command by selecting a menu item using the mouse or the keyboard. When a user chooses a menu item, Windows sends the application a message that indicates which item the user selected.

To use a menu in your application, follow these general steps:

Define the menu in your resource script file.

Specify the menu in your application code.

Once the menu exists and has been initialized, the following can take place:

The user can select commands from the menu.

When the user selects a command (menu item), Windows sends your application an input message that includes the identifier for that menu item.

Your application can add, change or replace menu items, or even the entire menu, as necessary.

Defining a Menu

The first step in using a menu is to define it in your application's resource script (.RC) file using a MENU statement. The MENU statement specifies:

The name of the menu

Items on the menu

The menu ID of each item

The text that appears for each item

Special attributes of each item

A MENU statement consists of the menu name, the MENU key word, and a pair of BEGIN and END key words that enclose one or more of the following menu-definition statements:

The MENUITEM statement defines a menu item, its appearance, and its identifier.

When the user chooses a menu item, Windows notifies the application of the user's selection.

The POPUP statement defines a pop-up menu, which contains a list of menu items.

When the user selects a pop-up menu, Windows displays the list of items. The user can then select an item from the pop-up menu; Windows then notifies the application of the user's selection.

For example, the following MENU statement defines a menu named SampleMenu:

 SampleMenu MENU

 BEGIN

 MENUITEM Exit!, IDM_EXIT

 MENUITEM Recalculate!, IDM_RECALC

 POPUP Options

 BEGIN

 MENUITEM Scylla, IDM_SCYLLA

 MENUITEM Charybdis, IDM_CHARYBDIS

 END

 END

In this example first line tells the Resource Compiler that this is the beginning of a menu definition, and names the menu SampleMenu. A MENU statement consists of the menu name, the MENU key word, and a pair of BEGIN and END key words which enclose the item-definition statements for that menu.

The MENUITEM statement defines the first item on the menu. The text “Exit!” will appear as the leftmost command on the menu bar. When the user selects the Exit! command, Windows sends the application a WM_COMMAND message that specifies the menu ID “IDM_EXIT” in the message's wParam parameter. The next MENUITEM statement defines the Recalculate! command in the same way.

The POPUP statement defines a pop-up menu. The text “Options” appears on the menu bar. When the user selects the Options command, a menu appears that lets the user choose between the Scylla and Charybdis commands.

Within the POPUP statement are the definitions for the items on that pop-up menu. For the Options pop-up menu, there are two menu items, each with its own text and menu ID.

When the user selects the “Exit!”, “Recalculate!”, “Scylla” or “Charybdis” command, Windows notifies the application of the user's selection by passing it that item's menu ID. Note that Windows does not notify the application when the user selects the Options command; instead, Windows simply displays the “Options” pop-up menu.

Menu IDs

Each menu item has a unique identifier, usually called a “menu ID.” When the user chooses a command, Windows passes the command's menu ID to the application. Menu IDs must be unique constants. You can define each menu ID as a constant by using the #define directive in the resource script file or the include file. For example:

 #define IDM_EXIT 111

 #define IDM_RECALC 112

 #define IDM_SCYLLA 113

 #define IDM_CHARYBDIS 114

You use a menu ID to direct the flow of control depending on which menu item the user selects.

Including a Menu in Your Application

Once you have defined a menu in the resource script file, you can include it in your application code. You specify a menu by associating it with a window. Any overlapped or pop-up window can have a menu; a child window cannot (although child windows can have system menus).

To specify a menu in your application, you have to load menu from resource file and then select the menu for specified window.

Load the menu from your application resources using the CreateMenuIndirect function. This function returns a menu handle.

After you call CreateWindow to create the window, call AssignMenu function with menu handle and window handle as parameters.

The following example shows how to load and specify a menu:

 HWND hWnd;

 HMENU hSampleMenu;

 .

 /* creating window; hWnd identifier returns */

 .

 hSampleMenu = CreateMenuIndirect(“editmenu.res”, “SampleMenu”);

 AssignMenu(hWnd, hSampleMenu);

Processing Input from a Menu

When a user chooses a command in a menu, Windows sends a WM_COMMAND message to the corresponding window function. The message contains the menu ID of the command in its WParam parameter.

The window function is responsible for carrying out any tasks associated with the selected command. For example, if the user chooses the Open command, the window function prompts for the filename, opens the file, and displays the file in the window's client area.

The most common way to process menu input is with a switch statement in the window function. Usually, the switch statement directs processing according to the value of the wParam parameter of the WM_COMMAND message. Each case processes a different menu ID.

For example:

 case WM_COMMAND:

 switch (WParam)

 {

 case IDM_NEW:

 /* perform operations for creating a new file */

 break;

 case IDM_OPEN:

 /* perform operations for opening a file */

 break;

 case IDM_SAVE:

 /* perform operations for saving this file */

 break;

 case IDM_SAVEAS:

 /* perform operations for saving this file */

 break;

 case IDM_EXIT:

 /* perform operations for exiting the application */

 break;

 }

 break;

In this example the WParam parameter contains the menu ID of the item the user just selected. for each menu ID (menu item), the application performs the appropriate operations.

Working with Menus from Your Application

Windows provides functions you can use to change existing menus and create new menus, while your application runs. This section explains:

How to enable and disable menu items

How to check and uncheck menu items

How to add, change, and delete menu items

How to replace a menu

How to create and initialize a menu from your application

The application can alter that window's menu without affecting other windows' menus. Whenever you make changes to items on the menu bar, you need to call the DrawMenuBar function to display the changes.

Enabling and Disabling Menu Items

Normally, a menu item is enabled; its text appears normal, and the user can select it. A disabled menu item appears normal, but does not respond to mouse clicks or keyboard selection. A “grayed” item has dimmed text, and does not respond to mouse clicks or keyboard selection. Typically, you disable or gray a menu item when the action it represents is not appropriate. For example, you might gray the Print command in the File menu when the system does not have a printer installed.

Setting the Initial State of a Menu Item

In the resource script file, you can specify whether a menu item is initially disabled or grayed. To do so, use the INACTIVE or GRAYED options with the MENUITEM statement. For example, the following statement specifies that the Print command is initially grayed:

 MENUITEM Print, IDM_PRINT, GRAYED

The information in the resource script file applies only to the initial state of the menu. You can change the menu item's state later, using the EnableMenuItem function in your C-language source file. EnableMenuItem enables, disables, or grays a menu item.

Disabling a Menu Item

A “disabled” menu item appears normal, but does not respond to mouse clicks or selection by the keyboard. A disabled menu item is commonly used as a title for related menu options. The following statement disables a menu item:

 EnableMenuItem (hMenu, IDM_SAVE, MF_DISABLED);

This example disables a command on the menu represented by the menu handle hMenu. The menu ID of the command is IDM_SAVE. By specifying the value MF_DISABLED, you tell Windows to disable the specified menu item.

Disabling and Graying a Menu Item

So that the user can tell that a menu item is not currently available, it's a good idea to disable a menu item by “graying” it rather than simply disabling it. Graying a menu item disables the item and redisplays the item text in dimmed letters.

To disable and gray a menu item, specify the value MF_GRAYED when you call EnableMenuItem. For example:

 EnableMenuItem (hMenu, IDM_PRINT, MF_GRAYED);

This example disables a command on the menu represented by the menu handle hMenu. The menu ID of the command is IDM_PRINT. By specifying the value MF_GRAYED, you tell Windows to disable the specified menu item, and redisplay the item text in gray letters.

Enabling a Menu Item

You can enable a disabled menu item by calling EnableMenuItem and specifying the MF_ENABLED value.

The following example enables the command identified by ID_EXIT:

 EnableMenuItem (hMenu, ID_EXIT, MF_ENABLED);

Checking and Unchecking Menu Items

You can display a checkmark next to an item to indicate that the user has selected it. Typically, you check a menu item when it is part of a group of items that are mutually exclusive. The checkmark indicates the user's latest choice. For example, if a group consists of the items Left, Right, and Center, you might check the Left item to indicate that the user chose that item most recently.

Setting an Initial Checkmark

In the resource script file, you can specify whether a menu item is initially checked. To do so, use the CHECKED option in the MENUITEM statement. For example, the following MENUITEM statement specifies that the Left command is initially checked:

 MENUITEM Left, IDM_LEFT, CHECKED

Checking a Menu Item

The information in the resource script file applies only to the initial state of the menu. You can check or remove a checkmark from a menu item later, using the CheckMenuItem function in your C-language source file. CheckMenuItem checks or removes a checkmark from a specified menu item.

The following example places a checkmark next to the item whose menu ID is IDM_LEFT:

 CheckMenuItem (hMenu, IDM_LEFT, MF_CHECKED);

Removing a Menu-Item Checkmark

To remove a checkmark from a menu item, you call the CheckMenuItem function and specify the value MF_UNCHECKED. The following example removes the check (if any) from the item whose menu ID is IDM_RIGHT:

 CheckMenuItem (hMenu, IDM_RIGHT, MF_UNCHECKED);

If you change menu items in the menu bar, you need to call the DrawMenuBar function to display the changes.

Adding Menu Items

You can add a new menu item to the end of an existing menu, or insert one after a particular menu item.

Appending a Menu Item

To append an item to the end of an existing menu, you use the AppendMenu function. This function adds a new item to the end of the specified menu, and lets you specify whether the new item is checked, enabled, grayed, and so on.

The following example appends the item “Raspberries” to the end of the Fruit menu. The example disables and grays the new item if raspberries are not currently in season.

 if (!RasberriesInSeason)

 AppendMenu(hFruitMenu, MF_GRAYED, IDM_RASPBERRIES, Raspberries);

 else

 AppendMenu(hFruitMenu, MF_ENABLED, IDM_RASPBERRIES, Raspberries);

Inserting a Menu Item

To insert an item in an existing menu, you use the InsertMenu function. This function inserts the specified item at the specified position, and moves subsequent items down to accommodate the new item. Like AppendMenu, InsertMenu lets you specify the state of the new item when you insert it.

The following example inserts the item “Kumquats” before the existing item “Melons.” The example disables and grays the new item.

 InsertMenu(hFruitMenu,

 IDM_MELONS,

 MF_BYCOMMAND | MF_GRAYED,

 IDM_KUMQUATS,

 Kumquats);

You can also insert items by numerical position rather than before a specific item. The following example inserts the item “Bananas” so that it becomes the third item in the Fruit menu. (The first item has position 0, the second item 1, and so on.)

 InsertMenu(hFruitMenu,

 2,

 MF_BYPOSITION | MF_GRAYED,

 IDM_BANANAS,

 Bananas);

Changing Existing Menus

You can change existing menus and menu items by using the ModifyMenu function. For example, you might need to change the text of a menu item. ModifyMenu lets you enable, disable, gray, check or uncheck the item.

In the following example, the ModifyMenu function changes the text of the Water command to “Wine”. The example also changes the item's menu ID.

 ModifyMenu(hMenu,

 IDM_WATER,

 MF_BYCOMMAND,

 IDM_WINE,

 Wine);

When you use ModifyMenu, you are essentially telling Windows to replace a specific menu item with a new item. The third, fourth and fifth ModifyMenu parameters specify the attributes of the new item.

For example, the following statement changes the item text from “Wine” to “Cabernet”. Although only the menu item's text is changing, the statement nonetheless respecifies all the attributes of the item (in this case, just the menu ID).

 ModifyMenu(hMenu,

 IDM_WINE,

 MF_BYCOMMAND,

 IDM_WINE,

 Cabernet);

Performing Several Changes at Once

When you use ModifyMenu to change a menu item, you can also check or uncheck the item, and can enable, disable, or gray it as well.

The following example not only changes the Water command to “Wine”; it enables the command (if not already enabled), checks it, and changes its menu ID.

 ModifyMenu (hMenu,

 IDM_WATER,

 MF_BYCOMMAND | MF_ENABLED | MF_CHECKED,

 IDM_WINE,

 Wine);

Deleting a Menu Item

You can remove a menu item, and any pop-up menus associated with that item, by using the DeleteMenu function. DeleteMenu permanently removes the specified menu item from the specified menu, and moves subsequent items up to fill the gap.

 DeleteMenu(hFruitMenu, /* handle to menu */

 1, /* delete the second item */

 MF_BYPOSITION); /* we are specifying the

 item by its position

 on the menu */

This example deletes the Fruit menu's second item. Windows moves any subsequent items up to fill the gap.

The following example deletes the same item, but specifies it by its menu ID rather than by its position on the menu:

 DeleteMenu(hFruitMenu, /* handle to menu */

 IDM_ORANGES, /* delete Oranges item */

 MF_BYCOMMAND); /* we are specifying the

 item by its menu ID */

Replacing a Menu

You can replace a window's menu by using the AssignMenu function. Typically, you replace a menu when the application changes modes and needs a completely new set of commands. For example, an application might replace a spreadsheet menu with a charting menu when the user changes from a spreadsheet to a charting mode.

In the following example, the GetMenu function retrieves the menu handle of the spreadsheet menu and saves it for restoring the menu later. The AssignMenu function replaces the spreadsheet menu with a charting menu loaded from the application's resources.

 HMENU hMenu, hOldMenu;

 .

 .

 .

 hOldMenu = GetMenu(hWnd);

 hMenu = CreateMenuIndirect(“menu.res”, “ChartMenu”);

 AssignMenu(hWnd, hMenu);

 .

 .

 .

Creating a New Menu

You can create new menus while your application runs, using the CreateMenu function. CreateMenu creates a new, empty menu; you can then add items to it using AppendMenu or InsertMenu.

The following example creates an empty pop-up menu and appends it to the window's menu. It then appends three items to the new pop-up menu.

 HMENU hWinMenu;

 HMENU hVeggieMenu;

 .

 .

 .

 hVeggieMenu = CreateMenu();

 AppendMenu(hWinMenu,

 MF_POPUP | MF_ENABLED,

 hVeggieMenu,

 Veggies);

 AppendMenu(hVeggieMenu,

 MF_ENABLED,

 IDM_CELERY,

 Celery);

 AppendMenu(hVeggieMenu,

 MF_ENABLED,

 IDM_LETTUCE,

 Lettuce);

 AppendMenu(hVeggieMenu,

 MF_ENABLED,

 IDM_PEAS,

 Peas);

�Controls

Controls are special windows that provide easy methods for interaction with the user.

This chapter covers the following topics:

What is a control?

Creating a control

Using controls in application windows

What is a Control?

A “control” is a predefined child window that carries out a specific kind of input or output. For example, to get a filename from the user, you can create and display an edit control to let the user type the name. An “edit control” is a predefined child window that receives and displays keyboard input.

Creating a Control

Windows provides two ways to create a control:

Within a dialog box

Within the client area of any other type of window

This chapter discusses using controls in a standard window.

To create a control in a window, use one of the following functions:

CreateButton

CreateStatic

CreateGroupBox

CreateListBox

CreateComboBox

CreateCheckBox

CreateRadioButton

CreateScrollBar

CreateEdit

When creating a control, specify the following information:

The control style

The control's parent window

The control ID

The control's position in a window (coordinates)

Some additional information

Function that creates control returns a handle to the control that you can use in subsequent functions to move, size, paint, or destroy a window, or to direct a window to carry out tasks.

The following example shows how to create a push-button control:

 hButtonWnd = CreateButton(

 hWnd, /* parent window handle */

 ID_OKBUTTON, /* button ID */

 “Ok”, /* button text */

 10, /* x-coordinate */

 10, /* y-coordinate */

 60, /* width in pixels */

 20, /* height in pixels */

 TRUE); /* default pushbutton */

This example creates a push-button control. The control is a child window and will be visible when first created. CreateButton places the control at the point (10,10) in the parent window's client area. The width and height are 60 and 20 pixels, respectively. The parent window is identified by the hWnd handle. The constant ID_OKBUTTON is the control identifier.

The Parent Window

Because every control is a child window, it requires a parent window. You specify the parent window when you create the control. To do so, include the handle of the parent window as the hWndParent parameter for the Create... function.

As with any child window, a control is affected by changes to its parent window. For example, if Windows disables the parent window, it disables the control as well. If Windows paints, moves, or destroys the parent window, it also paints, moves, or destroys the control.

Although a control can be any size, and can be moved to any position, it is restricted to the client area of the parent window. Windows clips the control if you move it outside the parent window's client area or make it bigger than the client area.

Choosing a Control ID

When you create a control, you give it a unique identifier, or control ID. You specify the control ID when you create the control. The control supplies the control ID in any notification message it sends to the window function of the parent window. The control ID is especially useful if you have several controls in a window. It is the quickest, easiest way to distinguish one control from another.

Using a Control

Once you have created a control, you can:

Receive user input through the control.

Tell the control to perform specialized tasks, such as returning a string of text.

Enable or disable input to the control.

Move or size the control.

Destroy the control.

This section explains how to perform these tasks.

Receiving User Input

As the user interacts with the control, the control sends information about that interaction, in the form of a notification message, to the parent window. A notification message is a WM_COMMAND message in which:

The low-word of WParam contains the control ID.

The high-word of WParam contains the notification code

The LParam contains the control handle.

For example, when the user clicks a button control, that control sends a WM_COMMAND message to the window function of the parent window. The WM_COMMAND message's WParam parameter contains the button control's ID and the notification code BN_CLICKED.

Since a notification message has the same basic form as menu input, you process notification messages much as you would menu input. If you have carefully selected control IDs so that they do not conflict with menu IDs, you can process notification messages in the same switch statement you use to process menu input.

Disabling and Enabling Input to a Control

To disable or enable input to a control, use the EnableWindow function.

When you disable a control, it does not respond to user input. Windows “grays” the control (displays it dimly) so that the user can tell that the control is disabled. To disable a control, use EnableWindow; specify the value FALSE, as follows:

 EnableWindow(hButton, FALSE);

To restore input to the disabled control, enable it using the EnableWindow function with the value TRUE, as follows:

 EnableWindow(hButton, TRUE);

Moving and Sizing a Control

To move or size a control, use the MoveWindow function. This function moves the control to the specified point in the parent window's client area and sets the control to the given width and height. The following example shows how to move and size a control:

 MoveWindow(hButtonWnd, 10,10, 30,12, TRUE);

This example moves a control to the point (10,10) in the client area and sets the width and height to 30 and 12 pixels, respectively. The value TRUE specifies that the control should be repainted after moving.

Windows automatically moves a control when it moves the parent window. A control's position is always relative to the upper-left corner of the parent's client area, so when the parent moves, the control remains fixed in the client area but moves relative to the display. Although Windows does not size a control when it sizes the parent window, it sends a WM_SIZE message to the parent to indicate the new size of the parent window.

Destroying a Control

To destroy a control, use the DeleteWindow function. This function deletes any internal record of the control and removes the control from the parent window's client area. The following example shows how to destroy a control:

 DeleteWindow(hEditWnd);

Windows automatically destroys a control when it destroys the parent window. In general, you will need to destroy a control only if you no longer need it in the parent window.

Creating and Using Some Common Controls

The rest of this chapter explains more about the following common controls:

Button controls

Static controls

List-box controls

Combo-box controls

Edit controls

Scroll-bar controls

Button Controls

A button control is a small window used for simple yes/no, on/off type of input. The following are some of the most commonly used types of button controls:

Push button

Check box

Radio button

Group box

Push Buttons

A push button is a button that the user can select to carry out a specific action. The button contains text that indicates what that button does. When the user clicks a push button, the application normally carries out the associated action immediately. For example, if the user clicks the Cancel button in a dialog box, the application immediately removes the dialog box and cancels the user's changes to the dialog (if any).

To create a button control, use CreateButton function. For example, the following call to the CreateButton creates a push-button control with the label “Cancel”:

 HWND hCancelButton;

 .

 .

 .

 hCancelButton = CreateButton(

 hWnd, /* parent window */

 IDCANCEL, /* button ID */

 “&Cancel”, /* button text */

 20, 40, /* button position */

 80, 20, /* button size */

 TRUE); /* default button */

Windows displays the control after creating it. The control ID is IDCANCEL. This constant is defined in the WLIB.H file and is intended to be used with Cancel push buttons.

Last parameter - here is TRUE - specifies that the created button is default button. A default push button typically lets the user signal the completion of some activity, such as filling in an edit control with a filename. A default push-button control, as with other button controls, responds to both mouse and keyboard input. If the user moves the cursor into the control and clicks it, the button sends a BN_CLICKED notification message to the parent window. The button does not have to have the input focus in order to respond to mouse input. It does, however, require the focus in order to respond to keyboard input. To let the user use the keyboard, use the SetFocus function to give the input focus to the button. The user can then press the SPACEBAR to direct the button to send a BN_CLICKED notification message to the parent window.

Check Boxes

A check box typically lets the user select an option to use in the current task. By convention, within a group of check boxes, the user can select more than one option. (To present options that are mutually exclusive, use radio buttons instead of check boxes.)

For example, you might present a group of check boxes that lets the user select font properties for the next output operation. The user could choose both bold and italic by checking both the “Bold” and the “Italic” check boxes.

To create a check-box control, use the CreateCheckBox function, as in the following example:

 #define IDC_ITALIC 201

 HWND hCheckBox;

 .

 .

 .

 hCheckBox = CreateCheckBox(

 hWnd, /* parent window */

 IDC_ITALIC, /* check box ID */

 “Italic”, /* text */

 20, 40, /* position */

 80, 20, /* size */

 NULL); /* no group box */

In this example, the check-box label is “Italic” and the control ID is IDC_ITALIC.

A check box responds to mouse and keyboard input much as a push-button control would. That is, it sends a notification message to the parent window when the user clicks the control or presses the SPACEBAR. However, a check box can display a check (an “X”) in its box to show that it is currently on (it has been selected).

Each time the user clicks this control Windows automatically toggles its state (places or removes a check).

To tell a control to display a check, you can also send to control the BM_SETCHECK message; to see if the check box has a check by sending the control the BM_GETCHECK message. For example, to place a check in the check box, use the following function:

 SendMessage(hCheckBox, BM_SETCHECK, 1, 0L);

Other way to operate with checkmark on this control - use GetCheck and SetCheck functions:

 SetCheck(hCheckBox, CheckFlag); /* set or remove checkmark */

 .

 .

 .

 CheckFlag = GetCheck(hCheckBox); /* get state of check box */

Radio Buttons

Radio-button controls work in much the same way as check boxes. However, radio buttons are usually used in groups and represent mutually exclusive options. For example, you might use a group of radio buttons to let the user specify text justification (right-justified, left-justified, or centered). The radio buttons would let the user select only one type of justification at a time.

Create a radio-button control as you would check box control. For example, the following call to the CreateRadioButton function creates a radio-button control with the label “Right”:

 #define IDC_RIGHTJUST 1

 .

 .

 .

 HWND HRightJustifyButton, hGroupBox;

 .

 .

 .

 hRightJustifyButton = CreateRadioButton(

 hWnd, /* parent window handle */

 IDC_RIGHTJUST, /* control ID */

 “Right”, /* radio button text */

 20, 40, /* position in window */

 80, 20, /* size of control */

 hGroupBox); /* handle of group box */

Windows automatically removes the check from the previously checked button when the user selects a different radio button.

As with a check box, you can send a BM_SETCHECK message to the radio button to display a “check” (actually, a solid circle) in the button when the user selects that button. Also, since radio buttons represent mutually exclusive choices, you should also send the BM_SETCHECK message to the previously checked radio button (if any) to clear its check. You can determine which radio button in a group is checked by sending the BM_GETCHECK message to each button.

And, of course, you can use more simple way - using SetRadion and GetRadio functions to determine what radio is checked.

Group Boxes

Group boxes are rectangles that enclose two or more related buttons or other controls. Group boxes do not respond to user input; that is, they do not generate notification messages. To create group box, use the CreateGroupBox function:

 HWND hGroup;

 .

 .

 .

 hGroup = CreateGroupBox(

 hWnd, /* parent window */

 -1, /* no ID needed */

 “Text Style”, /* group box text */

 10, 10, /* position */

 100, 60); /* size */

To change a caption in the upper-left corner of the box, you can send the WM_SETTEXT message to the group box or use SetWindowText function.

Static Controls

A static control is a small window that contains text. You typically use a static control to label some other control or to create boxes and lines that separate one group of controls from another.

The most commonly used static control is the line of text. That is, the control writes the line's text starting at the left end of the control, displaying as much of the label as will fit in the control and clipping the rest. The control uses the system font for the text.

Like group boxes, static controls do not respond to user input; that is, they do not generate notification messages when chosen. However, you can change the appearance and location of a static control at any time. For example, you can change the text associated with a static control by using the SetWindowText function or the WM_SETTEXT message. Other way - to use GetStaticText and SetStaticText functions.

List Boxes

A list box is a box that contains a list of selectable items, such as filenames. You typically use a list box to display a list of items from which the user can select one or more.

You can always retrieve the index of the selected string by using the GetSelIndex function and selected string itself by GetSelString function.

To set selection, use functions SetSelIndex (selects string with specified index) and SetSelString (select specified string).

To modify list box, following functions can be used: AddString (adds string to list box), DeleteString (deletes string specified by index from list box), ClearList (clears list box - deletes all strings), InsertString (inserts string in list box).

Also useful functions for working with list box: GetCount (returns number of items in list box), GetStringLen (returns length of string with specified index), GetString (returns string with specified index).

Following table summarizes the mouse and keyboard interface for a standard list box.

Table - User Interface for Standard List Box

Single click				Selects the item and removes the selection from the

previously selected item (if any).

Double click				Is the same as a single click.

SPACEBAR				Selects the item.

RIGHT ARROW, DOWN ARROW	Selects the next item in the list and removes the

selection from the previously selected item (if any).

LEFT ARROW, UP ARROW		Selects the preceding item in the list and removes the

selection from the previously selected item (if any).

PAGE UP				Scrolls the currently selected item to the bottom of the

list box, selects the first visible item in the list box, and removes the selection from the previously selected item (if any).

PAGE DOWN				Scrolls the currently selected item to the top of the list

box, selects the last visible item in the list box, and removes the selection from the previously selected item (if any).

HOME					Scrolls the first item in the list box to the top of the list

box, selects the first item, and removes the selection from the previously selected item (if any).

END					Scrolls the last item in the list box to the bottom of the

list box, selects the last item, and removes the selection from the previously selected item (if any).

Combo Boxes

A combo box is a single control that consists of a list box combined with a static or edit control. Depending on the style you use to create the list box, the list box can be displayed at all times, or the list box can be hidden until the user displays it. Except where noted, the mouse and keyboard interface for the edit field and list box of a combo box is identical to that of a standard edit control or list box.

The CBS_SIMPLE style creates a combo box with an edit field and a list box that is always displayed below the edit field. When the combo box has focus, the user can type in the edit field. If an item in the list box matches what the user has typed, the matching item moves to the top of the list box. The user can also select items from the list box by using the DOWN ARROW and UP ARROW keys or the mouse.

The CBS_DROPDOWN style is similar to CBS_SIMPLE except that the list box is displayed only if the user selects the icon next to the edit field or presses ALT+DOWN ARROW or ALT+UP ARROW. Even when the list box is hidden, the user can select items from the list box by using UP ARROW and DOWN ARROW.

A combo box created with the CBS_DROPDOWNLIST appears identical to a CBS_DROPDOWN combo box, except that the edit field is replaced with a static text field. Instead of typing in the edit field, the user can select items from the list box by typing the first letter of the item. Of course, the user can also use the UP ARROW and DOWN ARROW keys or the mouse to select items in the combo box.

You add and delete items to the list-box portion of a combo box in much the same way as a plain list box with the same functions. Transputer Windows Library also provides additional combo-box functions: ShowList and HideList.

In many respects, a combo box is quite similar to a list box in the way it reports the user's interaction with the control. All of the list-box notification codes have parallel combo-box notification codes. In addition to these, Windows sends notification codes to indicate the following:

The list box of the combo box is being dropped down (CBN_DROPDOWN).

The user has changed the text in the edit field, and Windows has updated the display (CBN_EDITCHANGE).

The user has changed the text in the edit field, but Windows has not yet updated the display (CBN_EDITUPDATE).

The combo box has lost input focus (CBN_KILLFOCUS). In the case of CBS_DROPDOWN and CBS_DROPDOWNLIST combo boxes, this causes Windows to remove the list box from the display.

The combo box has gained focus (CBN_SETFOCUS).

You can also designate the CBS_SORT style for a combo box; Windows sorts owner-draw combo boxes in the same manner as owner-draw list boxes.

There is no multicolumn style for combo boxes.

Edit Controls

An edit control is a rectangular child window in which the user can enter and edit text. Edit controls have a variety of features, such as multiple-line editing and scrolling. You specify the features you want by specifying a control style.

You can enter more than one line of text in edit control if set MultiLine flag in CreateEdit function to TRUE. TextLine parameter specifies maximum length of text in control.

An edit control sends notification messages to its parent window. For example, an edit control sends an EN_CHANGE message when the user makes a change to the text. An edit control can also receive messages, such as EM_GETLINE and EM_LINELENGTH. An edit control carries out the specified action when it receives a message.

A particularly powerful feature of edit controls allows you to “undo” a change to the contents of the edit control. To determine whether an edit control can undo an action, send the EM_CANUNDO message to the control; the control will return a nonzero value if it can undo the

last change. If it can, your application can send the EM_UNDO message to the control to reverse the last change made to the edit control.

To set text in edit control, call SetEditText function. Also you can specify integer value in control by SetEditInt function.

To retrieve value/text from edit control, you can use GetEditText and GetEditInt functions.

Following table describes the mouse and keyboard interface for edit controls.

Table - User Interface for Edit Control

Single click			Positions the insertion point and drops the selection anchor.

Double click			Selects a word.

SHIFT+Single click		Positions the insertion point and extends the selection from the

selection anchor to the insertion point.

Drag				Drops the selection anchor, moves the insertion point, and

extends the selection from the selection anchor to the insertion point.

DIRECTION			Removes the selection from any text and moves the insertion

point in the indicated direction.

SHIFT+DIRECTION		Drops the selection anchor (if it is not already dropped), moves

the insertion point, and selects all text between the selection anchor and the insertion point.

CONTROL+LEFT ARROW,	Moves the insertion point to the beginning of the word in the

CONTROL+RIGHT ARROW	indicated direction.

SHIFT+CONTROL+LEFT,	Drops the selection anchor (if it is not already dropped), moves

SHIFT+CONTROL+RIGHT 	the insertion point to the beginning of the word in the indicated

direction, and selects all text between the selection anchor and the insertion point.

HOME				Removes the selection from any text and moves the insertion

point to the beginning of the line.

SHIFT+HOME			Drops the selection anchor (if it is not already dropped), moves

the insertion point to the beginning of the line, and selects all text between the selection anchor and the insertion point.

CONTROL+HOME		Places the insertion point before the first character in the edit

control.

SHIFT+CONTROL+HOME	Drops the selection anchor (if it is not already dropped), places

the insertion point before the first character in the edit control, and selects all text between the selection anchor and the insertion point.

END				Removes the selection from any text and moves the insertion

point to the end of the line.

SHIFT+END			Drops the selection anchor (if it is not already dropped), moves

the insertion point to the end of the line, and selects all text between the selection anchor and the insertion point.

CONTROL+END		Places the insertion point after the last character in the edit

control.

SHIFT+CONTROL+END	Drops the selection anchor (if it is not already dropped), places

the insertion point after the last character in the edit control, and selects all text between the selection anchor and the insertion point.

DELETE			If text is selected, deletes (clears) the text. Otherwise, deletes

the character following the insertion point.

SHIFT+DELETE		If text is selected, cuts the text to the clipboard. Otherwise,

deletes the character before the insertion point.

SHIFT+INSERT			Pastes (inserts) the contents of the clipboard at the insertion

point.

CONTROL+INSERT		Copies selected text to the clipboard, but does not delete it.

PAGE UP			In a multiline edit control, scrolls text up one line less than the

height of the edit control.

CONTROL+PAGE UP		In a multiline edit control, scrolls text left one character less than

the width of the edit control.

PAGE DOWN			In a multiline edit control, scrolls text down one line less than the

height of the edit control.

CONTROL+PAGE DOWN	In a multiline edit control, scrolls text right one character less

than the width of the edit control.

CONTROL+ENTER		In a multiline edit control in a dialog box, ends the line and

moves the cursor to the next line.

CONTROL+TAB		In a multiline edit control in a dialog box, inserts a tab character.

Scroll Bars

Scroll bars are predefined controls that can be positioned anywhere in a window. They allow a user to select a value from a continuous range of values. The scroll bar sends a notification message to its parent window whenever the user clicks the control with the mouse or moves the scroll-bar thumb using the keyboard; this allows the parent window to process the messages so that it can determine the value selected by the user and position the thumb appropriately.

Scroll-bar controls do not have a special set of notification messages. Instead, they send the same messages (WM_HSCROLL and WM_VSCROLL) sent by window scroll bars. The WParam parameter of these messages contains a value that indicates what kind of scrolling is being performed (in the low word), and a position to scroll to (in high word; only for SB_THUMBPOSITION and SB_THUMBTRACK). Your application uses this information to determine how to position the scroll-bar thumb and what that position means to your application. Following table lists these WParam values and describes the user action which generates them.

Table - User Interface for Scroll Bar

SB_LINEUP		User clicked the Up or Left arrow of the scroll bar or pressed LEFT

ARROW or UP ARROW.

SB_LINEDOWN	User clicked the Down or Right arrow of the scroll bar or pressed RIGHT

ARROW or DOWN ARROW.

SB_PAGEUP		User clicked above or to the left of the scroll-bar thumb or pressed

PAGE UP.

SB_PAGEDOWN	User clicked below or to the right of the scroll-bar thumb or pressed

PAGE DOWN.

SB_ENDSCROLL	User clicked anywhere on the scroll bar except the thumb.

SB_THUMBTRACK	User is dragging the thumb.

SB_THUMBPOSITION	User stopped dragging the thumb.

SB_TOP		User pressed HOME.

SB_BOTTOM		User pressed END.

Windows is capable of properly positioning the thumb of a scroll bar associated with a list box or an edit control based on the contents of the control. However, a scroll bar that is a child-window control represents a range of values known only to your application. As a result, it is the responsibility of your application to set the scrolling range for the scroll bar and to position the thumb each time the user moves it.

The SetScrollRange function establishes the range of values that the scroll bar represents. For example, if your application has a scroll bar with which the user can select a day in a given month, you would call SetScrollRange to set the scroll range to the number of days in a particular month. The following shows how your application could set the range from the month of January:

 SetScrollRange(hScrollBar, 1, 31, TRUE);

In this example, the second and the third parameters specify the scroll-bar range, and the fourth parameter is set to TRUE to direct windows to redraw the scroll bar to reflect the new range.

To set scroller position, you can use SetScrollPos function, to retrieve current - GetScrollPos. To set scroller's line magnitude and page magnitude, use SetScrollLine and SetScrollPage functions.

Summary

This chapter explained how to provide controls in your application. A control is a special type of child window that you can add to your application's windows to facilitate user input. Windows provides automatic support for most types of controls. For example, Windows can automatically draw a control in the location you specify; when the user selects a control, Windows sends your application a message containing the control ID.

This chapter also explained how to use each of the most common types of controls. For more information, look at sample application “Control”.

�Dialog Boxes

Dialog boxes are pop-up windows that applications use to interact with the user. Typically, dialog boxes contain one or more controls.

This chapter covers the following topics:

What is a dialog box?

Dialog box types

Creating and using modeless dialog boxes

Creating a dialog function

Using controls in dialog boxes

What Is a Dialog Box?

A dialog box is a pop-up window that an application uses to display or prompt for information. Dialog boxes are typically used to prompt the user for the information needed to complete a command. A dialog box contains one or more controls with which the user can enter text, choose options, and direct the action of a particular command.

You have already seen a dialog box in the Generic application: the About dialog box. This dialog box contains static text controls that provide information about the application, and a push-button control that the user can use to close the dialog box and return to the main window. To process a dialog box, you need to supply a dialog-box template, a dialog function, and some means to call up the dialog box.

A dialog-box template is text that describes the dialog box and the controls it contains. You can use either a text editor or the SDK Dialog Editor or any other tool like Resource WorkShop to create the template. Once you have created the template, add it to your resource script file.

A dialog function is a callback function; Windows (i.e. Windows Server) calls the dialog function and passes it messages for the dialog box. Although a dialog function is similar to a window function, Windows Library carries out special processing for dialog boxes. Therefore, the dialog function does not have the same responsibilities as a window function.

The most common way to display a dialog box is in response to menu input. For example, the Open and Save As commands in the File menu both require additional information to complete their tasks; both display dialog boxes to prompt for the additional information.

There are two types of dialog boxes: modal and modeless.

Modal Dialog Boxes

A modal dialog box temporarily disables the parent window and forces the user to complete the requested action before returning control to the parent window. Modal dialog boxes are particularly useful for gathering information your application requires in order to proceed. For example, Windows Notepad displays a modal dialog box when the user chooses the Open command from the File menu. Notepad cannot proceed with the Open command until the user specifies a file.

Modal dialog boxes not supported in current version of Transputer Windows Server and Transputer Windows Library.

Modeless Dialog Boxes

You have already seen a modeless dialog box (About) in the Generic application.

A modeless dialog box, unlike a modal dialog box, does not disable the parent window. This means that the user can continue to work in the parent window while the modeless dialog box is displayed. For example, Windows Write uses a modeless dialog box for its Find command. This allows the user to continue editing the document without having to close the Find dialog box.

Most modeless dialog boxes have the WS_POPUP, WS_CAPTION, WS_BORDER, and WS_SYSTEMMENU styles. The typical modeless dialog box has a system menu, a title bar, and a thin black border.

Although Windows automatically disables some of the system-menu commands for the dialog box, the menu still contains a Close command. The user can use this command instead of a push button to terminate the dialog box. You can also include controls in the dialog box, such as edit controls and check boxes.

A modeless dialog box receives its input through the message loop in the main function of transputer windows application.

To terminate a modeless dialog box, use the DeleteWindow function.

Using a Dialog Box

To create and use a dialog box, follow these steps:

Create a dialog-box template and add it to the resource script file.

Create a dialog function to support the box.

Display the dialog box by calling CreateDialogIndirect function.

Close the dialog box by calling DeleteWindow function.

The following sections explain each step.

Creating a Dialog Function

A dialog function has the following form:

 BOOL DialogProc(TMessage Msg)

 {

 switch (Msg.Message)

 {

 /* Place message cases here */

 .

 .

 .

 }

 return TRUE;

 }

This is basically a window function. Default processing of dialog-box messages is handled internally.

The dialog function must have the parameter given here. BOOL is the required return type.

Just as it does with window functions, Windows sends messages to a dialog function when it has information to give the function or wants the function to carry out some action. Unlike a window function, a dialog function responds to a message by returning a Boolean value. Unlike standard Windows application (written with Borland C/C++ or Microsoft C/C++) it always returns TRUE.

The other parameter serve the same purpose as in a window function. The switch statement is used as a filter for different messages. Most dialog functions process the WM_INITDIALOG and WM_COMMAND messages, but very little else.

The WM_INITDIALOG message, sent to the dialog box just before it is displayed, gives the dialog function the opportunity to set some initial parameters in dialog box (for example, states of some buttons).

The WM_COMMAND message is sent to the dialog function by the controls in the dialog box. If there are controls in the dialog box, they send notification messages when the user carries out some action within them. For example, a dialog function with a push button can check WM_COMMAND messages for the control ID of the push button. The control ID is in the message's WParam parameter. When it finds the ID, the dialog function can carry out the corresponding task.

If you create the dialog box with the WS_SYSMENU style, you should include a WM_COMMAND switch statement for the IDCANCEL control ID which is sent when the user chooses the close option in the dialog-box system menu. The statement should include a call to the DeleteWindow function.

Displaying the DialogBox

Dialog box should be displayed by function CreateDialogIndirect:

 hDlg = CreateDialogIndirect(

 “control.res”, /* resource file name */

 “ABOUT”, /* dialog template name */

 hWnd, /* parent window handle */

 (DWORD)DialogProc); /* dialog function */

Using Controls in Dialog Boxes

You use controls in dialog boxes much as you use them in regular windows. When a control is in a dialog box, however, you can use several special functions to access the control and send messages to it. For example, the ChildWithId function returns control handle with given ID:

 hButton = ChildWithId(

 hDlg, /* dialog handle */

 IDC_BUTTON); /* button ID */

Common Dialogs

There are two predifined common-used dialogs in Transputer Windows Library: File Dialog and Input Dialog.

File Dialog used to display directory list ang give to user the possibility to select file name for load/save file oparations:

 HWND hWnd;

 char TempFileName[80] = “*.c”;

 .

 .

 .

 ExecFileDialog(

 hWnd, /* parent window */

 SD_FILEOPEN, /* pre-defined constant for “open”

 dialog */

 TempFileName); /* file mask */

 .

 .

 .

 ExecFileDialog(/* parent window */

 hWnd, /* pre-defined constant for

 SD_FILESAVE, “save as” dialog */

 TempFileName); /* file mask */

In this example, first call to ExecFileDialog will displays “Open” dialog with two list boxes: directory list and file list and two buttons: “Ok” and “Cancel”. File list initially filled with file names with given mask (here “*.c”). You should select file name to open by mouse from list box or by keyboard in edit control.

Second call displays “Save As” dialog box with directory list, edit control and the same two buttons. You can select needed directory and type file name to save.

Function ExecFileDialog returns either IDOK (if “Ok” button pressed) or IDCANCEL (if “Cancel” button pressed or “Close” command selected from dialog system menu).

Second function - ExecInputDialog - performs input dialog:

 char Buffer[80];

 .

 .

 .

 ExecInputDialog(

 hWnd, /* parent window */

 “Options”, /* title */

 “Line thickness:”, /* prompt */

 Buffer, /* buffer to receive user input */

 sizeof(Buffer)); /* size of buffer */

Input dialog also returns IDOK or IDCANCEL.

�Bitmaps

Your application can use bitmaps to display images that are otherwise too cumbersome to draw using GDI output functions. This chapter shows how to create and display bitmaps for monochrome as well as color displays.

This chapter covers the following topics:

What is a bitmap?

Creating bitmaps

Displaying bitmaps

Deleting bitmaps

What is a Bitmap?

In general, the term “bitmap” refers to an image formed by a pattern of bits, rather than by a pattern of lines. In Microsoft Windows, there are two kinds of bitmaps:

A “device-dependent” bitmap is a pattern of bits in memory which can be displayed on an output device. Because there is a close correlation between the bits in memory and the pixels on the display device, a memory bitmap is said to be device dependent. For such bitmaps, the way the bits are arranged in memory depends on the intended output device.

A “device-independent” bitmap (DIB) describes the actual appearance of an image, rather than the way that image is internally represented by a particular display device. Because this external definition can be applied to any display device, it is referred to as device independent.

Creating Bitmaps

You create a bitmap by supplying GDI with the dimensions and color format of the bitmap, and, optionally, the initial value of the bitmap bits. GDI then returns a handle to the bitmap. You can use this handle in subsequent GDI functions to select and display the bitmap.

You can create bitmaps in the following ways:

You can use the Windows Paint or any other painting application that supports .BMP format to draw the bitmap image and save it in a file. You then add the bitmap file to your application's resources. Your application loads the bitmap using the CreateBitmapIndirect function.

You can use the Windows SDKPaint or any other painting application that supports .BMP format to draw the bitmap image and save it in a file. You then load the bitmap from your application by using LoadBitmapFile function.

Your application can first create a blank bitmap and then use GDI output functions to draw the bitmap bits.

The following sections explain how to use each of these methods to create bitmaps.

Creating and Loading Bitmap Files

For example, you can create bitmaps with SDK Paint. SDK Paint lets you specify the dimensions of a bitmap, then fill it in by “painting” in the blank area with such tools as a brush, spray can, and even text. Any of these tools can produce images using colors from a palette of up to 256 colors (sometimes more, but Windows Library don’t support hi-color bitmaps yet), which you can define.

To create and load a bitmap using this method, follow these steps:

Start SDKPaint and create the bitmap.

After creating the bitmap image, save it in a file that has the filename extension .BMP.

In your application's resource script (.RC) file, add a BITMAP statement that defines that bitmap as an application resource.

For example, the following statement specifies that the bitmap resource named “dog” resides in the file DOG.BMP:

 dog BITMAP DOG.BMP

The name “dog” identifies the bitmap; the filename DOG.BMP specifies the file that contains the bitmap.

In your application's source file, load the bitmap using the CreateBitmapIndirect function.

The CreateBitmapIndirect function takes the recource file name and bitmap's resource name, loads the bitmap into memory, and returns a handle to the bitmap. For example, the following statement loads the bitmap resource named “dog”, and stores the resulting bitmap handle in the variable hDogBitmap:

 hDogBitmap = CreateBitmapIndirect(“dog.res”, “DOG”, &W, &H);

Select the bitmap into a device context (screen) using the SelectBitmapToDC function. As far as it will be selected to screen it will be displayed.

Loading Bitmap from Bitmap File

You can create bitmap directly from bitmap file (with .BMP extension). Now monochrome (1 bit per pixel), 16-colors (4 bits per pixel) and 256 colors (8 bits per pixel) bitmaps supported.

Following example loads bitmap from file “dog.bmp”:

 HDIB DIB;

 int W, H;

 .

 .

 .

 DIB = LoadBitmapFile(“dog.bmp”, &W, &H);

In this example, W and H after loading bitmap contains width and height of bitmap. DIB is contains bitmap handle (actually, that’s a ponter to internal bitmap structure used by Windows Library).

Then, you can use the same way as when using CreateBitmapIndirect function:

 HDC hDC;

 POINT Point[3] = {{10, 0}, {100, 10}, {90, 100}};

 .

 .

 .

 hDC = GetDC(hWnd);

 .

 .

 .

 if (DIB)

 SelectBitmapToDC(hDC, DIB, Point, 0, 0, W, H);

Now loaded bitmap displayed in window hWnd. Note that the SelectBitmapToDC function performs a bit-block transfer of the bits of color data from the specified rectangle in the source device context to the specified parallelogram in the destination device context. The upper-left corner of the source rectangle is mapped to the first point in this Point array, the upper-right corner to the second point in this array, and the lower-left corner to the third point. The lower-right corner of the source rectangle is mapped to the implicit fourth point in the parallelogram. The stretching mode for the destination device context (set by SetStretchBltMode function) is used to determine how to stretch or compress the pixels, if that is necessary. If the destination and source rectangles do not have the same color format, SelectBitmapToDC converts the source rectangle to match the destination rectangle.

Creating and Filling a Blank Bitmap

You can create a bitmap “on the fly” by creating a blank bitmap and then filling it in using GDI output functions. With this method, your application is not limited to external bitmap files, preloaded bitmap resources, or bitmaps that are hard-coded in your application source code.

In Transputer Windows Library, as you know, blank bitmap created always when you create graphics window (see CreateGraphWindow function description).

Follow these general steps:

Create a graphics window by CreateGraphWindow function.

Draw in the bitmap (i.e. in tyhe screen) image using GDI output functions.

(possible) Retrieve the bitmap from screen (device context) and then save the bitmap image to bitmap file using SaveBitmapFile function.

The following example creates a “star” bitmap using the Polygon function:

 HDC hDC;

 int W, H;

 POINT Points[5] = { 32,0, 16,63, 63,16, 0,16, 48,63 };

 .

 .

 .

 hWnd = CreateGraphicsWindow(“Star Window”, (DWORD)GpaphWndProc,

 WS_OVERLAPPEDWINDOW, 0, 0, 100, 100, 64, 64, NULL);

 hDC = GetDC(hWnd);

 PatBlt(hDC, 0, 0, 64, 64, WHITENESS);

 Polygon(hDC, Points, 5);

 SaveBitmapFile(hDC, “star.bmp”);

 ReleaseDC(hWnd, hDC);

In this example, the CreateGraphWindow creates graphics window at position (0, 0) with 100 pixels width and 100 pixels height and with selected bitmap (64, 64). The GetDC function retrieves a handle to the device context of this window.

The PatBlt function clears the bitmap and sets all pixels white (that is not necessary, actually, as far as Windows Library clears the window upon creating).

The Polygon function draws the star by using the endpoints specified in the array of structures, Points.

The SaveBitmapFile function retrieves a pointer to device-independent bitmap from device context and saves the DIB to file “star.bmp”.

Finally, the ReleaseDC function releases the device context.

Drawing a Color Bitmap

Since hard-coding a color bitmap may require considerable effort, it is usually simpler to create a graphics window and draw in it. For example, to create a color bitmap that has a red, green, and blue plaid pattern, you simply create a blank bitmap (with graphics window) and use the PatBlt function, with the red, green, and blue brushes, to draw the pattern. This method has the advantage of generating a reasonable bitmap even if the display does not support color. This is because GDI provides dithered brushes for monochrome displays when a color brush is requested. A dithered brush is a unique pattern of pixels that represents a color when that color is not available for the device.

The following statements create the color bitmap by drawing it:

 #define PATORDEST 0x00FA0089L

 HDC hDC;

 HBRUSH hRedBrush;

 HBRUSH hGreenBrush;

 HBRUSH hBlueBrush;

 HBRUSH hOldBrush;

 short W, H;

 .

 .

 .

 hDC = GetDC(hWnd);

 hRedBrush = CreateSolidBrush(RGB(255,0,0));

 hGreenBrush = CreateSolidBrush(RGB(0,255,0));

 hBlueBrush = CreateSolidBrush(RGB(0,0,255));

 PatBlt(hDC, 0, 0, 64, 32, BLACKNESS);

 hOldBrush = SelectObject(hDC, hRedBrush);

 PatBlt(hDC, 0, 0, 24, 11, PATORDEST);

 PatBlt(hDC, 40, 10, 24, 12, PATORDEST);

 PatBlt(hDC, 24, 22, 24, 11, PATORDEST);

 SelectObject(hDC, hGreenBrush);

 PatBlt(hDC, 24, 0, 24, 11, PATORDEST);

 PatBlt(hDC, 0, 10, 24, 12, PATORDEST);

 PatBlt(hDC, 40, 22, 24, 11, PATORDEST);

 SelectObject(hDC, hBlueBrush);

 PatBlt(hDC, 40, 0, 24, 11, PATORDEST);

 PatBlt(hDC, 24, 10, 24, 12, PATORDEST);

 PatBlt(hDC, 0, 22, 24, 11, PATORDEST);

 SelectObject(hDC, hOldBrush);

 DeleteObject(hRedBrush);

 DeleteObject(hGreenBrush);

 DeleteObject(hBlueBrush);

 ReleaseDC(hWnd, hDC);

In this example, the CreateSolidBrush function creates the red, green, and blue brushes needed to make the plaid pattern. The SelectObject function selects each brush into the device context as that brush is needed, and the PatBlt function paints the colors into the bitmap. Each color is painted three times, each time into a small rectangle. In this example, the application instructs PatBlt to overlap the different color rectangles a little. Since the PATORDEST raster-operation code is given, PatBlt combines the brush color with the color already in the bitmap by using a Boolean OR operator. The result is a different color border around each rectangle.

Displaying Bitmaps

Transputer Windows Library provides several ways to display a bitmap:

 - You can select bitmap to screen device context (as described

 above).

 - You can display a bitmap by using the BitBlt function to copy

 the bitmap from the memory device context to a device surface.

 - You can use the StretchBlt function to copy a stretched or

 compressed bitmap from a memory device context to a device surface.

This section explains each method of displaying a bitmap.

Deleting Bitmaps

A bitmap, like any resource, occupies memory while in use. After you have finished using a bitmap or before your application terminates, it is important that you delete the bitmaps you have created in order to make that memory available to other applications. To delete a bitmap, use the DeleteBitmap function.

The following example deletes the bitmap identified by the Dib parameter.

 DeleteBitmap(Dib);

Summary

This chapter explained how to create and use monochrome and color bitmaps. A bitmap is an image formed by a pattern of bits. In Windows, there are two kinds of bitmaps: device-dependent and device-independent. The simplest way to use a bitmap is to draw it using SDKPaint, then add it to your application's resources and load it using the CreateBitmapIndirect function. There are also several methods your application can use to create and display bitmaps during run time. The application can use GDI output to draw each bit. It can also initialize the bits in a bitmap by using the image in an existing device-independent bitmap.

See the example “Control” for more information.

�Printing

Most applications provide a way for users to get printed copies of their program data. In most environments, your application must deal with the varied capabilities and requirements of many different printers. In Microsoft Windows, your application need not provide any printer-specific code; it can simply print to the current printer. Windows, and the Windows printer drivers, translate your application's print request to information each printer can use.

This chapter covers the following topics:

Printing in the Windows environment

Getting information about the printer

Printing a line of text

Processing errors during printing

Canceling a print operation

Printing in the Windows Environment

In Windows, your application does not print by interacting directly with the printer. Instead, you print by sending output to a printer device context. This means that your application need not concern itself with each printer's specific capabilities or requirements.

Printing in Windows is handled by GDI. In general, the procedure for printing information is similar to that for displaying information; you get a handle to a device context, then send output to that device context. Normally, an application follows these steps in order to print to the current printer:

The application first retrieves information about the current printer, such as its type, device driver, and printer port, from the WIN.INI initialization file.

This information is necessary in order to create a device context for the current printer.

When you send output to a printer device context, Windows activates the print spooler to manage your print request.

Your application uses printer escapes (for the latest version of Windows Library, using special functions) to communicate with the printer's device driver.

Using Printer Escapes

Your application uses escapes to communicate with the device driver associated with the printer. These sequences tell the device driver what to do, and also gather printer-specific information, such as page size, for the application. To send escape sequences to the device driver, the application uses the StartDoc, EndDoc, StartPage, EndPage and AbortDoc functions.

For example, to tell the printer device driver to start a print request, use the StartDoc function (which is actually sends the STARTDOC escape to the printer). The following example sends the STARTDOC escape to the printer device context identified by the variable hPrinterDC; it starts a print request named “My Document”.

 StartDoc(hPrinterDC, “My Document”, NULL);

The last parameter of StartDoc fucntion can be a file name, if you wish to print to the file instead of the printer (in this case, the first parameter is ignored).

When sending output to the printer, you follow the same general rules as for other types of GDI output. If you are printing text, or primitives such as rectangles, arcs, and circles, you can send them directly to the printer device context. You can also send text and primitives to a memory device context. This lets you create complex images before sending them to the printer.

Retrieving Information About the Current Printer

In order to create a printer device context, you need information about the printer, such as its type and the computer port to which it is connected. The Windows Control Panel application adds information about the current printer to the device= field in the [windows] section of the WIN.INI file. Any application can retrieve this information by using the GetPrinterDC function.

The following example shows how to retrieve the printer information:

 HDC hPrinterDC;

 .

 .

 .

 hPrinterDC = GetPrinterDC();

Printing a Line of Text

Printing a single line of text requires the following steps:

Create the device context for the printer.

Start the print request.

Start a new page.

Print the line.

“End” the page.

End the print request.

Delete the device context.

The following example shows how to print a single line of text on default printer installed in Windows.

 hPR = GetPrinterDC();

 if (hPR)

 {

 StartDoc(hPR, “Test”, NULL);

 StartPage(hPR);

 TextOut(hPR, 10, 10, “A single line of text.”, 22);

 EndPage(hPR);

 EndDoc(hPR);

 DeleteDC(hPR);

 }

In this example:

The GetPrinterDC function retrieves the printer device context.

The StartDoc function starts the print request by sending the STARTDOC escape sequence to the device context. The name “Test” identifies the request. The StartPage function starts the new page.

TextOut copies the line of text to the printer. The line will be placed starting at the coordinates (10,10) on the printer paper (the printer coordinates are always relative to the upper-left corner of the paper). The default units are printer pixels.

The EndPage function completes the page and signals the printer to advance to the next page. The EndDoc function signals the end of the print request.

The DeleteDC function deletes the printer device context.

You should not expect the line of text to be printed immediately. The spooler collects all output for a print request before sending it to the printer, so actual printing does not begin until after the

ENDDOC escape (sent by the EndDoc function).

Processing Errors During Printing

Although GDI and the spooler attempt to report all printing errors to the user, your application must be prepared to report out-of-disk and out-of-memory conditions. When there is an error in processing a particular escape, such as STARTDOC or NEWFRAME, the appropriate function (StartDoc or StartPage) return SP_ERROR. Out-of-disk and out-of-memory errors usually occur on a NEWFRAME escape. To get extended error information, use the GetLastError function.

If your application encounters a printing error or a canceled print operation, it must not attempt to terminate the operation by using the EndDoc and AbortDoc functions. GDI automatically terminates the operation before returning the error

value.

Canceling a Print Operation with the AbortDoc function

You can use the ABORTDOC escape to cancel a print operation at any time. Applications can use the ABORTDOC escape only before the first NEWFRAME or NEXTBAND escape.

�The Clipboard

The clipboard is the main data-exchange feature of Microsoft Windows. It is a common area to store data handles through which applications can exchange formatted data. The clipboard holds any number of different data formats and corresponding data handles, all representing the same data, but in as many different formats as an application is willing to supply. For example, a pie chart might be held in the clipboard as both a metafile picture and a bitmap. An application pasting the pie chart would have to decide which representation it wanted. In general, the format that provides the most information is the most desirable, as long as the application understands that format.

Using the Clipboard

To copy data to the clipboard, you format the data using either a predefined or private format. For most formats, you allocate global memory and copy the data into it. You then use the SetClipboardData function to copy the memory handle to the clipboard.

Windows provides several predefined data formats for use in data interchange. Following is a list of common formats and their contents:

CF_TEXT		Null-terminated text

CF_OEMTEXT		Null-terminated text in the OEM character set

CF_METAFILEPICT	Metafile-picture structure

CF_BITMAP		A device-dependent bitmap

CF_DIB		A device-independent bitmap

CF_SYLK		SYLK standard data-interchange format

CF_DIF			DIF standard data-interchange format

CF_TIFF		TIFF standard data-interchange format

Only one type of clipboard interesting for Transputer Windows Application - CF_BITMAP because of all other types requires memory transfer operations between transputer program and Windows Server. But you can use it also (for exapmle, use GlobalAlloc to allocate memory on host, then call TransferToHost to transmit data, only then SetClibboardData). But it's very slow.

When you paste data from the clipboard using the GetClipboardData function, you specify the format you expect. The clipboard supplies the data only if it has been copied in that format.

Using Clipboard Bitmaps

To retrieve bitmap data from the clipboard, you first must test is clipboard available and its contents if yes:

 if (OpenClipboard(hWnd))

 {

 if (IsClipboardFormatAvailable(CF_BITMAP))

 return TRUE; /* Ok */

 else

 CloseClipboard();

 return FALSE; /* no bitmap data in Clipboard */

 }

 else

 return FALSE; /* Clipboard is not available */

To retrieve bitmap data from the Clipboard, use GetClipboardData function:

 HBITMAP hBitmap;

 .

 .

 .

 hBitmap = GetClipboardData(CF_BITMAP);

To set bitmap data in the Clipboard, use SetClipboardData call:

 SetClipboardData(CF_BITMAP, hBitmap);

The Windows Clipboard Application

The Windows Clipboard application, CLIPBRD.EXE, lets the user view the contents of the clipboard; for this reason, it is also known as the “clipboard viewer.” It lists the names of all the formats for which handles (NULL or otherwise) exist in the clipboard, and displays the contents of the clipboard in one of these formats.

The clipboard viewer can display all the standard data formats. If there are handles for more than one standard data format, the clipboard viewer displays only one format, choosing from the following list, in decreasing order of priority: CF_TEXT, CF_OEMTEXT, CF_METAFILEPICT, CF_BITMAP, CF_SYLK, and CF_DIF.

�Host Memory Management

Because Microsoft Windows is a multitasking system, several applications may use memory simultaneously. Windows manages the available memory to make sure all applications have access to it, and to make the use of memory as efficient as possible.

Transputer Windows Application can use memory in Window global heap as well as any other Windows applications.

Using Memory

The Transputer Windows Library lets your application allocate blocks of host memory. You can allocate blocks of memory only from global heap. The global heap is a pool of free memory available to all applications.

In some memory-management systems, the memory you allocate remains fixed at a specific memory location until you free it. In Windows, allocated memory can be also be moveable and discardable. A moveable memory block does not have a fixed address; Windows can move it at any time to a new address. Moveable memory blocks let Windows make the best use of free memory. For example, if a moveable memory block separates two free blocks of memory, Windows can move the moveable block to combine the free blocks into one contiguous block. A discardable memory block is similar to moveable memory in that windows can move it, but Windows can also reallocate a discardable block to zero length if it needs the space to satisfy an allocation request. Reallocating a memory block to zero length destroys the data the block contains, but an application always has the option of reloading the discarded data whenever it is needed.

When you allocate a host memory block, you receive a handle, rather than a pointer, to that memory block. The handle identifies the allocated block. You can use it to transfer data between transputer program and Windows memory, and to retrieve the block's current address (although you have no need to use it).

Windows lets you compact memory. By squeezing the free memory from between allocated memory blocks, Windows collects the largest contiguous free-memory block possible, from which you may allocate additional blocks of memory. This squeezing is a process of moving and (if necessary) discarding memory blocks. Windows also lets you discard individual memory blocks if you temporarily have no need for them.

Allocating Memory

The global heap contains all of system memory. Windows allocates the memory it needs for code and data from the global heap when it first starts. Any remaining free memory in the global heap is available to Transputer Windows Applications.

You can allocate any size of memory block from the global heap. Applications typically allocate large blocks from the global heap; these blocks can exceed 64K if the applications need that much continuous space.

To allocate a block of host global memory, use the GlobalAlloc function. You specify the size and type (fixed, moveable, or discardable); GlobalAlloc returns a handle to the memory block.

In the following example, the GlobalAlloc function allocates 65536 bytes of moveable memory:

 HANDLE hMem;

 hMem = GlobalAlloc(GMEM_MOVEABLE, 65536);

 if (hMem)

 /* successfully allocated */

You can check to see how much memory is available in the global heap by using the GlobalMemoryStatus function.

The GlobalAlloc function returns 0 if an allocation request fails. You should always check the return value to ensure that it is a valid handle.

You can free any global memory you may no longer need by using the GlobalFree function. In general, you should free memory as soon as you no longer need it so that other applications can use the space. You should always free global memory before your application terminates, although Windows tries to do it automatically.

You also can create a discardable memory block by combining the GMEM_DISCARDABLE and GMEM_MOVEABLE options when allocating the block. The resulting block will be moved as necessary to make room for other allocation requests; or if there is not enough memory to satisfy the request, the block may be discarded. The following example allocates a discardable block from global memory:

 hMem = GlobalAlloc(GMEM_MOVEABLE | GMEM_DISCARDABLE, 65536);

When Windows discards a memory block, it empties the block by reallocating it, with zero bytes given as the new size. The contents of the block are lost, but the memory handle to this block remains valid. Any attempt to lock the handle and access the block will fail, however.

Windows determines which memory blocks to discard by using a least-recently used (LRU) algorithm. It continues to discard memory blocks until there is enough memory to satisfy an allocation request. In general, if you have not accessed a discardable block in some time, it is a candidate for discarding.

You can retrieve information about the block by using the GlobalFlags function. This is useful for verifying that the block has actually been discarded. GlobalFlags sets the GMEM_DISCARDED bit in its return value when the specified memory block has been discarded.

Once a discardable block has been discarded, its contents are lost. If you wish to use the block again, you need to reallocate it to its appropriate size and fill it with the data it previously contained. You can reallocate it by using the GlobalReAlloc function.

You can make a discardable object nondiscardable (or vice versa) by using the GlobalReAlloc function and the GMEM_MODIFY flag. The following example changes a moveable block, identified by the hMem memory handle, to a moveable, discardable block:

 hMem = GlobalReAlloc(hMem, 0, GMEM_MODIFY | GMEM_DISCARDABLE);

The following example changes a discardable block to a nondiscardable block:

 hMem = GlobalReAlloc(hMem, 0, GMEM_MODIFY);

Data Transmission

You can transmit arrays of data between transputer memory and host Windows memory. For example

 HANDLE hMem;

 void *SourcePtr, *DestPtr;

 .

 .

 .

 TransferToHost(hMem, SourcePtr, 65536);

 .

 .

 .

 TransferFromHost(DestPtr, hMem, 65536);

First parameter in both calls - destignation object (global host memory handle if direction - to host, and pointer to transputer memory if direction - from host). Second parameter - source object (pointer or handle, respectively). Last parameter - size of data array to transmit. Maximum available size for transmission (DWORD value) - 0xFFFFFFFF.

�Writing Protocol Extensions

If you want a function that can be realized only on host computer and that no presented in Transputer Windows Library, you can write Protocol Extension Library. To do this you must:

Create .DLL library (using any programming tool like Microsoft C, Borland C, Turbo Pascal for Windows etc.);

export the function (which will dispatch your messages) according to some rules;

write your own transputer library to communicate with Windows Server.

Creating DLL

It's a very simple library. It must consist (at least) of two functions: DllMain and dispatch-function. Function prototype:

 void far pascal _export DispatchUserFunction(BYTE *Buffer);

This function, DispatchUserFunction, realize the interface between your transputer application and Windows Server (i.e. user-defined part of it). Parameter “Buffer” points to array of bytes received from transputer program: first two bytes contain the message size (not including the size word itself), followed by tag identifying the call to user-defined dispatching function (always should be 100), followed by the address of dispatching function (returned by LoadProtocolExtension function), followed by the action tag (identifying the action to be performed).

Source library file must include C-language file “pack.h”, which contain a couple of macro definitions to help you to interact with the transputer program.

Your DispatchUserFunction function (the name could be different, of course) can test byte 7 of received message and then call appropriate function:

 switch (Tbuf[7])

 {

 case SP_TAG1: Function1(Tbuf); break;

 .

 .

 .

 default: /* error message - unknown tag */

 }

 return 0;

In this exapmle, if byte 7 of buffer is SP_TAG1, function Function1 will be called.

Functions like Function1 must have following form:

 void Function1(BYTE *Tbuf)

 {

 BUFFER_DECLARATIONS; 	/* input/output buffers */

 ...				/* reading parameters from buffer */

 ...				/* calculate result */

 ...				/* writing parameters to output buffer */

 REPLY; 			/* epilog */

 }

Reading and writing macros defined in “pack.h”:

 GET_BYTE(bValue)		read BYTE to bValue

 GET_WORD(wValue)		read WORD to wValue

 GET_DWORD(dwValue)		read DWORD to dwValue

 GET_STRING(pBuffer)		read array of bytes to pBuffer

 PUT_BYTE(bValue)		write BYTE bValue

 PUT_WORD(wValue)		write WORD wValue

 PUT_DWORD(dwValue)		write DWORD dwValue

 PUT_STRING(pBuffer)		write array of bytes pBuffer

Transputer Library

Transputer Windows Application that wants to call your own functions (like Function1()) must have appropriate tags defined (like SP_TAG1) and “pack.h” file (transputer edition) included). Your function that communicates with your DLL can be as follofing:

 type Function1(parameter1, ...)

 {

 BUFFER_DECLARATIONS; 	/* input/output buffers */

 PUT_DWORD(dwAddress);	/* writing the function address */

 PUT_BYTE(SP_TAG1); 		/* writing tag - function identifier */

 ...				/* writing parameters */

 SEND; 				/* send buffers - write to link */

 RECEIVE; 			/* receive the responce */

 ...				/* reading parameters */

 return ... 			/* return value */

 }

To load you library and obtain the dispatching function, you should use the LoadProtocolExtension function:

 DWORD Address;

 if (!LoadProtocolExtension("MYLIB.DLL", "DispatchFunction", &Address))

 ... /* library not found or not valid */

 ... /* you can call your functions now */

 UnloadProtocolExtension("MMLIB.DLL");

Windows Server Package provides an example of protocol extension library (see GUIDE\USER and GUIDE\USER\DLL directories on distribution disks).

�SEITE �

�SEITE �2—15�

� AKTUALDAT \l �16.01.1996�		

