Annual Conference: Communicating Process Architectures
Communicating Process Architectures 2018,
the 40th. WoTUG conference on concurrent and parallel systems, takes place from
Sunday August 19th. to Wednesday August 22nd. 2018 and is hosted by
Professor Dr. Rainer Spallek,
Chair of
VLSI Design, Diagnostics and Architecture
at the Faculty of Computer Science,
Technische Universität Dresden, Germany.
The conference is organised by Dr. Spallek in collboration with Oliver Knodel and Uwe Mielke
and in partnership with WoTUG.
About WoTUG
WoTUG provides a forum for the discussion and promotion of concurrency ideas,
tools and products in computer science.
It organises specialist workshops and annual conferences that address
key concurrency issues at all levels of software and hardware granularity.
WoTUG aims to progress the leading state of the art in:
-
theory (programming models, process algebra, semantics, ...);
-
practice (multicore processors and run-times, clusters, clouds, libraries, languages, verification, model checking, ...);
-
education (at school, undergraduate and postgraduate levels, ...);
-
applications (complex systems, modelling, supercomputing, embedded systems, robotics, games, e-commerce, ...);
and to stimulate discussion and ideas on the roles concurrency will play in the future:
-
for the next generation of scalable computer infrastructure (hard and soft) and application,
where scaling means the ability to ramp up functionality (stay in control as complexity increases)
as well as physical metrics (such as absolute performance and response times);
-
for system integrity (dependability, security, safety, liveness, ...);
-
for making things simple.
Of course, neither of the above sets of bullets are exclusive.
WoTUG publications
A database of papers and presentations from WoTUG conferences is here.
The Abstract below has been randomly selected from this database.
Towards Strong Mobility in the Shared Source CLI
By Johnston Stewart, Patrick Nixon, Tim Walsh, Ian Ferguson
Migrating a thread while preserving its state is a useful mechanism to have in situations where load balancing within applications with intensive data processing is required. Strong mobility systems, however, are rarely developed or implemented as they introduce a number of major challenges into the implementation of the system. This is due to the fact that the underlying infrastructure that most computers operate on was never designed to accommodate such a system, and because of this it actually impedes the development of these systems to some degree. Using a system based around a virtual machine, such as Microsoft’s Common Language Runtime (CLR), circumnavigates many of these problems by abstracting away system differences. In this paper we outline the architecture of the threading mechanism in the shared source version of the CLR known as the Shared Source Common Language Infrastructure (SSCLI). We also outline how we are porting strong mobility into the SSCLI, taking advantage of its virtual machine.
Complete record...
|